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Abstract 

Background  Emerging evidence reveals that microbiota plays a crucial role in multiple cancers. Nasopharyngeal 
carcinoma (NPC) tissues harbour microbiota, highlighting the need to investigate the clinical implications of tissue-
resident microbiota in the development of NPC. Here, we aim to clarify the specific profile of tissue-resident micro-
biota and its influence on NPC outcomes.

Results  This retrospective study included 491 NPC patients from Sun Yat-sen University Cancer Center (Guangzhou, 
China) and the Affiliated Hospital of Guilin Medical College (Guilin, China). We profiled the microbial composition 
of 343 NPC and 36 normal nasopharyngeal tissues through sequencing of the genes encoding the 16S rRNA subu-
nit of bacterial ribosomes. There were significant differences in microbial composition, alpha diversity (Shannon 
index, P = 0.007; Simpson index, P = 0.036), and beta diversity (Bray–Curtis distance: R2 = 0.016, F = 5.187, P = 0.001; 
unweighted UniFrac distance: R2 = 0.017, F = 5.373, P = 0.001) between NPC and normal nasopharyngeal tissues. 
A bacterial signature comprising four risk bacterial genera, including Bacteroides, Alloprevotella, Parvimonas, and Dial-
ister, was constructed in the training cohort (n = 171). Patients in the high-risk group had shorter disease-free (HR 2.80, 
95% CI 1.51–5.18, P < 0.001), distant metastasis-free (HR 4.00, 95% CI 1.77–9.01, P < 0.001), and overall survival (HR 3.45, 
95% CI 1.77–6.72, P < 0.001) than those of patients in the low-risk group. Similar results were yielded in the internal 
validation (n = 172) and external validation (n = 148) cohorts. Integrated multi-omics analysis revealed that NPC tissues 
harbouring abundant risk bacteria were characterised by deficient immune infiltration, which was verified by multi-
plex immunohistochemistry.

Conclusions  This study developed and validated the applicability of a four-bacteria signature as a prognostic tool 
for NPC prognostication. Integrated multi-omics analysis further uncovered that the tumour immune microenviron-
ment was perturbed by tissue-resident microbiota, which might pave the way towards the era of microbiota-targeted 
precision medicine for NPC.
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Background
Nasopharyngeal carcinoma (NPC), a malignancy aris-
ing from the nasopharynx epithelium, prevails in South 
China, Southeast Asia, and North Africa [1]. Owing 
to high radiosensitivity and deep-seeded anatomi-
cal constraints, radiotherapy is the mainstay treatment 
modality for NPC, and platinum-based chemotherapy 
is administered to locoregionally advanced patients [2, 
3]. Currently, the tumour-node-metastasis (TNM) stag-
ing system occupies a crucial position in the prediction 
of prognosis and the guidance of treatment decisions 
for NPC patients. However, prognosis varies even for 
patients with the same stage and analogous treatment 
regimens, and approximately 30% of NPC cases suf-
fer from mortality after radical therapy because of local 
recurrence or distant metastasis [4], indicating the defi-
ciency of this anatomy-based staging system for tailoring 
individualised therapy for NPC. As this disease is char-
acterised by a heterogeneous nature and complex regula-
tory network, further refinement of advanced molecular 
subtyping tools for risk stratification in NPC patients is 
still necessary [5–8]. Herein, the search for novel effica-
cious biomarkers remains a major undertaking for NPC 
prognostication.

The evolutionary fate of humans and microbiota is 
intimately entwined, and microbial dysbiosis is actively 
involved in multiple diseases, including malignancies 
[9]. Almost 20% of the global cancer burden is attrib-
uted to microbial infections [10]. Recently, accumulat-
ing evidence has implied that tumour tissues, which 
were initially assumed to be sterile, displayed exclusive 
microbial signatures [11]. Investigations regarding the 
tumour-resident microbiota are increasing, and much 
effort has been made to identify unique microbial pro-
files and to reveal potential microbiota-tumour interac-
tions. Employing more than 1500 primary tumours and 
adjacent normal tissue samples, researchers have charac-
terised the cancer-type-specific landscape of intracellular 
bacteria across seven cancer types [12]. Microbial reads 
derived from whole-genome or transcriptome sequenc-
ing profiles in The Cancer Genome Atlas (TCGA) have 
been proposed for cancer diagnosis, prognosis, and 
prediction of therapeutic efficacy [13–15]. Bacteria has 
been further traced at a single-cell resolution in pancre-
atic tumours, and their intracellular presence is linked to 
cell-type-specific transcriptional shifts and clinical out-
comes [16]. Additionally, a recent study suggested that 
bacteria such as Staphylococcus and Lactobacillus resid-
ing inside tumour cells can accelerate metastatic spread 
by regulating the host-cell actin network and protecting 
breast tumour cells against fluid shear stress in the cir-
culatory system [17]. These data suggest that the tissue-
resident microbiota is intensely associated with tumour 

occurrence and development and has promising clinical 
prospects.

The nasopharynx serves as an essential ecological 
niche for the upper respiratory microbiota. The bacteria 
have been found to present within NPC tumour tissues, 
and they predominately migrate from the nasopharynx 
[18]. However, the specific profile of the tissue-resident 
microbes of NPC and its clinical implications remains 
unclear. In this study, we comprehensively depicted the 
discrepancy in microbial composition between NPC and 
normal nasopharyngeal tissues. Additionally, we gener-
ated and validated a four-bacteria signature, covering 
Bacteroides, Alloprevotella, Parvimonas, and Dialister, 
as an efficacious prognostic indicator for NPC. Further-
more, we gained better insights into the microbiota-host 
axis engaged in NPC progression by integrated func-
tional analysis. Our findings identified a microbial shift 
in NPC tissues and constructed a bacterial signature for 
prognostic prediction, which will shed novel insights into 
precise individualised therapy for NPC patients.

Methods
Study cohort and design
We retrospectively collected 491 fresh-frozen biopsy tis-
sues from patients newly diagnosed with NPC for this 
study. The inclusion criteria were as follows: (1) patholog-
ically confirmed NPC; (2) aged between 18 and 70 years; 
(3) no prior history of malignancy; (4) without distant 
metastasis at initial diagnosis; (5) not received antitu-
mour treatment before sampling; (6) with complete med-
ical records and regular follow-up; (7) sufficient quantity 
and high-quality DNA for 16S rRNA gene sequencing. 
Among them, 343 tissues were obtained from the Sun 
Yat-sen University Cancer Center (SYSUCC, Guangzhou, 
China) between August 2010 and December 2016, and 
another 148 were obtained from the Affiliated Hospital 
of Guilin Medical College (Guilin, China) between April 
2014 and May 2020. We restaged NPC patients based 
on the 8 th edition of the American Joint Committee on 
Cancer staging system. All patients underwent radical 
radiotherapy, and 449 (91.4%) patients received addi-
tional platinum-based chemotherapy. We also collected 
36 fresh-frozen normal nasopharyngeal tissues as healthy 
controls from SYSUCC from August 2010 to December 
2016. All samples were pathologically diagnosed by two 
pathologists, respectively. This study was approved by 
the institutional ethical review boards of both hospitals 
for analysing anonymous data, and informed consent was 
obtained from each patient (B2022-788-01).

We established microbial profiles of 343 NPC and 36 
normal nasopharyngeal tissues (Discovery cohort 1, SYS-
UCC) with 16S rRNA gene sequencing, and also acquired 
microbial profiles of 48 paired NPC tissues from patients 
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with/without posttreatment tumour relapse from our 
previous study (Discovery cohort 2, Public dataset) [18]. 
343 NPC samples from the Discovery cohort 1 were ran-
domly separated into a training (n = 171) and an inter-
nal validation (n = 172) cohort. Additionally, 148 samples 
from the Affiliated Hospital of Guilin Medical College 
were designated as an external validation cohort. We 
aimed to construct a prognostic bacterial signature from 
the training cohort to classify patients into high- and low-
risk groups, and test its performance in two validation 
cohorts. We further performed RNA sequencing (RNA-
seq) and multiplex immunohistochemistry (mIHC) in 32 
paired NPC tissues with high- or low-risk scores, which 
were randomly selected from the Discovery cohort 1, 
to explore the potential mechanisms of the risk bacteria 
involved in NPC progression (Fig. 1, Fig. S1).

16S rRNA gene sequencing and data processing
Tissue samples were transferred to sterile tubes, immedi-
ately submerged in liquid nitrogen for rapid freezing, and 
then stored at − 80 °C. We extracted DNA and RNA using 
the AllPrep DNA/RNA Micro Kit (QIAGEN GmbH) 
and strictly followed the principle of aseptic operation. 
The 16S rRNA gene V3–V4 regions were amplified from 
genomic DNA using quantitative PCR with universal 
primers (338 F: 5′-ACT​CCT​ACG​GGA​GGC​AGC​A- 3′ 
and 806R: 5′-GGA​CTA​CHVGGG​TWT​CTAAT- 3′). 
Then, the libraries were constructed using the NEBNext® 
Ultra™ II DNA Library Prep Kit for Illumina® (New Eng-
land Biolabs, MA, USA) and sequenced on the Illumina 
Nova 6000 platform at Maginene Biotechnology Co., Ltd. 
(Guangzhou).

Raw reads were processed to obtain amplicon sequence 
variants (ASVs) by QIIME2 software (v2020.11; Knight 
and Caporaso Lab). Representative sequence datasets 
were used for taxonomy classification with a naive Bayes 
classifier according to the SILVA 16S database (v138; 
Ribocon GmbH). Contamination controls were set in 
DNA extraction and PCR amplification processes (n = 
18) and sequencing lane (n = 3), and a contamination-
removal (CR) procedure was established as previously 
reported [12, 18]. First, ASVs containing either mito-
chondria or chloroplasts originating from the host in 
taxonomic annotation were removed by KneadData bow-
tie2 (filter 1) [19]. Next, sequencing library batch (filter 
2) was set to avoid contaminants from sequencing lane. 
ASVs that appear in the negative control of sequencing 
library batch were removed from the original data. To 
prevent a false-positive rate, DNA extraction batch (filter 
3) and PCR amplification batch (filter 4) were set employ-
ing the nonparametric, exact, binomial test. Only taxa 
that achieved a P value exceeding the threshold of 0.05 in 
the batch comparisons were included in the subsequent 

analysis. The remaining bacterial list was filtered to 
remove the singleton ASV, in order to avoid the random 
occurrence of ASVs (filter 5). Furthermore, genera whose 
average relative abundance did not reach 0.1% (filter 6) in 
at least 20% of NPC or normal tissues (filter 7) were fil-
tered, to ensure a permanent existence [20, 21].

After contamination removal, the rarefaction curve of 
both the NPC and normal nasopharyngeal samples was 
an asymptote, supporting the adequacy of the sequence 
depth, and the accumulation curve of the ASV numbers 
flattened out, representing an appropriate sample size 
(Fig. S2). Identical sequencing depth per sample of 10,000 
sequences was then used for the assessment of bacterial 
alpha and beta diversity at the ASV level using the ‘phy-
loseq’ (v1.42.0) and ‘vegan’ (v2.6–4) packages. Differential 
genera with adjusted Benjamini–Hochberg P value < 0.05 
between groups were analysed with the DESeq2 package 
(v1.38.3).

RNA sequencing and data processing
Libraries were constructed using NEBNext® Ultra™ RNA 
Library Prep Kit for Illumina® (New England Biolabs), 
and sequenced on the Illumina NovaSeq6000 platform 
at NuoBiotech Co., Ltd (Guangzhou). Raw reads were 
adaptor trimmed and data quality was assessed with the 
fastp software (v0.23.2). Cleaned data were aligned to 
human reference genome (GRCh38) using STAR soft-
ware (v2.7.10) in quantMode. RSEM (v1.3.3) was used for 
further quantification of gene expression. Differentially 
expressed genes were identified using the DESeq2 pack-
age. A list of Hallmark and KEGG gene sets was down-
loaded from the MSigDB database (v7.4) for gene set 
enrichment analyses using the ‘clusterProfile’ package 
(v4.6.0). Differential pathways (P < 0.05; q-value < 0.25; 
absolute normalised enrichment score (|NES|) > 1) 
were aggregated into four categories with a knowledge-
based annotation: malignant property-related, meta-
bolic, immunological pathways, and others. Based on 
the ImmPort database, we obtained differential immune 
genes (P < 0.05; q-value < 0.25; |Fold Change|≥ 1; Stu-
dent’s two-sided t-test) to construct a correlation net-
work (|r|> 0.30, P < 0.05) with the risk bacterial genera 
by the Cytoscape software (v3.9). Adjustments for mul-
tiple comparisons are presented by Benjamini-Hochberg. 
Then, immune infiltration was assessed by the MCP-
counter algorithm (v1.2.0) [22].

Multiplex immunohistochemistry
Sequential tumour sections were used for mIHC with 
a PANO 7-plex IHC kit (Panovue, Beijing, China) as 
we previously described [23, 24]. Briefly, sections were 
deparaffinised and rehydrated, followed by heat-induced 
epitope retrieval and blocking of non-specific binding 
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block. Then, sections were manually stained with the 
following primary antibodies: anti-CD3 (Abcam, Cam-
bridge, UK), anti-CD8 (ZSGB-BIO, Beijing, China), 
anti-CD20 (Sigma-Aldrich, MO, USA), anti-CD56 
(ZSGB-BIO), and anti-panCK (ZSGB-BIO), followed by 

the HRP-conjugated secondary antibody, tyramide signal 
amplification, and OPAL fluorophore dyes (OPAL480: 
CD3; OPAL520: CD56; OPAL570: CD20; OPAL690: 
CD8; OPAL780: panCK), were subsequently stained. 
Whole-slide images were scanned with Vectra® Polaris® 

Fig. 1  Study flowchart
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multispectral imaging system (Akoya Biosciences, USA), 
and analysed in HALO® image software (lndica Labs, 
USA) as described previously [23, 24].

Statistical analysis
The primary endpoint was disease-free survival (DFS), 
defined as the period from the first date of treatment 
to tumour relapse at any site or death from any cause, 
whichever occurred first. The secondary endpoints were 
distant metastasis-free survival (DMFS), which is the 
interval from the first date of treatment to distant metas-
tasis or non-cancer specific death, and overall survival 
(OS), which refers to death from any cause.

The Wilcoxon rank-sum test was used to compare 
microbial differences between groups, including NPC 
and normal nasopharyngeal tissues, NPC patients with 
different age, sex, TNM stage, and plasma EBV-DNA 
load. The χ2 or Fisher’s exact test was applied to compare 
categorical variables. We performed the least absolute 
shrinkage and selection operator (LASSO) on a binomial 
logistic regression model to identify risk bacterial genera 
related to DFS in the training cohort using ‘glmnet’ pack-
age (v4.1–6) [25]. A λ value via min (minimum error) 
criteria under tenfold cross-validation were used to 
determine how many candidate genera should be chosen 
for model construction. According to the λ value, gen-
era whose beta coefficients were not zero were selected 
to generate a risk score for each patient. The risk scores 
were calculated using a formula derived from the relative 
abundance of risk genera weighted by their beta coeffi-
cients [26]. A receiver operating characteristic (ROC) 
curve was used to determine the optimal cut-off in the 
training cohort using ‘pROC’ package (v1.18.0). The 
threshold that produced the maximum sum of sensitiv-
ity and specificity in the ROC curve were used to divide 
patients into low- and high-risk groups. Survival prob-
abilities were evaluated by Kaplan–Meier method and 
log-rank test, and hazard ratios (HRs) were calculated 
by univariable Cox regression analysis. Multivariate Cox 
regression analysis with backward selection was used to 
test the significance of independent factors. The bacte-
rial signature, age, sex, T stage, N stage, pathological 
type, plasma EBV-DNA, and chemotherapy were used as 
covariates.

We formulated nomogram, comprising the four-bacte-
ria signature, N stage, and plasma EBV-DNA load, using 
the rms package. We employed the coefficients of mul-
tivariable Cox regression to generate nomogram. Cali-
bration curves were evaluated graphically by comparing 
the observed rates with the nomogram predicted prob-
abilities, and concordance index (C-index) was calcu-
lated using survival package (v3.4). We investigated the 
prognostic or predictive accuracy of this classifier using 

receiver operating characteristic (ROC) analysis in pROC 
package (v1.18.0). Comparison between immune cell 
infiltration was compared by Wilcoxon rank-sum test. 
Correlation relationships were assessed by the Spearman 
correlation test. All analyses were performed in R v4.2.2 
and SPSS version 22.0 with two-tailed tests, and P < 0.05 
was considered significant.

Results
Patient characteristics
We totally included 491 NPC and 36 normal naso-
pharyngeal samples in this study (Fig. 1, Fig. S1). In the 
discovery stage, we enrolled 343 NPC and 36 normal 
nasopharyngeal tissues from the SYSUCC (Discovery 
cohort 1) (Table S1), as well as analysed 48 paired NPC 
tissues from patients with or without relapse from a 
public dataset of our previous study (Discovery cohort 
2) [18]. The 343 NPC samples were randomly separated 
into a training cohort (n = 171, SYSUCC) and an inter-
nal validation cohort (n = 172, SYSUCC). Additionally, 
another 148 samples from the first Affiliated Hospital of 
Guilin Medical University were designated as an external 
validation cohort (n = 148, Guilin). The clinical charac-
teristics of NPC patients in the training, internal valida-
tion, and external validation cohorts are listed in Table 1. 
All patients were treated with radical radiotherapy, and 
platinum-based chemotherapy was administered to 159 
(93.0%) of 171 patients in the training cohort, 152 (88.4%) 
of 172 in the internal validation cohort, and 138 (93.2%) 
of 148 in the external validation cohort. The median fol-
low-up of the training, internal validation, and external 
validation cohorts was 91.7 months (IQR 66.9–107.0), 
93.2 months (71.1–107.5), and 67.6 months (44.7–84.5), 
respectively.

The microbial profile differs between NPC and normal 
nasopharyngeal tissues
After the removal of contaminants using the estab-
lished CR procedure (Fig.  2A, Table  S2, Fig. S2–3), we 
first screened representative bacterial genera to perform 
composition analysis according to the microbiota taxon 
database between 343 NPC tissues and 36 normal naso-
pharyngeal tissues in the Discovery cohort 1 (Table S3). 
At the phylum level, NPC tissues exhibited significant 
enrichment of Firmicutes (16.4 vs. 5.4%, P = 0.019), Act-
inobacteriota (14.2 vs. 3.4%, P < 0.001), and Campilobac-
terota (0.6 vs. 0.1%, P = 0.037) and decreased abundance 
of Proteobacteria (50.5 vs. 79.7%, P < 0.001) compared to 
that of normal nasopharyngeal tissues (Fig.  2B–C, Fig. 
S4 A). In addition, the dominant and discrepant bacteria 
between NPC and normal nasopharyngeal tissues at the 
levels of class, order, and family are shown in Fig. S4B–D.
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To learn the association between microbial composi-
tion and clinical covariates, we also performed composi-
tion analysis according to different clinical factors (age, 

sex, TNM stage, and plasma EBV-DNA load). Fusobac-
terium, Prevotella, and Porphyromonas were enriched 
in old NPC patients, Glutamicibacter was enriched in 

Table 1  Clinical characteristics of patients in the training, internal validation, and external validation cohort

TNM tumour node metastasis, WHO World Health Organization, EBV Epstein-Barr virus, NA not available

Training cohort
(n = 171)

Internal validation cohort
(n = 172)

External validation cohort
(n = 148)

No 
of
patients

Low 
risk
(%)

High 
risk
(%)

No 
of
patients

Low 
risk
(%)

High 
risk
(%)

No 
of
patients

Low 
risk
(%)

High 
risk
(%)

Sex
  Female 49 40 (28.8) 9 (28.1) 40 36 (24.2) 4 (17.4) 49 38 (36.5) 11 (25.0)

  Male 122 99 (71.2) 23 (71.9) 132 113 (75.8) 19 (82.6) 99 66 (63.5) 33 (75.0)

Age/years
  < 45 91 76 (54.7) 15 (46.9) 93 86 (57.7) 7 (30.4) 48 38 (36.5) 10 (22.7)

  ≥ 45 80 63 (45.3) 17 (53.1) 79 63 (42.3) 16 (69.6) 100 66 (63.5) 34 (77.3)

T stage
  T1 17 16 (11.5) 1 (3.1) 16 13 (8.7) 3 (13.1) 4 2 (1.9) 2 (4.6)

  T2 32 27 (19.4) 5 (15.6) 31 26 (17.5) 5 (21.7) 32 25 (24.0) 7 (15.9)

  T3 88 71 (51.1) 17 (53.1) 94 86 (57.7) 8 (34.8) 69 48 (46.2) 21 (47.7)

  T4 34 25 (18.0) 9 (28.1) 31 24 (16.1) 7 (30.4) 43 29 (27.9) 14 (31.8)

N stage
  N0 18 17 (12.2) 1 (3.1) 26 24 (16.1) 2 (8.7) 10 6 (5.8) 4 (9.1)

  N1 83 71 (51.1) 12 (37.5) 71 64 (43.0) 7 (30.4) 59 45 (43.3) 14 (31.8)

  N2 52 36 (25.9) 16 (50.0) 42 36 (24.1) 6 (26.1) 58 41 (39.4) 17 (38.6)

  N3 18 15 (10.8) 3 (9.4) 33 25 (16.8) 8 (34.8) 21 12 (11.5) 9 (20.5)

TNM stage
  I 7 6 (4.3) 1 (3.1) 6 6 (4.1) 0 (0.0) 0 0 (0) 0 (0.0)

  II 26 25 (18.0) 1 (3.1) 19 17 (11.4) 2 (8.7) 13 11 (10.6) 2 (4.6)

  III 90 71 (51.1) 19 (59.4) 87 79 (53.0) 8 (34.8) 75 54 (51.9) 21 (47.7)

  IV 48 37 (26.6) 11 (34.4) 60 47 (31.5) 13 (56.5) 60 39 (37.5) 21 (47.7)

WHO pathological type
  Undifferentiated 164 133 (95.7) 31 (96.9) 166 144 (96.6) 22 (95.6) 145 102 (98.1) 43 (97.7)

  Differentiated 7 6 (4.3) 1 (3.1) 6 5 (3.4) 1 (4.4) 3 2 (1.9) 1 (2.3)

EBV DNA
(copies/ml)
  < 2000 79 66 (47.5) 13 (40.6) 76 66 (44.3) 10 (43.5) NA NA NA

  ≥ 2000 92 73 (52.5) 19 (59.4) 96 83 (55.7) 13 (56.5) NA NA NA

Chemotherapy
  No 12 11 (7.9) 1 (3.1) 20 18 (12.1) 2 (8.7) 10 9 (8.7) 1 (2.3)

  Yes 159 128 (92.1) 31 (96.9) 152 131 (87.9) 21 (91.3) 138 95 (91.4) 43 (97.7)

Disease progression
  No 124 107 (77.0) 17 (53.1) 125 116 (77.8) 9 (39.1) 83 66 (63.5) 17 (38.6)

  Yes 47 32 (23.0) 15 (46.9) 47 33 (22.2) 14 (60.9) 65 38 (36.5) 27 (61.4)

Distant metastasis
  No 147 125 (89.9) 22 (68.7) 135 124 (83.2) 11 (47.8) 113 86 (82.7) 27 (61.4)

  Yes 24 14 (10.1) 10 (31.3) 37 25 (16.8) 12 (52.2) 35 18 (17.3) 17 (38.6)

Death
  No 134 116 (83.4) 18 (56.2) 136 125 (83.9) 11 (47.8) 111 84 (80.8) 27 (61.4)

  Yes 37 23 (16.6) 14 (43.8) 36 24 (16.1) 12 (52.2) 37 20 (19.2) 17 (38.6)
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Fig. 2  The microbial profile differs between NPC and normal nasopharyngeal tissues. A Contamination removal procedure for 16S rRNA gene 
sequencing. B Overview of the bacterial differences in 343 NPC tumours and 36 normal nasopharyngeal tissues at the phylum level using 
the Circos plot. C Notched boxplots show the differential abundances of bacteria between NPC and normal nasopharyngeal tissues. The 
comparison was performed with the Wilcoxon rank-sum test. D Alpha diversity violin plot (Shannon and Simpson indexes) revealed differences 
in the community richness and evenness of the bacteria between NPC and normal nasopharyngeal tissues. The comparison was performed 
with the Wilcoxon rank-sum test. E Principal coordinate analysis (PCoA) using Bray-Curtis and unweighted UniFrac distances of beta diversity 
revealed the diversity distance of bacteria between NPC and normal nasopharyngeal tissues
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patients with advanced-stage, and Pseudomonas was 
enriched in male patients. Pseudomonas was positively 
correlated with plasma EBV-DNA load, while Haemophi-
lus was negatively correlated (Fig. S5).

Notably, compared with the normal nasopharyngeal 
tissues, NPC tissues displayed significantly increased 
microbial alpha diversity, as determined by the Shannon 
(P = 0.007) and Simpson (P = 0.036) indexes (Fig.  2D). 
In terms of beta diversity, PCoA revealed a global dif-
ference in the composition and abundance of microbi-
ome between NPC and normal nasopharyngeal tissues 
(Bray–Curtis distance: R2 = 0.016, F = 5.187, P = 0.001; 
unweighted UniFrac distance: R2 = 0.017, F = 5.373, P = 
0.001) (Fig. 2E).

Construction of a four‑bacteria signature in the training 
cohort
Based on the abundant bacteria at the genus level 
(Table S4), we aimed to develop a bacteria-based model 
for NPC prognosis. Firstly, we identified 74 bacterial gen-
era that were differentially distributed between 343 NPC 
and 36 normal nasopharyngeal tissues from the Discov-
ery cohort 1 (Fig. 3A, Table S5). Secondly, we found nine 
differential bacterial genera between 48 paired tissues 
of NPC patients with or without posttreatment tumour 
relapse in the Discovery cohort 2 obtained from a public 
dataset (Fig.  3B, Table  S6). After the intersection of the 
two comparisons, eight candidate bacterial genera were 
obtained for subsequent analysis. Then, we identified 
four risk bacterial genera, including Bacteroides, Allo-
prevotella, Parvimonas, and Dialister, to construct a bac-
terial signature for predicting DFS of NPC patients in the 
training cohort (Fig. 3C–D).

We generated a risk score for each patient using a for-
mula derived from the relative abundance of the four risk 
bacterial genera weighted by their regression coefficients 
as follows: Risk score = (3.4585* relative abundance of 
Bacteroides) + (8.5512* relative abundance of Alloprevo-
tella) + (2.3116* relative abundance of Parvimonas) 
+ 3.7812* (relative abundance of Dialister). Subsequently, 
an optimal cut-off value (0.0288) was identified for divid-
ing patients into the low- or high-risk groups in the train-
ing cohort.

Prognostic performance of the four‑bacteria signature 
across three cohorts
To determine the prognostic performance of the four-
bacteria signature for NPC patients in the training 
cohort, we assigned 32 (18.7%) of 171 patients to the 
high-risk group and the remaining 139 (81.3%) to the 
low-risk group. Survival analysis demonstrated that 
patients in the high-risk group had significantly poorer 
DFS (HR 2.80, 95% CI 1.51–5.18, P < 0.001), DMFS (HR 

4.00, 95% CI 1.77–9.01, P < 0.001), and OS (HR 3.45, 95% 
CI 1.77–6.72, P < 0.001) than those in the low-risk group 
(Fig. 4A– C).

To validate the performance of the four-bacteria signa-
ture, we included two validation cohorts. In the internal 
validation cohort, using the same formula and cut-off 
developed in the training cohort, the signature success-
fully classified 23 (13.4%) of 172 patients into the high-
risk group and 149 (86.6%) into the low-risk group, which 
were obviously different in terms of DFS (HR 3.98, 95% 
CI 2.13–7.46, P < 0.001; Fig. 4D), DMFS (HR 4.37, 95% CI 
2.19–8.72, P < 0.001; Fig. 4E), and OS (HR 4.36, 95% CI 
2.18–8.74, P < 0.001; Fig. 4F).

In the external validation cohort, there were 44 (29.7%) 
patients and 104 (70.3%) patients categorised into the 
high- and low-risk groups, respectively. Patients in the 
high-risk group had markedly worse DFS (HR 2.09, 95% 
CI 1.28–3.43, P = 0.003; Fig. 4G), DMFS (HR 2.61, 95% CI 
1.35–5.07, P = 0.003; Fig. 4H), and OS (HR 2.46, 95% CI 
1.29–4.71, P = 0.005; Fig. 4I) than those of patients in the 
low-risk group.

Nomogram integrating the four‑bacteria signature 
and clinical factors
We then performed univariate Cox regression analysis 
and demonstrated that the four-bacteria signature was 
significantly associated with DFS in all three cohorts 
(Fig. S6). After adjusting for the other clinicopathologi-
cal characteristics, multivariate Cox regression analy-
sis revealed that the four-bacteria signature remained a 
powerful independent prognostic factor for DFS in the 
training (HR 2.37, 95% CI 1.27–4.42, P = 0.007; Table S7), 
internal validation (HR 4.06, 95% CI 2.11–7.83, P < 0.001; 
Table S8), and external validation (HR 1.99, 95% CI 1.21–
3.27, P = 0.007; Table S9) cohorts. Additionally, N stage 
and plasma EBV-DNA load were also independent prog-
nostic factors for DFS in the three cohorts. Similar find-
ings were acquired for DMFS and OS (Tables S7–9).

Furthermore, we generated a nomogram to predict 
DFS in the training cohort, comprising the four-bacteria 
signature, N stage, and plasma EBV-DNA load (Fig. 5A). 
The calibration plots for the 5-year DFS were predicted 
well in the training (C-index 0.713, 95% CI 0.643–0.783), 
internal validation (C-index 0.712, 95% CI 0.643–0.781), 
and external validation (C-index 0.639, 95% CI 0.568–
0.710) cohorts (Fig.  5B–D). ROC analysis validated that 
the nomogram performed well for survival prediction in 
all three cohorts (Fig. 5E).

The abundance of the risk bacteria is negatively associated 
with immune infiltration
Given the well-defined association between commensal 
microbiota and host function [27], we hypothesised that 
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the different abundances of risk bacteria within tumours 
in NPC patients may influence tumour progression by 
modifying signal transduction and the tumour microen-
vironment. We randomly selected 32 paired NPC tissues 
with high- or low-risk scores from the Discovery cohort 
1, which were well matched by the sex, age, TNM stage, 
and chemotherapy, for the following transcriptome anal-
ysis (Table S10). GSEA revealed that the malignant prop-
erty- and metabolic pathways were positively enriched 
in tumours with a higher abundance of risk bacteria, 

whereas the immune-related pathways were negatively 
enriched (Fig.  6A, Fig. S7, Table  S11). Moreover, an 
apparent distinction was exhibited between immune 
genes in tissues harbouring high or low levels of risk bac-
teria, predominantly those genes involved in the T-cell 
receptor (TCR) and B-cell receptor (BCR) signalling 
pathways (Fig. S8, Table  S12). The correlation network 
showed that the four bacteria were mainly negatively cor-
related with immune genes, especially Bacteroides, which 
had a tight interaction with immune activity (Fig. 6B).

Fig. 3  Construction of a four-bacterial signature in the training cohort. A–B Identification of differential bacterial genera between NPC and normal 
nasopharyngeal tissues (adjusted P value <0.05;|Fold Change|>2, left), as well as NPC tissues with or without relapse (adjusted P value <0.05; |Fold 
Change|>1.5, right) using the DESeq2. C Least absolute shrinkage and selection operator (LASSO) coefficient profiles of the candidate bacterial 
genera. D Ten-time cross-validations to tune the parameter selection in the LASSO model. The dotted vertical lines are drawn at the optimal values 
by minimum criteria
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We further explored the immune infiltration pat-
terns and found that tumours with a high abundance of 
risk bacteria had inferior infiltration of B cells, total T 
cells, CD8+ T cells, cytotoxic lymphocytes, and NK cells 
(Fig. 6C). The mIHC results displayed different localiza-
tions and abundances of immune cells in NPC tumours 
harbouring different levels of risk bacteria (Fig.  6D). 
Moreover, the infiltration of intratumoural and stromal 
CD8+ T cells, B cells, and NK cells was significantly lower 
in tumours of the high-risk group (Fig. 6E), indicating a 

negative correlation between risk bacteria and immune 
infiltration.

Discussion
In this multicentre, retrospective cohort study, we 
depicted significant differences in microbial composition 
and diversity between NPC and normal nasopharyngeal 
tissues. More importantly, we developed and validated 
a four-bacteria signature, consisted of Bacteroides, Allo-
prevotella, Parvimonas, and Dialister, as an efficacious 

Fig. 4  Kaplan-Meier curves of survivals according to the four-bacteria signature. A–C Disease-free survival (DFS), distant metastasis-free survival 
(DMFS), and overall survival (OS) in the training cohort (n=171). D–F DFS, DMFS, and OS in the internal validation cohort (n=172). G–I DFS, DMFS, 
and OS in the external validation cohort (n=148). We calculated the P values using the unadjusted log-rank test and the hazard ratios using 
univariate Cox regression analysis
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Fig. 5  Nomogram integrating the four-bacteria signature and clinical factors. A Establishment of a nomogram integrating the four-bacterial 
signature, N stage, and plasma EBV-DNA load to predict disease-free survival (DFS) in the training cohort. B Calibration curves of the nomogram 
to predict DFS at 5 years in the training cohort. C Calibration curves of the nomogram to predict DFS at 5 years in the internal validation cohort. 
D Calibration curves of the nomogram to predict DFS at 5 years in the external validation cohort. E Receiver operating characteristic (ROC) curves 
of the established nomogram to evaluate DFS of NPC patients in the training, internal, and external validation cohorts
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prognostic indicator for NPC patients. Additionally, our 
results provided vital evidence that microbial shifts were 
associated with NPC progression, which might be medi-
ated by alterations in malignant property-related, meta-
bolic, and immunological pathways.

The relative abundance of the microbial composition 
showed that Proteobacteria was the most abundant phy-
lum, which is similar to our previous study and another 
group’s research on gastric cancer [18, 28]. We attributed 
the higher alpha diversity to the caustic bacterial envi-
ronment in NPC tissues, and it is highly possible that the 
tumour microenvironment of NPC assists specific micro-
biota by providing favourable conditions to allow them 
to persist more readily than in normal tissues. It has also 
been reported that the intratumoural microbiota exhibits 
high heterogeneity in various tumours [29]. Of particular 
significance is the distinctive separation trend character-
ised by the beta diversity, noting the microbial alterations 
among NPC and normal nasopharyngeal tissues. Clini-
cal characteristics, including age and sex, have an impact 
on bacterial communities [30], and there were no sig-
nificant differences in these factors, thus avoiding their 
interferences in the subsequent analysis. Moreover, Pseu-
domonas and Haemophilus were identified to correlate 
with pretreatment EBV-DNA load. These results indi-
cate that in favour of adapting to the host microenviron-
ment, the associations among distinct bacterial genera 
may develop into ecological drivers of a multi-kingdom 
microbiota assembly [31, 32]. Therefore, an in-depth 
exploration of the multi-kingdom microbiota covering 
nonbacterial microorganisms is anticipated to provide a 
more comprehensive understanding of the sophisticated 
biological processes in NPC.

Beyond introducing the landscape of the tissue-resi-
dent microbiota in NPC patients, our team proposes the 
idea of a bacteria-based profile for NPC prognostic pre-
diction. Recently, we revealed that NPC intratumoural 
bacteria mainly originate from the nasopharynx, and the 

intratumoural bacterial load can serve as an efficacious 
prognostic indicator [18]. However, it is still unclear 
which tissue-resident microbes play critical roles in the 
prognosis of NPC. In this bacterial signature, all four bac-
teria have been demonstrated to functionally impact the 
host. Bacillus fragilis, a representative of Bacteroides, has 
been detected in various cancer types and can promote 
tumour progression by secreting B. fragilis toxin [33, 34]. 
The periodontal pathogen Alloprevotella is reported to be 
enriched in oral cavity squamous cell cancer [35]. Parvi-
monas is positively associated with the host gene PARVB, 
both of which are enriched in colorectal cancer [36]. 
Dialister has been confirmed to act as a central player in 
the ecological network of gastric cancer [37]. Based on 
these findings, whether the four-bacteria signature estab-
lished in this study has prognostic value in multiple can-
cers is worthy of further investigation.

From the perspective of the host, we conducted func-
tional enrichment analysis in NPC tumours harbouring 
a high or low abundance of risk bacteria as defined by 
the bacterial signature. Patients with abundant risk bac-
teria were positively correlated with malignant-related 
pathways involved in proliferation and metastasis. Heli-
cobacter pylori infection-associated chronic inflamma-
tion is causally involved in inducing DNA methylation 
alterations in gastric epithelial cells to boost carcino-
genesis [38]. In colorectal cancer, tumour-resident 
Escherichia coli can disrupt the gut vascular barrier and 
disseminate to the liver, accelerating the formation of a 
premetastatic niche and favouring the recruitment of 
metastatic cells [39]. However, the roles of these four 
bacteria in NPC carcinogenesis and progression war-
rant further exploration. Another important finding 
is the vigorous metabolism in tumours with abundant 
risk bacteria, such as the cytochrome P450 pathway. It 
is worth noting that tissue-resident bacteria have been 
reported to directly affect the activity of chemother-
apy drugs [40]. Gammaproteobacteria can metabolise 

(See figure on next page.)
Fig. 6  The abundance of the risk bacteria was negatively associated with immune infiltration. A Sankey plots show the significantly differential 
pathways according to malignant property-, metabolism-, and immune-related categories between NPC tumours with high (high-risk group) or low 
(low-risk group) abundances of risk bacteria based on GSEA. In the bubble plots, the size of the bubbles represents gene numbers in the labelled 
pathway. The colour of the bubbles represents that the labelled pathway is upregulated in the high-risk (red) or low-risk (blue) groups. The 
permutation-based P value shows the statistical significance of the NES. B Network plot shows the Spearman correlations (P<0.05, |r|>0.30) 
among four risk bacterial genera and significantly differentially expressed immune-related genes. C Violin plots show the immune infiltration 
in the high- or low-risk groups estimated by the MCP-counter algorithm. The comparison was performed with the Wilcoxon rank-sum test. The dots 
represent the mean scores, and the error bars represent the standard deviation. D Representative images of immune cell infiltration in NPC tissues 
in the high- or low-risk group determined by multiplex immunohistochemistry (mIHC). The 6-colour mIHC images (1 mm), high magnification 
(100 μm) of a region of interest, and individual images of DAPI (purple), panCK (pink), CD3 (blue), CD8 (red), CD20 (yellow), and CD56 (green) are 
shown. (E) Box plots show the comparison of immune cell infiltration in the intratumoural (left) and stromal (right) tissues in the high- and low-risk 
groups. The comparison was performed with the Wilcoxon rank-sum test. The centreline represents the median, and the bounds represent the 25th 
and 75th percentiles. The upper whisker extends from the hinge to the largest value no further than 1.5*IQR from the hinge. The lower whisker 
extends from the hinge to the smallest value of at most 1.5*IQR of the hinge
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a chemotherapeutic drug, gemcitabine, into its inac-
tive form by expressing a long isoform of the bacterial 
enzyme cytidine deaminase [41]. Besides, bacterial 
preTA operon is believed to metabolise 5-fluorouracil, 
intimating the main host mechanism for drug clearance 

[42]. These studies suggest that tissue-resident bacteria 
might be directly involved in the drug metabolism of 
the host to influence cancer progression.

Of interest is the notion that the intratumoural micro-
biota are vital components of tumour microenvironment 
that can reprogram the immune response that ends up 

Fig. 6  (See legend on previous page.)
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impinging on tumour progression. Surprisingly, the com-
bination of transcriptional analysis and mIHC revealed 
that the abundance of risk bacteria within NPC tumours 
was inversely associated with intratumoural and stro-
mal immune infiltration. Consistently, a recent study 
showed that bacterial communities populate less vascu-
larized and highly immuno‑suppressive microniches in 
bacteria-positive tumour regions through GeoMx digital 
spatial profiling [43]. Besides, it has been reported that 
Fusobacterium nucleatum can promote tumour growth 
and metastasis by suppressing the infiltration of T cells 
in breast cancer [44]. In our study, Bacteroides was dem-
onstrated to be the core genus that negatively correlated 
with multiple immune genes, indicating its unique mech-
anism involved in interacting with the host immune sys-
tem, in particular with adaptive immunity. Moreover, it 
has been reported that antibiotics can influence the effi-
cacy of immune checkpoint therapy in lung cancer [45], 
suggesting that in combination with bacteria-based ther-
apies and other anti-tumour frontline immune regimens 
might have a preferable therapeutic effect.

Conclusions
To our knowledge, this is the first study with the larg-
est sample size to uncover the tissue-resident microbial 
profiles in NPC and normal nasopharyngeal tissues. We 
developed a bacterial signature for prognostic prediction 
and explored the potential effect of this microbial shift on 
the host, which might pave a novel path towards the era 
of microbiota-targeted precision medicine. We acknowl-
edge that the prognostic value of the four-bacteria signa-
ture requires prospective validation before clinical use. 
Advancements in sequencing technology will enable 
more in-depth exploration of the species-level bacterial 
regulatory mechanisms, which will provide novel insights 
into the complexity of how bacteria participate in NPC 
progression.
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