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In utero human intestine contains 
maternally derived bacterial metabolites
Wenjia Wang1, Weihong Gu2, Ron Schweitzer3,4,5, Omry Koren3, Soliman Khatib4,5, George Tseng1 and 
Liza Konnikova2,6,7,8,9,10* 

Abstract 

Background Understanding when host-microbiome interactions are first established is crucial for comprehend-
ing normal development and identifying disease prevention strategies. Furthermore, bacterially derived metabo-
lites play critical roles in shaping the intestinal immune system. Recent studies have demonstrated that memory 
T cells infiltrate human intestinal tissue early in the second trimester, suggesting that microbial components such 
as peptides that can prime adaptive immunity and metabolites that can influence the development and function 
of the immune system are also present in utero. Our previous study reported a unique fetal intestinal metabolomic 
profile with an abundance of several bacterially derived metabolites and aryl hydrocarbon receptor (AHR) ligands 
implicated in mucosal immune regulation.

Results In the current study, we demonstrate that a number of microbiome-associated metabolites present 
in the fetal intestines are also present in the placental tissue, and their abundance is different across the fetal intes-
tine, fetal meconium, fetal placental villi, and the maternal decidua. The fetal gastrointestinal samples and maternal 
decidua samples show substantially higher positive correlation on the abundance of these microbial metabolites 
than the correlation between the fetal gastrointestinal samples and meconium samples. The expression of genes 
associated with the transport and signaling of some microbial metabolites is also detectable in utero.

Conclusions We suggest that the microbiome-associated metabolites are maternally derived and vertically transmit-
ted to the fetus. Notably, these bacterially derived metabolites, particularly short-chain fatty acids and secondary bile 
acids, are likely biologically active and functional in regulating the fetal immune system and preparing the gastroin-
testinal tract for postnatal microbial encounters, as the transcripts for their various receptors and carrier proteins are 
present in second trimester intestinal tissue through single-cell transcriptomic data.
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Introduction
Establishing and maintaining a “healthy” intestinal micro-
biome are critical to the overall health of an individual. 
This is partially facilitated by bacterially derived metabo-
lites that are important mediators of intestinal health and 
regulators of intestinal mucosal immunity. Furthermore, 
disruption of homeostasis can lead to a myriad of dis-
eases [1, 2]. Several groups of bacterial metabolites have 
been identified that are particularly important to the gut 
homeostasis including short-chain fatty acids (SCFA), 
and secondary bile acids, among others [3]. Understand-
ing how and when the dialogue between the intestinal 
tract (host) and the bacterial metabolites is established is 
important to designing new strategies in preventing dis-
ease and improving health. There has recently been a lot 
of attention on the development of the microbiome over 
the first 3 years of human life (or the first 1000 days) as 
being a critical window to modulate the development 
and adaptation of the immune system and overall health 
[4]. With the detection of the memory T cells within the 
human and nonhuman primate fetal intestines [5–9], 
cord blood [10], and placenta [11], among other tissues, 
scientists are appreciating that education of the intestinal 
adaptive immune system may be ongoing in utero and 
the critical window of shaping the intestinal homeosta-
sis potentially starts prior to delivery [12]. Yet there are 
only limited studies about the antigens present in utero 
or the metabolites modulating the intestinal homeostasis 
[13, 14].

Several studies have reported that the placenta lacks 
a microbiome [15–19] reviewed in [20], and others 
report minimal bacterial colonization in fetal meconium 
[21, 22], as well as placental and endometrial samples 
[23–28]. Furthermore, research conducted by Lauder 
et al. [16], involving a large cohort, found no discernible 
difference between placental samples and kit samples 
(contamination introduced during DNA purification). 
However, pioneering work from the MacPherson’s and 
other groups demonstrated that metabolites from the 
maternal intestinal microbiome can be detected in the 
murine fetal intestine and alter the development of the 
fetal mucosal immune system [29] as well as placental, 
intestinal, and fetal brain development [13, 14]. Building 
on this, our previous study found a unique fetal intesti-
nal metabolomic profile with an abundance of bacteri-
ally derived metabolites and aryl hydrocarbon receptor 
(AHR) ligands implicated in mucosal immune regulation 
[30].

In the current study, we hypothesized that microbi-
ome-associated metabolites detected in fetal intestines in 
utero are primarily derived from the maternal microbiota 
and play a role in preparing the intestinal immune system 

for ex-utero life. To study this, we assembled a cohort of 
human  pregnancy-matched fetal organs including the 
fetal intestine, the fetal meconium, and the fetal placen-
tal villi, to the maternal decidua. We found that some of 
the microbial byproducts or metabolites present in fetal 
intestines in utero were maternally derived and vertically 
transmitted to the fetus (abundance changes from mater-
nal tissues to fetal intestines), while some were found to 
be in a steady state (where the rate of production is bal-
anced by its rate of consumption, resulting in a stable and 
unchanging level).

Importantly, these bacterially derived metabolites are 
likely biologically active and functional in regulating the 
fetal immune system and prepare the gastrointestinal 
tract for postnatal microbial encounters as we were able 
to detect their receptors and carrier proteins in single-cell 
transcriptomic data of the human fetal small intestine.

Results
To investigate the source of in utero intestinal metabo-
lome, we performed untargeted metabolomic analysis, 
including human and bacterially derived metabolites 
(manually curated to be fully bacterially derived or require 
partial conversion by the bacteria), using in-house pipe-
line established by the Khatib lab [30] on 49 tissue samples 
from 24 subjects (with gestational age ranging from 14 to 
23 weeks): 8 maternal decidua samples, 11 fetal placental 
villi (PV) samples, 11 fetal gastrointestinal (GI) (fetal small 
intestine (SI) and large intestine (LI)) samples, and 19 fetal 
meconium samples (Supplementary Table S1).

Metabolite profiles within different tissues
A total of 2521 metabolites were annotated in all of the 49 
samples which were divided into 3 levels of annotation (9 
in Level 1, 402 in Level 2, and 2110 in Level 3, see details 
in Supplementary Tables S2, S8, and S9). t-SNE visuali-
zation based on the 2521 analyzed metabolites showed 
that samples of GI, meconium (luminal contents of the 
small intestine), decidua, and PV were well separated, 
although some PV samples were mixed with decidua 
samples possibly due to incomplete tissue separation. 
To further analyze this, we also examine the separation 
between samples from different subjects (Supplemen-
tary Fig. S1) where we found that most of the PV samples 
mixed with decidua samples were in fact from the same 
subject. The separation indicated that even though most 
metabolites were detected across all samples, they were 
differentially abundant based on tissue source (Fig. 1A). 
Since our primary interest was the development of the 
fetal intestine and the source of bacterial metabolites in 
GI tract (i.e., where the bacterial metabolites present in 
GI tract come from), we first focused on the difference 
between GI tract and the other tissue groups. The top 
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20 GI-enriched metabolites that had differential abun-
dances between GI and the other tissue groups are shown 
in Fig. 1B. To explore tissue-specific individual metabo-
lite signatures in the decidua, PV, and meconium groups, 
we performed differential metabolite abundance analysis 
between GI and each of the other groups (see details in 
Supplementary Table  S3). We detected a large propor-
tion of metabolites whose abundance differed between 
tissue: GI vs. decidua = 326, 13% (Fig. 1C); GI vs. meco-
nium = 318, 13% (Fig.  1D); and GI vs. PV = 324, 13% 
(Fig. 1E). Specifically, among the 326 differentially abun-
dant metabolites between GI and decidua tissue, more 
than half (195 metabolites) were enriched for in the GI 
tissue, 2 of which were bacterial metabolites (coprocholic 
acid and glycodeoxycholic acid, secondary bile acids). For 
the 131 metabolites significantly enriched in decidua, 5 
were bacterial metabolites (pyridoxine, methylhippu-
ric acid, hippurate, 2-hydroxyhippuric acid, and indoxyl 
sulfate). In the comparison between the GI and meco-
nium samples, 164 metabolites had higher abundance 
in GI tissue including 3 bacterial metabolites (N-acetyl-
alpha-D-glucosamine1-phosphate, kynurenine, and 
phosphopantothenic acid). Interestingly, two bacterial 
metabolites (benzoate and albaflavenol) were enriched 
for in meconium. At the same time, there were six xeno-
biotics (nifedipine, perindopril, 2-{2-[2-(decyloxy)ethoxy]
ethoxy}ethanol, picaridin, 18-acetoxy- 1alpha-hydroxyvi-
tamin D3, ketorolac) enriched for in the meconium, sug-
gesting that even maternally ingested compounds can be 
concentrated in the meconium. Comparisons between 
the GI and PV tissue identified 235 metabolites that were 
enriched for in the GI tissue, with 2 bacterial metabolites 
(coprocholic acid and glycodeoxycholic acid), 4 primary 
bile acids (glycocholic acid, 7-sulfocholic acid, tauro-
cholic acid and taurochenodeoxycholic acid), 1 aromatic 
amino acid (D-(+)-tryptophan), and 2 xenobiotics (adap-
rolol and elacytarabine). Among the 89 metabolites with 
a higher abundance in the PV tissue, there were 2 bacte-
rial metabolites (methylhippuric acid and indoxyl sulfate) 
and 2 xenobiotics (penicillin-G and a THC derivative).

Metabolic pathways enriched in different tissues
To understand which pathways are differentially reg-
ulated in different tissues, we conducted Ingenuity 
Pathway Analysis (IPA) (see details in Supplementary 

Table S4). Of the pathways that were significantly altered 
between the decidua and GI samples, majority were more 
activated in the decidua, including the following: the 
transport of vitamins and steroid metabolism consist-
ent with known functions of the placenta, while tryp-
tophan catabolism and bile acid transport were more 
active in the GI track (Fig. 2A). Very few pathways were 
more active in the meconium, as expected as it is primar-
ily composed of apoptotic cells. Interestingly, pathways 
classically associated with postnatal intestinal epithelial 
function were already enriched for in the GI samples pre-
natally including upregulation of many metabolism and 
transport pathways, prostaglandin synthesis, and neuro-
transmitter release (Fig.  2B). Our group had previously 
discovered that human fetal intestinal cells can produce 
insulin and respond to glucose concentrations [31]; in 
support of this, the current data identified that insulin 
secretion was upregulated in the fetal GI tract (Fig. 2B). 
Bile acid transport pathways were also upregulated in the 
GI samples compared to PV samples (Fig. 2C).

Source of microbial metabolites in the GI tract
To understand the source of the bacterial metabolites 
present within the fetal intestine and determine if they 
are vertically transmitted from the maternal microbiota, 
we performed correlation analysis between the fetal 
intestinal tissue and the decidual tissue (maternal origin) 
and fetal intestine and the meconium (local production, 
Fig. 3A). Among the 2521 metabolites, we identified and 
selected 41 microbially derived or bacteria-associated 
metabolites of interest based on a literature search [30, 
32, 33], including 5 secondary bile acids, 3 short-chain 
fatty acids (SCFA), and 3 aromatic lactic acids (Supple-
mentary Table S9). In addition, we identified 47 xenobi-
otics, metabolites that cannot be produced in the human 
host, and 8 metabolites enriched for in the fetal tissue 
(Supplementary Tables S5, S9). All bacterial metabo-
lites were present in the GI tissue, but the four tissues 
had different signatures of these metabolites (Fig.  3B). 
To understand the source of the metabolites better, we 
used the matched tissue from one subject (i.e., the tis-
sue samples of all sites collected from one subject) to 
perform correlation analysis. As expected, the SI and 
LI and the decidua and PV samples that come from 
adjacent tissue had the highest correlation values  of all 

Fig. 1 Sample separation and differential expression of individual metabolites. A t-distributed stochastic neighbor embedding (t-SNE) plot 
using all metabolites. B Heatmap showing normalized abundance of the top 20 abundant metabolites in the fetal GI samples (SI and LI), as well 
as their abundance in the meconium (SI Mec and LI Mec), PV, and maternal decidua samples. C, D, and E Volcano plots of differentially abundant 
metabolites between the GI and decidua groups, GI and meconium groups, and GI and PV groups, respectively. Top 10 significantly differentially 
abundant metabolites are labeled with the metabolite name

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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Fig. 2 Pathway enrichment. A, B, and C Integrated pathway analysis for differentially altered pathways between GI and decidua groups, 
between GI and meconium groups, and between GI and PV groups. The length of the bar is proportional to the q-value. Pathways with positive 
values on the x-axis (orange bar) are those enriched for in the decidua, meconium, and PV, respectively. Those with negative values (blue bars) are 
pathways enriched for in the GI samples
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samples, validating our analysis. Interestingly, the paired 
fetal GI and decidua samples had substantially higher 
positive correlation than the paired GI and meconium 
samples in terms of the abundance of the 41 micro-
bial metabolites: ρDec_SI = 0.88andρDec_LI = 0.88 while 
ρMecSI_SI = 0.62, ρMecLI_SI = 0.58, andρMecSI_LI = 0.66, ρMecLI_LI = 0.61 
(Fig.  3C), suggesting that the microbial metabolites 
detected in fetal samples were more likely to be vertically 
transmitted from maternal microbiota. To determine if 
this positive correlation also held true for all the samples 
in the study, we performed the two correlative analysis 
(GI/decidua and GI/meconium) using all samples com-
bined (88 pairs of GI/decidua samples and 209 pairs of 
GI/meconium samples across all subjects) for xenobiot-
ics (expecting the ratio of GI/decidua to be more posi-
tively correlated than GI/meconium as these can only 
come from maternal circulation), fetal-derived metabo-
lites (expecting the ratio of GI/decidua to be less than 
GI/meconium as these are locally produced in the fetus), 
and of microbiome-associated metabolites. As expected, 
there was a significantly higher correlation based on the 
47 xenobiotics between GI samples and decidua sam-
ples compared to the corresponding correlation between 
GI samples and meconium samples (Fig. 3D). There was 
also a lower correlation based on the eight fetal-derived 
metabolites between GI samples and decidua samples 
compared to the corresponding correlation between GI 
samples and meconium samples (Fig.  3D). Consistent 
with data from Fig.  3C from an individual subject, we 
also observed that bacterially derived metabolites had a 
higher correlation between GI samples and decidua sam-
ples compared to the corresponding correlation between 
GI samples and meconium samples (Fig.  3D). Since the 
tissue samples were from subjects of different gestational 
ages, the correlation analysis using all samples combined 
might have been affected by the gestational age (though 
the gestational ages were balanced across samples of dif-
ferent tissues as demonstrated in Supplementary Fig. S2, 
without any statistically significant differences). Thus, 
we constrained each pair of samples to come from the 
subjects with the same gestational age, 23 weeks, and 
compared the correlations of GI/decidua (12 pairs) and 

GI/meconium (21 pairs) with the similar boxplots (Sup-
plementary Fig. S3). Again, the correlation of bacte-
rial metabolites and the correlation of xenobiotics were 
overall higher for GI/decidua than GI/meconium pairs, 
while the correlation of fetal-derived metabolites had the 
opposite trend. However, limited by the small number of 
sample pairs, the correlation differences were no longer 
statistically significant.

Overall, the abundance of the 41 microbial metabo-
lites identified in our dataset demonstrated a high 
correlation between the GI and decidua samples. To 
determine if there was variability by individual metabo-
lite, we determined the abundance enrichment across 
the tissues for each metabolite. In our analysis, the 
primary bile acids that are produced in the fetal liver 
and then absorbed by the small intestine, as expected, 
were significantly enriched for in fetal meconium but 
deprived in maternal decidua except for muricholic 
acid whose abundance was similar across tissues 
(Fig. 4A). Upon crossing the intestinal lumen, second-
ary bile acids are produced by microbiota-mediated 
dehydroxylation or deconjugation of the bile acids [34]. 
We were able to identify five secondary bile acids pre-
sent in our dataset. Lithocholic acid was enhanced for 
in the decidua, perhaps indicating that it was produced 
by maternal microbiota, while deoxycholic acid was 
present in similar abundance across all the tissues. Sur-
prisingly, our analysis identified three secondary bile 
acids: glycodeoxycholic acid, sulfolithocholic acid, and 
taurodeoxycholic acid whose abundances were high 
in meconium samples. Considering that the samples 
were from different subjects with different gestational 
ages, we compared the distributions of the gestational 
age within the four tissue groups (Supplementary Fig. 
S2) and further examined whether the abundance dif-
ference of each bile acid across the tissues was related 
to the fetal age (Supplementary Table  S6). The results 
of both analyses confirmed that the gestational ages 
are balanced across samples of different tissues, and 
the fetal age does not have a significant impact on the 
abundance difference for any bile acid.

Fig. 3 Correlation between tissue groups of microbial metabolites, xenobiotics, and fetal metabolites. A Schematic of how the correlation 
between tissue would identify the source of bacterial metabolites. ρDec_GI denotes the correlation of metabolite abundance in between decidua 
and GI tissues, and ρMec_GI denotes the correlation of metabolite abundance between meconium and GI tissues. Maternal microbiota-derived 
metabolites that cross as metabolites are expected to have ρDec_GI≫ ρMec_GI , while metabolites that are potentially locally produced by fetal 
microbiota within the GI track are expected to have ρDec_GI≪ρMec_GI . B Heatmap showing normalized abundance of the 41 microbial-associated 
metabolites across sample types. C Pairwise correlation matrix of the 41 microbial metabolites between paired tissue samples from subject no. 16. 
D Boxplots visualizing the correlations between GI and decidua groups and between GI and meconium groups based on 41 microbial metabolites, 
47 xenobiotics, and 8 fetal-derived metabolites respectively from Supplementary Table S4. Red asterisk points represent the pairwise correlations 
between tissue samples from subject no. 16. *P < 0.05, ***P < 0.001

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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We then determined if short-chain fatty acids (SCFA), 
an important source of nutrition for intestinal epithe-
lial cells and modulators of immunity, which are usually 

locally produced within the intestinal lumen, were pre-
sent in the fetal intestine. Three SCFA were detected in 
our dataset, butyric acid was annotated as level 1, while 

Fig. 4 ANOVA analysis of SCFA, bile acids, and aromatic acids across tissues. A, B, C Boxplots of individual metabolite’s abundance for primary 
and secondary bile acids, SCFA, and aromatic amino acids and aromatic acids. *P < 0.05, **P < 0.01, ***P < 0.001. D Heatmap showing that microbial 
metabolites without significant difference across tissue groups (upper panel) and microbial metabolites significantly enriched in decidua samples 
(lower panel)
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the other two were annotated as Level 3 based on MS1 
(Supplementary Tables S8, S9) and will require more 
validation in the future. Among them, butyric acid and 
isovaleric acid were significantly reduced in the GI tis-
sues and enriched in the meconium and the PV samples 
(Fig. 4B). Butyric acid is an important energy source for 
enterocytes [35, 36], which probably explains why its 
level was reduced in the GI tissues compared to the oth-
ers, while propionic acid was enriched in the GI samples 
above all other tissues (Fig. 4B).

Another important group of bacterially derived metab-
olites is aromatic lactic acids. Breastfeeding has been 
reported to promote Bifidobacterium species converting 
aromatic amino acids tyrosine, phenylalanine, and tryp-
tophan into their respective aromatic lactic acids dihy-
drocaffeic acid (DHCA) and ethylparaben and 5-MIAA 
(5-methoxyindoleacetate) that are biologically active in 
the intestine and are associated with anti-inflammatory 
properties [32, 33]. We additionally explored if these 
metabolites are present in fetal tissue. The three aromatic 
amino acids were similarly abundant in the decidua and 
the GI tract with tryptophan levels being reduced in the 
meconium (Fig. 4C). All three of the aromatic lactic acids 
were present in fetal tissue, where 5-MIAA level was low-
est in the meconium, and the levels of DHCA and eth-
ylparaben were similarly abundant between the decidua, 
GI, and meconium samples (Fig. 4C).

Finally, we evaluated the remaining bacterially associ-
ated metabolites present in fetal tissue. Nine of these 
microbial metabolites (pyridoxine, N-acetyl-alpha-D-
glucosamine1-phosphate, alpha-L-arabinose, kynure-
nine, methylhippuricacid, phosphopantothenic acid, 
hippurate, butyl-o-cresol, and 2-hydroxyhippuric acid) 
were significantly enriched for in decidua samples, 
while 11 microbial metabolites (riboflavin, pipecolic 
acid, 4-hydroxyphenacyl alcohol, 4-vinylphenol sulfate, 
1,3:24-bis (3,4-dimethylobenzylideno) sorbitol (DMDBS), 
biotin, butoxyethyl phthalate, bis(4-ethylbenzylidene)
sorbitol, thiamine, p-Cresol, and indoxyl sulfate) were 

found to be similarly abundant across all tissue samples 
(Fig. 4D).

To ensure that metabolites were identified correctly, a 
number of them were validated with known standards. 
These included butyric acid, deoxycholic acid, panteth-
eine, p-Cresol, taurochenodeoxycholic acid, hippurate, 
benzoate, and taurocholic acid (Supplementary Fig. S4). 
In some case where samples and where no additional 
samples were available, metabolites were validated by 
standards, but the exact concentrations of the samples 
could not be calculated (Supplementary Fig. S4). Where 
additional samples were available, metabolites were vali-
dated by standards, and exact concentrations were calcu-
lated (Supplementary Fig. S4). For deoxycholic acid, both 
methods were used. The results demonstrated consist-
ent trends between the targeted and untargeted analysis 
among the four tissue groups for each metabolite except 
hippurate where quantitative analysis did not identify any 
difference in its abundance between groups.

Metabolite associations with gestational ages
Intestinal bile acids have been shown to alter abundance 
and type of mucosal regulatory T cells. Interestingly, 
T cells begin to populate the small intestine in humans 
early on in the second trimester [37], suggesting that the 
differential presence of various bile acids across gesta-
tional ages may be important in establishing/regulating 
mucosal immunity. Similarly, SCFA have also been shown 
to play a role in mucosal immunity, particularly T-cell 
homeostasis [38]. Here, we explored the association 
between the abundance of the nine identified primary 
bile acids, five secondary bile acids, and three SCFAs 
with gestational age within tissue groups. Three primary 
bile acids: muricholic acid, 1beta-hydroxycholic acid, and 
3a,7a,12b-trihydroxy- 5b-cholanic acid had a significant 
positive association with advancing gestational age in the 
GI tissue, indicative of their increased synthesis in the 
fetus with advancing gestational age (Table  1). In con-
trast, although most of the bile acids and SCFAs did not 

Table 1 Correlation coefficients between the abundance of individual metabolites and the gestational age within each tissue group. 
Here we only show the five bile acids and one SCFA (propionic acid) with significant age association. The rows are the correlation 
coefficient within each tissue group. The q-value for the correlation coefficient is shown in parenthesis

* P < 0.05, **P < 0.01, ***P < 0.001

Deoxycholic acid Glycodeoxycholic 
acid

Propionic acid Muricholic acid 1beta-Hydroxycholic acid 3α,7α,12β-
trihydroxy- 
5β-cholanic acid

Decidua  − 0.33 (0.94)  − 0.38 (0.94)  − 0.15 (0.94) 0.37 (0.94) 0.26 (0.94) 0.09 (0.94)

GI  − 0.29*** (< 0.001)  − 0.19* (0.05)  − 0.25*** (< 0.001) 0.45*** (< 0.001) 0.35*** (< 0.001) 0.26*** (< 0.001)

Meconium 0.28 (0.43) 0.29 (0.43) 0.07 (0.76)  − 0.24 (0.43) 0.09 (0.73) 0.07 (0.73)

PV  − 0.29 (0.96)  − 0.16 (0.96) 0.24 (0.96) 0.21 (0.96) 0.10 (0.96) 0.03 (0.96)
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have any significant association with the gestational age 
of the samples (Supplementary Table S7), we found that 
two secondary bile acids, deoxycholic acid and glycode-
oxycholic acid, and one SCFA, propionic acid, had a sig-
nificant negative correlation with advancing gestational 
age in the fetal intestine (Table 1). The negative correla-
tion suggests these compounds decrease in the GI tract 
with increasing gestational age, highlighting that they 
are likely coming from maternal circulation rather than 
local production, since if the compounds were produced 
locally,  they would be more abundant in GI tract as the 
pregnancy progressed.

Biological function of microbial metabolites in utero
We have recently developed a single-cell atlas combining 
a number of datasets to build a comprehensive atlas of 
the small intestine across the human life span including 
during gestation [39]. To determine if bacterially derived 
metabolites such as SCFA and secondary bile acids that 
we found in the fetal small intestine can have a biological 
function in utero, we explored this atlas for expression of 
genes associated with bile acids transport and signaling ( 
SLC10 A2, a gene that encodes apical sodium-dependent 
bile acid transporter (ASBT), the gene NR1H4, a gene 
that encodes farnesoid X receptor (FXR), RXRA, a gene 
that encodes retinoid X receptor alpha (NR2B1), as well 
as S1PR2, GPBAR1, VDR, and RORC genes) and SCFA 
transport and signaling (SLC5A8 (SCFA transporter), 
SLC16A1, a gene  that encodes monocarboxylate trans-
porter 1 (MCT1), FFAR2, FFAR3, and FABP6, a gene that 
encodes intestinal bile acid binding protein (iBABP), and 
HIF1A) (Fig. 5 and Supplementary Fig. S5). The expres-
sion of SLC10 A2, an apical sodium-dependent bile acid 
transport carrier, significantly increased post-delivery, 
with minimal expression in utero. However, the expres-
sion of several bile acid and SCFA-associated genes was 
present in utero and restricted to subtypes of epithelial 
(Fig.  5A and Supplementary Fig. S5 A) and or immune 
cells (Fig.  5B and Supplementary Fig. S5B) within the 
SI. The expression of VDR and FABP6 steadily increased 
from the first trimester through adulthood with high-
est levels present in adults (Fig.  5C). Nevertheless, it 
was still detectable in utero, particularly in the second 
trimester. The FABP6 was expressed exclusively in the 
intestinal epithelial cells (IEC) within the mature absorp-
tive (mAE) subtype, and VDR was expressed both in the 
IEC (stem cells (SCs) and mAE cells) and in the immune 
cells (cycling Mf, Tregs, and memory CD4 cells). Several 
other genes (GPBAR1, SLC5 A8, FFAR2, FFAR3, NR1H4, 
S1PR2, and HIF1 A) had similar expression pattern across 
the lifespan except for the low expression in the first tri-
mester. The FFAR2 gene was expressed by fetal enteroen-
docrine (EEC) and goblet cells as well as Mf and ILC3 s, 

while the FFAR3 gene was only expressed by fetal Mf. The 
NR1H4 gene was only expressed by IEC. The RORC gene 
was predominantly expressed by fetal ILCs, and HIF1 A 
was ubiquitously expressed in all epithelial and immune 
cells.

Discussion
Defining when the host-microbial interactions are first 
established is critical for understanding normal devel-
opment and identifying disease preventive strategies. 
Recent research has highlighted the importance of the 
first 3  years of life as critical for immune system devel-
opment [4]. With the recent identification of memory 
T cells in fetal tissues [5–8, 10, 11], the question arises 
whether intestinal T-cell antigens or other microbial 
components exposure and host-microbiome interaction 
begin in utero, prior to delivery.

To explore in utero immune function, we had previ-
ously sought to identify potential antigens recognized by 
fetal intestinal T cells, but the detection of the microbi-
ome in fetal intestines or meconium was unsuccessful 
[30]. This is consistent with findings from other groups 
[15–19] who had also failed to identify microbiota in ges-
tational tissues, which all suggest that there is an absence 
of live microbiota in the fetal tissue. However, this does 
not rule out that microbial components cannot be found 
in utero. Building on murine studies that found mater-
nally derived bacterial byproducts in murine fetal intes-
tines drive immune and epithelial development [29], we 
previously applied the metabolomic analysis pipeline 
from Metabolon and provided a comprehensive report of 
the in utero human intestinal metabolome with an abun-
dance of bacterially derived metabolites and aryl hydro-
carbon receptor (AHR) ligands implicated in mucosal 
immune regulation [30]. Given all these findings, in the 
current study, we hypothesized that microbiome-associ-
ated metabolites detected in fetal intestines in utero are 
primarily derived from the maternal microbiota and then 
travel to the human fetal intestine. To test this hypothe-
sis, we examined a human cohort of pregnancy-matched 
fetal tissue including the fetal intestine, the fetal meco-
nium, the fetal placental villi, and the maternal decidua.

Consistent with our previous work, we found that the 
microbial metabolites (microbially derived or bacteria 
associated metabolites) were present in the fetal intes-
tine and across all the tissues examined. Furthermore, 
we found that the metabolomic profile of fetal intesti-
nal tissue was distinct from that of the fetal meconium, 
the fetal placental villi, and the maternal decidua and 
contained bacterial metabolites. Focusing on the fetal 
GI tract, the top 20 most abundant metabolites con-
tained a bacterially produced aromatic lactic acid, dihy-
drocaffeic acid (DHCA), which has been associated 
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with decreasing intestinal inflammation [40–42]. By 
ingenuity pathways analysis (IPA), we further identi-
fied numerous pathways that were enriched for in the 
GI track compared to all other tissues that included 
transport of bile acids and inorganic cations, phase II 

conjugation of compounds, and tryptophan catabolism. 
Tryptophan serves as the only precursor for serotonin 
synthesis that occurs predominantly in the intestine by 
enteroendocrine cells (EEC) [43] where it plays many 
important functions including motility, secretion, and 

Fig. 5 Cell type-specific expression of genes associated with bile acid and SCFA transport and signaling. scRNAseq data from our previous 
published manuscript [39] (Fig. 1, Supplementary Table 1; first trimester (8- to 13-week gestational age) n = 14, second trimester (14- to 23-week 
gestational age) n = 13, neonatal (1–14 days old) n = 6, pediatric (4–12 years old) n = 8, and adult (25–70 years old) n = 7). Uniform manifold 
approximation and projection (UMAP) plot visualization of bile acid and SCFA-associated transport and signaling gene expression in fetal small 
intestine epithelial (A) and fetal immune cells (B). C Boxplots of the mean gene expression value of positive cells in each sample from the small 
intestine across developmental stages (related to Fig. 1 [33]). Each dot represents an individual sample. Data are presented as mean ± SEM. *P < 0.05, 
**P < 0.01, ***P < 0.001. Clarification of cell type abbreviation for epithelial lineage cells in A: SCs, stem cell; TA, transit-amplifying cells; eAE, early 
enterocytes; iAE, intermediate enterocytes; mAE, mature enterocytes; EEC, enteroendocrine cells. Immune lineage cells in B: Mφ, macrophages; 
cDCs, conventional dendritic cells; ILC, innate lymphoid cells; NK, natural killer cells; Treg, regulatory T cells; Tmem, memory T cells
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visceral sensitivity. When compared to meconium, 
additional signaling/endocrine pathways were upregu-
lated in the fetal intestine including neurotransmitter 
release cycle, serotonin receptor signaling, arachidonic 
acid metabolism, prostaglandins and thromboxanes 
synthesis, and insulin secretion. We have previously 
demonstrated that the EEC in the fetal small intestine 
produce insulin and all the necessary machinery for 
glucose sensing and insulin secretion [31]. Transport of 
bile acids and inorganic cations is a known function of 
enterocytes, and these data suggest that these pathways 
are active even in utero. This was further supported 
by the transcriptomics data that demonstrated that 
many of the bile acid transporters and receptors were 
expressed in utero. Phase II conjugation is a detoxify-
ing step in drug and toxin metabolism that occur in 
the GI tract and liver, and this data similarly suggests 
that this process is active in the enterocytes in utero. 
Interestingly, when compared to the meconium, many 
metabolic pathways were upregulated in the fetal GI 
tract, suggesting that fetal enterocytes are playing an 
active role in the absorption of amniotic fluid in utero. 
For example, glutamate metabolism is critical to the GI 
tract, where glutamate has been shown to be the larg-
est contributor to intestinal energy generation and is a 
precursor for glutathione, arginine, and proline in the 
small intestine [44].

Although live fetal microbiome does not exist in utero, 
maternal microbiome is important to fetal intestinal and 
immune development [12, 14]. Data suggests that neo-
natal mice born to mothers transiently colonized with 
bacteria have increased xenobiotic metabolic signatures 
in their intestines compared to germ-free (GF) pups and 
contained traces of maternal microbiome metabolites in 
their intestines [29]. Additionally, work from the Elaine 
Hsiao’s group demonstrated that the maternal intesti-
nal microbiome promotes placental development where 
depletion of intestinal microbiome restricted placental 
growth, and this was partially driven by SCFA [45]. The 
effects on placenta were also studied in [14]. The corre-
lation analysis performed in this study suggests that the 
microbial metabolites detected in fetal samples were 
more likely to be vertically transmitted from maternal 
microbiota, because the metabolites present in the fetal 
GI and decidua samples had substantially higher posi-
tive correlation than the correlation between the fetal GI 
and meconium samples, either based on subject-matched 
samples or all samples analyzed together. We also inves-
tigated the variability of the abundance of the various 
metabolites in different tissues. Our data show that the 
secondary bile acid, lithocholic acid, the aromatic lactic 
acid, 5-MIAA, and another nine microbial metabolites 
were significantly enriched for in the decidua samples. 

Interestingly, many microbial metabolites were found in 
similarly abundance across all tissue samples.

Importantly, three different SCFA, butyric, isovaleric, 
and propionic acids, were found in fetal tissue with propi-
onic acid being enriched for in the fetal GI tract. Butyric 
acid is an important energy source for enterocytes [35, 
36], perhaps explaining why its levels were reduced in 
the GI compared to other tissue. It also plays important 
roles in enterocyte proliferation, differentiation, and 
maturation [35, 36]. SCFA have been shown to have anti-
inflammatory roles within the intestine through binding 
to GPR41/43 (G protein-coupled receptors, FFAR3/2) 
[46]. Both FFAR2 and 3 were expressed in the fetal intes-
tine where FFAR2 was found on EEC, Goblet cells, Mf, 
and NK cells, while FFAR3 was found predominantly 
in Mf. Secondary bile acids have also been shown to 
play beneficial roles in intestinal homeostasis, includ-
ing regulating inflammation [47, 48]. A number of genes 
associated with bile acid or SCFA transport and signal-
ing were expressed in utero, especially in the subtypes 
of epithelial and immune cells, and steadily increased 
from first trimester through adulthood. It is intriguing 
to speculate that the maternal microbiota supports the 
anti-inflammatory intestinal milieu of the neonatal intes-
tine required to induce tolerance in the setting of rapid 
microbiome acquisition in early life.

The main limitations of this study were the relatively 
small sample size and the lack of other maternal tissues 
including blood or stool. Though we had samples from 
multiple fetal tissues and maternal decidua, we were una-
ble to secure all matched samples. Thus, the conclusions 
drawn about the origin of the microbial byproducts from 
unmatched samples may be less robust. In the future, it 
would be informative to collect maternal fecal and blood 
samples matched to placental samples for direct corre-
lation between the maternal intestinal microbiome and 
bacterial metabolites in the fetal tissue. Additionally, we 
did not have sufficient material to validate all metabo-
lites discussed in the manuscript, and future validation 
studies should be conducted particularly for those that 
were identified as Level 3 (see details in Supplementary 
Table S9).

Methods
Sample collection
Placental and fetal samples were obtained from the Uni-
versity of Pittsburgh Biospecimen Core from electively 
terminated products of conception (14–23 weeks of ges-
tation) with Institutional Review Board (IRB) approval 
and signed informed consent (IRB no. 18010491, Uni-
versity of Pittsburgh). Products of conception were col-
lected from dilation and evacuation procedures with 
nonpharmacological, mechanical dilation via Dilapan-S. 
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No fetal subject had reported genetic abnormalities. In 
respect of patient confidentiality and safety, limited clini-
cal information was collected for fetal samples. All demo-
graphic information that could be legally and respectfully 
obtained is shown in SupplementaryTable  S1. After 
receiving fetal samples, the meconium was removed, and 
a small piece was cut with a sterile blade and immedi-
ately snap-frozen and stored at − 80 °C until processing. 
Samples were shipped on dry ice to Khatib laboratory for 
metabolomics analysis.

Untargeted metabolomics analysis
Extraction method
All samples were weighed, and LC/MS grade methanol 
was added (1:4 w/v). The tissues were homogenized for 
1  min using IKA T 18 digital ULTRA-TURRAX®. The 
samples were vortexed for 10 min in room temperature 
and centrifuged for 10 min with 15,294 g at 4  °C. Then 
the supernatant was filtered through 0.22-µm PTFE 
syringe filters (Membrane Solutions, USA) into HPLC 
vials and injected to LCMS.

LCMS analysis
The extracted solutions (5 μL) were injected into a UPLC 
connected to a photodiode array detector (Dionex Ulti-
Mate 3000), with a reverse-phase column (ZORBAX 
Eclipse Plus C18, 100 × 3.0 mm, 1.8 μm). The mobile 
phases consisted of phase A DDW with 0.1% formic acid 
and phase B acetonitrile containing 0.1% formic acid. 
The gradient was started with 98% A and increased to 
30% B in 4 min and then increased to 40% B in 1 min and 
kept isocratic at 40% B for another 3 min. The gradient 
increased to 50% in 6  min, increased to 55% in 4  min, 
and finally increased to 95% in 5 min and kept isocratic 
for 7 min. Phase A was returned to 98% A in 3 min, and 
the column was allowed to equilibrate at 98% A for 3 min 
before the next injection. The flow rate was 0.4 mL/min. 
MS analysis was performed with HESI-II source con-
nected to a Q Exactive Plus Hybrid Quadrupole-Orbitrap 
Mass Spectrometer from Thermo Fisher Scientific. ESI 
capillary voltage was set to 3500 V, capillary tempera-
ture to 300 °C, gas temperature to 350 °C, and gas flow 
to 10 mL/min. The mass spectra (m/z 100–1500) were 
acquired in negative ion mode (ESI −).

Blank and quality control (QC) samples were analyzed 
throughout the entire experimental procedure. Blank 
vials consisted of methanol. The QC samples were pre-
pared by mixing 50 μL of each sample. Blank and QC 
samples were injected first in the sequence, after each 
set of 10 samples, and at the end of the sequence, to 
monitor the stability and performance of the system and 
evaluate the quality of the acquired data. Blank peaks 
were removed from the dataset of compounds, and 

normalization was performed using a linear regression 
model for QC correction.

Metabolomic data acquisition using Compound Discoverer 
software
The LC–MS/MS data were analyzed using Compound 
Discoverer software (version 3.3.0.305; Thermo Sci-
entific, Waltham, MA, USA). The identification was 
based on using the mzCloud database (https:// www. 
mzclo ud. org, based on MS2 spectra) and the Chem-
Spider database (https:// www. chems pider. com/, based 
on MS1 scan). Metabolites identified by ChemSpider 
by MS1 without MS2 are labeled as Level 4 identifica-
tion. Metabolites detected by ChemSpider with MS2 are 
labeled as Level 3 identification. Metabolites detected by 
mzCloud best match are labeled as Level 2. Metabolites 
validated by standards are labeled as Level 1 (hippuric 
acid, benzoate (benzoic acid), taurocholic acid (sodium 
taurocholate), and deoxycholic acid). Most of the phar-
maceuticals identified are annotated as Level 4 without 
MS, which will need more validation using standards 
in the future. Results were normalized by incorporating 
QC samples throughout the extraction stages to check 
for repeatability and the extraction and normalization of 
the deviations. The QC samples were injected during all 
the stages of the run to test the stability and sensitivity 
of the devices and to normalize these deviations. Supple-
mentary Table  S8 includes all the metabolites detected 
in the samples with information about MW, RT values, 
and if the metabolites were detected based on MS2 or 
just by MS1 scan, mzCloud best match, and alternative 
options for the metabolite’s names especially those that 
identified just by MS1. The metabolites were divided into 
four sheets depending on the level of annotation: Level 1, 
metabolites identified using standards; Level 2, metabo-
lites annotated using MS2 with mzCloud best match 
higher than 60%; Level 3, metabolites annotated using 
MS1; and Level 4, unknowns. Among the 2521 metabo-
lites analyzed in this paper, 9 were identified as Level 1, 
402 as Level 2, and 2110 as Level 3. Details of the metab-
olites discussed in the manuscript have been added to the 
new Supplementary Table S9.

Quantitative metabolites analysis for validation
Data preprocessing
The standards and samples were injected using the same 
LC–MS method reported at the untargeted metabo-
lomics part. Peak determination and peak area inte-
gration were performed with QuanBrowser (Thermo 
Xcalibur, version 4.1.31.9). Autointegration was manually 
inspected and corrected if necessary. Calibration curves 
were used for the quantification of each compound. 
Linear curves were obtained for all compounds with R2 

https://www.mzcloud.org
https://www.mzcloud.org
https://www.chemspider.com/
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> 0.99: hippuric acid 0.1–5000 ppb, benzoic acid 500–
50,000 ppb, taurocholate 100–50,000 ppb, and deoxy-
cholic acid 0.1–100 ppb.

Method validation
Method validation was performed to determine the limit 
of detection (LOD), limit of quantitation (LOQ), linearity 
repeatability, and recovery for each compound.

For intraday precision, a mixture of all the metabolites 
standards was prepared and injected as QC at the begin-
ning of the sequence, then after each 10 samples, and at 
the end of the sequence. The RSDs into QC samples were 
calculated for each analyte to be less than 6.6%.

For recovery analysis, three samples were spiked, 
extracted, and injected to LCMS. The concentration of 
each analyte was calculated into the spiked and non-
spiked samples, and the recovery was evaluated to be on 
average 82% for benzoic and hippuric acids, 92% for tau-
rocholate, and 98% for deoxycholic acid.

LOD and LOQ were determined by signal-to-noise 
ratios higher than 3 and 10, respectively. LOD and LOQ 
for hippuric acid, deoxycholic acid, and sodium tauro-
cholate were 0.1 ppb. LOD and LOQ for benzoic acid 
were 500 ppb.

Metabolomic data analysis
Data preprocessing
The data preprocessing steps for the main data set (a) and 
another two validation data sets (b–c) are introduced in 
the following parts respectively.

(a) The original metabolome data matrix contained 65 
samples and 18,424 compounds. The data were preproc-
essed according to Li, Yujia et al. [30]. The blank samples, 
quality control samples, and one sample without location 
information were filtered out, resulting in 49 samples 
(8 decidua, 8 small intestine, 3 large intestine, 11 small 
intestine meconium, 8 large intestine meconium, and 11 
PV). Compounds without names (based on the proto-
col for annotation described above) were discarded, and 
for the named compounds with isomers, the one with 
the largest inter-quantile range over the 49 samples at 
log scale was kept. Next, the resulting metabolome data 
matrix containing 49 samples and 2521 metabolites were 
log-transformed (base 2) and normalized across samples 
by quantile normalization using the “preprocessCore” R 
package [49].

(b) Due to sample limitation where no additional sam-
ple was available, metabolites were validated by stand-
ards without the exact concentrations of the samples 
calculated. This raw validation metabolome data matrix 
contained 65 samples (same as original data matrix) 
and 5 compounds. After filtering out the blank samples, 

quality control samples, and one sample that failed QC, 
the remaining 49 samples and 5 metabolites were log-
transformed (base 2).

(c) Where additional samples were available, metabo-
lites were validated by standards, and exact concen-
trations were calculated. This raw validation data set 
included the quantitative abundance of 4 metabolites and 
55 samples. Samples with abnormal quantity or without 
tissue location information were filtered out, resulting in 
48 samples remaining for hippurate, 52 samples for ben-
zoate, 48 samples for taurocholic acid, and 50 samples for 
deoxycholic acid. Missing values were imputed by assign-
ing half of the minimum observed value of each metabo-
lite and addition of a small random noise.

Determination of metabolite clustering
t-SNE (R package “Rtsne” [50–52]) plots were made to 
visualize the separability of samples from different tissue 
locations. For the specific values of the t-SNE parameters, 
we set the perplexity to be 10, the number of iterations to 
be 5000, and all the other parameters as default values.

Statistical and bioinformatic analyses
The statistical analysis includes five parts with details 
described in the following sections respectively: differen-
tial analysis (a), pathway enrichment analysis (b), correla-
tion analysis (c), ANOVA analysis (d), and gestational age 
association analysis (e).

(a) For differential analysis, the “limma” R package [53] 
was used to detect the differentially expressed metabo-
lites and pathways in three pairwise comparisons: decidua 
versus GI (small intestine and large intestine), GI versus 
meconium, and GI versus PV. We applied “limma” R pack-
age to calculate p-values and log-fold changes for individual 
metabolites, followed by Benjamini–Hochberg procedure 
to correct for multiple testing, to control false discovery 
rate, and to report q-value. The results were visualized in 
volcano plots using the “EnhancedVolcano” R package [54] 
where the significantly differentially expressed genes are 
highlighted in red with the absolute value of log fold change 
larger than 2.5 and q-value smaller than 0.05.

(b) For pathway enrichment analysis, we figured out the 
KEGG ID of 843 metabolites. Based on the KEGG IDs 
and identified differentially expressed metabolites, path-
way enrichment analysis for each of the three pairwise 
comparisons was conducted using QIAGEN Ingenuity 
Pathway Analysis (IPA) software for metabolome data 
(https:// www. qiage nbioi nform atics. com/ produ cts/ ingen 
uityp athway- analy sis) [55]. This tool generated q-values 
and enrichment effect sizes (log odds ratio).

(c) The correlation matrix provided the pairwise corre-
lations of the six tissue groups (decidua, small intestine 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
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(SI), large intestine (LI), small intestine meconium (SI 
Mec), large intestine meconium (LI Mec), and placental 
villi (PV)) from subject no. 16 based on the abundance 
of 41 bacterially derived metabolites and was visualized 
by the “ggcorrplot” R package [56]. In the boxplots, each 
point is the abundance correlation of microbial metabo-
lites/xenobiotic/fetal-derived metabolites between one 
decidua sample and one GI sample (or one GI sample and 
one meconium sample). The significance levels were cal-
culated by two sample t-test.

(d) For each microbial metabolite, bile acid and aro-
matic acid, we performed one-factor ANOVA and post 
hoc analysis to compare the difference of its abundance 
among the four tissue groups (decidua, GI, meconium, 
and PV). For each bile acid, we further performed 
ANOVA analysis adjusted by the gestational age, i.e., 
involving gestational age as confounder. The results were 
visualized in heatmap by “pheatmap” R package [57] and 
boxplots generated by the “ggplot2” package [58].

(e) To investigate the association between the abun-
dance of individual metabolite with gestational age and 
tissue group for bile acids and SCFAs, we applied the lin-
ear regression model using “limma” R package, reporting 
the coefficient slopes and q-values.

Single-cell RNA-seq data analysis
The single-cell data was from one of our previous published 
single-cell atlas of human small intestine throughout the 
human lifespan [39]. The fetal epithelial cells and immune 
cells were clustered using Scanpy (v1.9.2) package [59] as 
described in Gu et al. [39]. Briefly, gene expression in each 
cell was normalized and log transformed. Afterwards, 
highly variable genes were identified using the scanpy.
pp.highly_variable_genes function with default parameters. 
In addition, the effects of the percentage of mitochondrial 
genes, the percentage of ribosomal protein genes, and the 
unique molecular identifier (UMI) counts were regressed 
out using scanpy.pp.regress_out function before scaling 
the data. Batch correction of samples was performed with 
bbknn (v1.5.1) [60]. Dimensionality reduction and Lei-
den clustering were carried out on the remaining highly 
variable genes, and the cells were visualized using Uniform 
Manifold Approximation and Projection (UMAP) plots. 
Cell types were manually annotated based on the known 
marker genes found in the literature. The statistical analysis 
of the mean expression values of the selected genes in each 
detected cell in each sample was performed using one-way 
ANOVA with Tukey’s multiple comparison test to compare 
gene expression among developmental stages. The analysis 
was conducted using GraphPad Prism 9, and differences 
were considered statistically significant at a p-value < 0.05.
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The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40168- 025- 02110-0.

Supplementary Material 1: Supplementary Figure S1. t-distributed 
stochastic neighbor embedding (t-SNE) plot using all metabolites. The 
samples are color-coded by different tissue sites, with different letter 
shapes according to their source subjects. Those subjects that only have 
one sample are labelled as “Others”. Supplementary Figure S2. Distribution 
of gestational agein samples (A) The density curves of gestational age for 
samples within each of the four groups. (B) Boxplots of gestational age 
for each group where each black dot represents a sample. The median 
sample age shown on the top is 22.5 weeks for decidua, 18.5 weeks 
for GI, 21 weeks for meconium and 22 weeks for PV group respectively. 
The pairwise difference among the four groups is not significant (i.e., 
all adjusted P-value > 0.05) by one-factor ANOVA and post-hoc analysis. 
Supplementary Figure S3. Correlation between tissue groups of microbial 
metabolites, xenobiotics, and fetal metabolites. Correlation between 
tissue groups of microbial metabolites, xenobiotics, and fetal metabolites. 
Boxplots visualizing the correlations between GI and decidua samples 
and between GI and meconium samples from the subjects at gestational 
age of 23 weeks, based on 41 microbial metabolites, 47 xenobiotics, and 8 
fetal-derived metabolites respectively from Supplementary Table S5. Red 
asterisk points represent the pairwise correlations between tissue samples 
from subject No. 16. Supplementary Figure S4. Metabolites validation. 
Boxplots in the first row show the abundance difference between tissue 
groups for the eight metabolites in the main data set, while the second 
and third rows present the difference in validation data sets for the 
corresponding metabolites. Supplementary Figure S5. Markers for cell 
type annotation. Dot plot of the marker genes for the annotation of fetal 
epithelial cells (A) and of fetal immune cells (B). Color represents normal-
ized mean expression of marker genes in each cell type, and size indicates 
the proportion of cells expressing marker genes. Supplementary tables: 
Table S1. Sample demographics. Demographic information for all samples 
used. N/A, not available; SI, small intestine; LI, large intestine; SI Mec, small 
intestine meconium; LI Mec, large intestine meconium; F, female; M, male. 
Supplementary Table S2. List of the detectable metabolites and their 
abbreviations. Supplementary Table S3. Difference of metabolite abun-
dance in pairwise comparisons between GI and the other tissue groups. 
Supplementary Table S4. Enriched pathways in pairwise comparisons 
between GI and the other tissue groups. Supplementary Table S5. List of 
microbial metabolites, xenobiotics, and fetal-derived metabolites used 
in the analysis. * indicates the microbial metabolites reported by (30) 
(Supplementary Tables S8, S9), and † indicates the identified microbial 
metabolites based on (32, 33). Supplementary Table S6. Correlation coef-
ficients and significance levels (p value and q value) of gestational age for 
each bile acid by ANOVA analysis with adjustment of gestational age. Sup-
plementary Table S7. Correlation coefficients between the abundance of 
individual metabolites and the gestational age within each tissue group. 
Except for the bile acids and SCFA in Table 2[1], showing all the other nine 
bile acids and two SCFAs. The columns are the correlation coefficient 
within each tissue group separately. The q value for the correlation coeffi-
cient shows in parathesis *P < 0.05, **P < 0.01, ***P < 0.001. Supplementary 
Table S8. Comprehensive information of all metabolites detected in the 
samples. The table contain all the metabolites detected in the samples 
with information about MW, RT values, and if the metabolites detected 
based on MS2 or just by MS1 scan, MzCloud best much, as well as alterna-
tive options for the metabolite’s names especially those that identified just 
by MS1. Supplementary Table S9. Information on metabolites discussed 
in the manuscript. Identification information of discussed metabolites 
including microbial metabolites (secondary bile acid, SCFA, aromatic 
lactic acids, and others), xenobiotics, fetal-derived metabolites, primary 
bile acids, aromatic amino acids, top 20 abundant metabolites in GI tract 
in Fig. 1B, and DE metabolites labelled on volcano plots of Fig. 1 C-E CE: 
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