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Systems genetics uncovers associations 
among host amylase locus, gut microbiome, 
and metabolic traits in mice
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Aldons J. Lusis2,3 and Federico E. Rey1,5* 

Abstract 

Background Population studies have revealed associations between host genetic and gut microbiome in humans 
and mice. However, the molecular bases for how host genetic variation impacts the gut microbial community 
and bacterial metabolic niches remain largely unknown.

Results We leveraged 90 inbred hyperlipidemic mouse strains from the hybrid mouse diversity panel (HMDP), previ-
ously studied for a variety of cardio-metabolic traits. Metagenomic analysis of cecal DNA followed by genome-wide 
association analysis identified genomic loci that were associated with microbial enterotypes in the gut. Among these, 
we detected a genetic locus surrounding multiple amylase genes that were associated with abundances of Firmicutes 
(Lachnospiraceae family) and Bacteroidetes (Muribaculaceae family) taxa encoding distinct starch and sugar degrading 
capabilities. The genetic variants at the amylase gene locus were associated with distinct gut microbial communities 
(enterotypes) with different predicted metabolic capacities for carbohydrate degradation. Mendelian randomization 
analysis revealed host phenotypes, including liver fibrosis and plasma HDL-cholesterol levels, that were associated 
with gut microbiome enterotypes.

Conclusions This work reveals novel relationships among host genetic variation, gut microbial enterotypes, and host 
metabolic traits and supports the notion that variation of host amylase may represent a key determinant of gut micro-
biome in mice.

Keywords Systems genetics, Gut microbiome, Genetic association study, Metagenomics, Hybrid mouse diversity 
panel

Introduction
The microbial communities that inhabit the gut of mam-
mals have profound effects on the biology and health 
of their hosts. Alterations in the intestinal microbiome 
have been associated with myriad conditions, including 
metabolic disorders, cardiovascular disease, [1, 2] and 
autoimmune and inflammatory disorders [3, 4]. Host 
genetic variation and environmental factors, including 
diet, modulate the gut microbiome and its interactions 
with the host [5, 6]. Distinct gut microbial communities, 
termed enterotypes, which reflect stratification in a pop-
ulation and defined compositional attributes, have been 
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identified [7, 8]. However, it remains largely unknown 
how host genetics modulate microbial enterotypes, and 
the metabolic functions that contribute to this stratifica-
tion have not been established.

Carbohydrates represent an important energy source 
for both human and microbial cells. Consumption of dif-
ferent carbohydrates can influence the gut microbiota 
and its association with the host [9, 10]. Non-digestible 
carbohydrates, including many plant polysaccharides, 
such as resistant starch, are not digested by host enzymes 
and can therefore serve as substrates for microbial 
growth in the distal gut. Digestible carbohydrates like 
starch, on the other hand, are broken down by host amyl-
ases [11], releasing their constituent sugars which can be 
absorbed by the host. Amylase gene copy number var-
ies among individual humans and associations between 
amylase copy number and diet have been reported for 
mammals [11–14]. In mice, the genes encoding salivary 
(Amy1) and pancreatic (Amy2) amylases are located in a 
gene cluster on chromosome 3. Previous work showed 
that the copy number of the Amy2 paralogous gene 
(Amy2a1, Amy2a2, Amy2a3, Amy2a4, Amy2a5, Amy2b) 
varies across different mouse strains [13]. Furthermore, 
a recent study revealed that humans with higher salivary 
amylase gene (AMY1) copy number harbor gut micro-
biomes with increased abundance of starch-degrading 
microbes suggesting that genetic variants of host amylase 
gene locus may potentially impact gut microbiome and 
its subsequent effects on the host [15]. However, environ-
mental factors including diet, which is known to influ-
ence gut microbiome, are difficult to control in human 
studies.

Previous studies in mice and humans have investigated 
the impact of host genetic variation on gut microbiota 
composition. These efforts mostly applied 16S rRNA gene 
sequencing [16–18]. Shotgun metagenomics allows com-
prehensive characterization of the functions and meta-
bolic pathways present in gut communities. However, a 
limited number of studies have applied metagenomic 
characterization of gut microbiome in large-scale geneti-
cally diverse, phenotypically characterized cohorts [19]. 
A valuable resource for such an undertaking is the hybrid 
mouse diversity panel (HMDP), which consists of over 
100 common inbred and recombinant inbred strains. In 
order to study cardio-metabolic traits, each strain from 
this panel was made hyperlipidemic by transgenic expres-
sion of human apolipoprotein E-Leiden (APOE-Leiden) 
and human cholesteryl ester transfer protein (CETP). 
This was done by breeding each of the HMDP strains to 
a C57BL/6 J background strain that possessed these two 
hyperlipidemia-inducing transgenes. Genetic differences 
among these animals arise only from sequence varia-
tions present in the individual recipient strains. This set 

of F1 animals was termed Ath-HMDP and represents a 
rich resource for studies exploring complex interactions 
underlying atherosclerosis and liver fibrosis [20–22].

Here, we analyzed gut metagenomes from 90 Ath-
HMDP strains and used systems genetics to explore links 
between gut microbiome composition, host genetic vari-
ation, and cardiometabolic disease. Our analysis identi-
fied three distinct microbial enterotypes and uncovered 
two host genomic loci significantly associated with their 
abundance. Additionally, we identified bacterial functions 
within these host-selected enterotypes that may influence 
key biomarkers, such as plasma cholesterol and triglycer-
ides, and disease phenotypes including liver fibrosis.

Results
Characterization of the gut metagenomes from 90 
Ath‑HMDP mouse strains
We generated metagenomic datasets from DNA isolated 
from cecal contents collected from 356 F1 Ath-HMDP 
mice encompassing 90 strains (males and females were 
included for most strains) fed a high-fat diet (33% kcal 
from fat) with 1% cholesterol for 16 weeks (37.8 million 
paired-end reads/sample). The generation of this mouse 
cohort has been previously described [20], including 
metabolic and disease-associated phenotypes such as 
plasma lipids, glucose levels, atherosclerotic lesions, and 
liver fibrosis, all of which varied widely among strains 
[20, 21] (SupplementaryTable 1).

Phylogenetic and functional analyses of these metagen-
omes identified 459 bacterial taxa encompassing 7 phyla, 
43 classes, 49 orders, 63 families, 131 genera, and 166 
species; 2127 KO (KEGG Orthology) functions and 294 
metabolic pathways (MetaCyc database) across all mice. 
Gut microbiota composition was highly variable across 
the 90 strains; for example, the relative abundance of 
Firmicutes phylum ranged from 10 to 55%, whereas the 
relative abundance of Bacteroidetes ranged from 5 to 
77% (Supplementary Fig. 1A). The most abundant species 
(> 0.5%) that were present in at least 90% of mice included 
the Paramuribaculum intestinale, Muribaculum intes-
tinale, Muribaculum gordoncarteri, Duncaniella muris, 
Duncaniella freteri, Alistipes finegoldii, Parabacteroides 
goldsteinii, Faecalibaculum rodentium, Lachnospiraceae 
bacterium, Desulfovibrio SGB41239, Muribaculaceae 
SGB35953, Bilophila sp., and Parasutterella sp. (Sup-
plementary Fig. 1B, Supplementary Table 2). We defined 
these taxa as the “core microbiome species” in the Ath-
HMDP mice gut.

Enterotypes of the Ath‑HMDP gut microbiome
Principal coordinate analysis (PCoA) of the microbial 
communities described above using Bray–Curtis dis-
tance of species abundance resulted in three clusters 
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each dominated by a different phylum: (i) Firmicutes, 
(ii) Bacteroidetes, and (iii) Verrucomicrobia, respec-
tively (Supplementary Fig.  2A). Because this stratifica-
tion of microbial composition was observed, we next 
explored the existence of different enterotypes. Using 
partitioning around medoid (PAM) clustering of Bray–
Curtis distance of species abundance, we detected three 
enterotypes (Fig.  1A), each of which was identifiable by 
the levels of Firmicutes, Bacteroidetes, and Verrucomi-
crobia respectively (Fig.  1B). Previous studies reported 
distinct enterotypes in the human gut that were domi-
nated by Bacteroides, Prevotella, and Ruminococcaceae 
[7, 8]. We observed clusters dominated by different taxa 
as compared to humans, which is likely due to the ana-
tomical, physiological, and biochemical differences in the 

gastrointestinal tract and the distinct overall gut micro-
biota composition detected in these two mammals.

Using microbial function abundance resulted in similar 
clustering each dominated by one of the three enterotype 
phyla mentioned above (Supplementary Fig. 2B). The first 
principal component (PC1) of the microbial functions, 
which explains the most variance for the functional pro-
files, was highly correlated with Firmicutes abundance 
(Spearman’s ρ = 0.86, P = 7.87 ×  10−103) and Bacteroidetes 
abundance (Spearman’s ρ = − 0.67, P = 1.57 ×  10−47) (Sup-
plementary Fig. 2C). The functions’ PC1 was also highly 
correlated with core species including Lachnospiraceae 
bacterium (Spearman’s ρ = 0.72, P = 1.29 ×  10−56), Desul-
fovibrio SGB41239 (Spearman’s ρ = 0.7, P = 2.36 ×  10−52), 
Muribaculum gordoncarteri (Spearman’s ρ = − 0.46, 

Fig. 1 Gut microbial enterotypes and bacterial co-abundance groups. A Clustering identified three microbial enterotypes in the Ath-HMDP mouse 
cohort. B Relative abundances of Firmicutes, Bacteroidetes, and Verrucomicrobia in the three enterotypes. C Correlation network of bacterial species 
(average relative abundance > 0.1% and present in at least 20% of samples) using CCREPE with a checkerboard score, indicating the co-occurrence 
or co-exclusion between species. Nodes represent the species and lines represent the similarity score. Solid lines represent co-occurrence bacterial 
species and dashed lines represent co-exclusion bacterial species. Significance was calculated by unpaired two-tailed Wilcoxon signed-rank test 
and is designated as follows: **p value < 0.01; ***p value < 0.001; ****p value < 0.0001. ET-B, Bacteroidetes enterotype; ET-F, Firmicutes enterotype; 
ET-V, Verrucomicrobia enterotype
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P = 4.37 ×  10−20) and Muribaculaceae SGB35953 (Spear-
man’s ρ = − 0.49, P = 2.77 ×  10−22) (Supplementary Table 3).

To identify bacterial species that shape the enterotypes, 
we summarized the most abundant and prevalent spe-
cies (relative abundance > 0.1% and present at least > 20% 
mice) into co-abundance groups (CAGs) using co-occur-
rence scores (Fig.  1C). The Bacteroidetes-dominated 
CAG contained mostly Bacteroidetes taxa including 
Muribaculaceae, the most abundant family in mouse gut 
[23] (Duncaniella muris, Duncaniella freteri, Duncaniella 
dubosii, Muribaculaceae CAG-495 sp., Muribaculaceae 
CAG-873 sp.), Bacteroides genus (Bacteroides acidifa-
ciens, Bacteroides sp.), and Alistipes sp. The Firmicutes-
dominated CAG consisted mostly of Firmicutes taxa 
including Lachnospiraceae family (Roseburia sp., Dorea 
sp., Acetatifactor sp., Sporofaciens sp., Kineothrix sp., 
and Schaedlerella arabinosiphila), Oscillospiraceae fam-
ily (Lawsonibacter sp., Enterenecus sp., and Pelethomonas 
sp.), and Proteobacteria including Bilophila sp.

Gut microbiome features are associated with host genetics
To identify associations between mouse genomic vari-
ation and gut microbiome features, we performed 
genome-wide association analysis and mapped the abun-
dance of bacterial functions, taxa, and metabolic path-
ways to the mouse genome (Supplementary Fig.  3). We 
observed 646 functions, 138 species, and 109 pathways 
that were significantly associated with at least one locus 
by genome-wide significance cutoff (P < 4 ×  10−6). We fur-
ther examined the density of these significantly associ-
ated gut microbial traits over the whole mouse genome 
and identified a GWAS hotspot on chromosome 3 at  
113–115 Mbp. This genomic locus was associated with 347 
different bacterial functions. The three enterotypes were 
distinguished at microbial functions’ PC1 and PC2 levels 
(Fig.  2A); thus, we reasoned that the genetic variants at 
chromosome 3 were associated with microbial enterotypes.

The genomic regions identified by GWAS most likely 
contain candidate genes/genes that are in strong linkage 
disequilibrium (LD) with the lead SNP. Nine protein-
coding genes are in the LD region (determined by cor-
relation r2 with lead SNP > 0.8) at chromosome 3 GWAS 
hotspot, including mouse amylase cluster genes (Amy1, 
Amy2a1, Amy2a2, Amy2a3, Amy2a4, and Amy2a5), 
Rnpc3, Col11a1, and Olfm3 (Fig.  2B). Gene expression 
data were available from a subset (n = 4–8 female mice/
strain; 40 strains) of the same Ath-HMDP mice [20]. 
We conducted a correlation analysis between microbial 
functions’ PC1 and PC2 with each gene within the chro-
mosome 3 GWAS hotspot. We found significant correla-
tions for microbial functions’ PC1 with Amy1 and Rnpc3 
gene expression levels (Supplementary Fig.  4A). The 

microbial functions’ PC2 was not significantly correlated 
with expression levels of candidate genes. As mentioned 
above, the microbial functions’ PC1 was associated with 
Firmicutes and Bacteroidetes enterotypes (Supplemen-
tary Fig.  2C); we also found that two major families in 
these enterotypes, Muribaculaceae and Lachnospiraceae, 
were significantly correlated with Amy1 gene but not 
Rnpc3 gene (Supplementary Fig.  4B). In humans, the 
salivary amylase gene (AMY1) copy number is associated 
with nearby SNPs, structural haplotypes of the amylase 
locus [24], and gut microbiome composition [15]. Our 
data suggest that genomic variants of the amylase gene 
locus in mice are associated with bacterial taxa that drive 
the Firmicutes and Bacteroidetes enterotypes.

We found that microbial functions’ PC1 mapped to the 
same hotspot locus, as expected (Fig. 2C). The lead SNP 
rs31001780 has two alleles, A and G, which differed in 
prevalence between enterotypes (Fig. 2D, Supplementary 
Table 6). More specifically, mice with the allele A at SNP 
rs31001780 had higher Firmicutes and lower Bacteroi-
detes levels in the gut (Fig. 2E). The prevalence of allele 
A and allele G was similar in Firmicutes enterotype and 
Verrucomicrobia enterotype mice, but the allele G was 
more prevalent in Bacteroidetes enterotype mice (Fig. 2F) 
suggesting genomic variants of the amylase gene locus in 
mice are likely associated with bacteria species that drive 
the Bacteroidetes enterotype such as Muribaculacea.

We found that A. muciniphila is the only bacterial 
species detected within the Verrucomicrobia phylum; 
we then used the abundance of A. muciniphila spe-
cies as the representative microbial feature to identify 
genetic locus associated with the Verrucomicrobia ente-
rotype (SupplementaryFig.  5A). The significant SNPs 
were on chromosome 1, and this locus has the lead SNP 
rs31965376 with two alleles, A and T, which differed in 
prevalence between enterotypes (Supplementary Fig. 5B, 
Supplementary Table  6). Mice with the allele A at SNP 
rs31965376 had on average higher Verrucomicrobia lev-
els in their gut (Supplementary Fig. 5C). The prevalence 
of allele A and allele T was similar in Firmicutes and Bac-
teroidetes enterotypes mice, but the allele A was more 
prevalent in Verrucomicrobia enterotype mice (Supple-
mentary Fig. 5D).

Bacterial carbohydrate metabolism potentially mediates 
host amylase and gut microbial enterotypes
To explore potential bacterial functions and pathways 
that were modulated by enterotype-associated SNPs, we 
examined the predicted metabolic differences between 
the two identified CAGs. We first performed Spear-
man’s correlation between the aggregated abundance of 
Firmicutes/Bacteroidetes CAGs with MetaCyc pathways 
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(present in at least 90% of mice). PWY-6737 (starch deg-
radation V) is one of top pathways positively associated 
with Bacteroidetes CAGs but negatively associated with 
Firmicutes CAGs (adjusted P < 0.05) suggesting it may 
mediate the association between host amylase locus 
with Firmicutes and Bacteroidetes enterotypes (Sup-
plementary Fig. 6A). We then compared functions from 
starch and sugar metabolism pathway with the species 
abundance from the two CAGs and noted that genes 

encoding enzymes predicted to target starch and other 
polysaccharides degradation were positively associated 
with Bacteroides CAGs and negatively associated with 
Firmicutes CAGs (Supplementary Fig. 6B). Glycosidases 
are enzymes that break down glycosidic linkages to lib-
erate monosaccharides and oligosaccharides of lower 
molecular weight from carbohydrate substrates. We 
found glycosidases predicted to target starch and other 
polysaccharides, including alpha-amylase (K07405, 

Fig. 2 Host genomic loci are associated with gut microbial enterotypes. A PCA plot of microbial functions with the assignment of gut microbial 
enterotypes for each mouse. B SNP associations for microbial functions’ PC1 on chromosome 3. Protein coding genes are displayed for Chr3: 112–
116 Mbp region. C Genomic locus at Chr3: 113–114 Mbp is associated with microbial functions’ PC1. The lead SNP is an intergenic SNP rs31001780. 
Dashed lines represent significance thresholds determined by permutation tests (P < 4 ×  10−6). D Mice with alleles AA or GG at SNP rs31001780 are 
visualized in PCoA of microbial species beta-diversity (left) and PCA of microbial functions (right). E Relative abundance of Firmicutes, Bacteroidetes, 
and Verrucomicrobia from mice with AA or GG at SNP rs31001780. F Number of mice that have AA or GG at SNP rs31001780 in each of three 
enterotypes. Statistical difference between groups was tested by unpaired two-tailed Wilcoxon signed-rank test
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predicted to degrade starch), endoglucanase (K01179, 
predicted to degrade cellulose), dextranase (K05988, 
predicted to degrade dextran), and pullulanase (K01200, 
predicted to degrade pullulan) were positively correlated 
with the Bacteroides CAGs, whereas glycosidases pre-
dicted to target mostly disaccharides were positively cor-
related with the Firmicutes CAGs.

To further examine whether polysaccharides deg-
radation functions could mediate the associations 
between host amylase and Bacteroidetes CAG species, 
we next assembled shotgun sequencing data from each 
mouse and binned contigs into metagenome-assembled 
genomes (MAGs). From 436 high-quality non-redundant 
MAGs (completeness > 90% and contamination < 5%), 31 
MAGs were annotated as Muribaculaceae (Supplemen-
tary Table 5). Bacterial genomes from the Bacteroidetes 
phylum encode polysaccharide-utilization loci (PULs), 
the products of which regulate the detection, transport, 
and degradation of glycans. We further identified PULs 
in MAGs (Methods) and found that the Muribaculaceae 
MAGs that have higher number of PULs were more 
negatively associated with Amy1 expression levels in 
Ath-HMDP mouse (Supplementary Fig.  6C). Glycoside 
hydrolase family 13 (GH13) is the major glycoside hydro-
lase family acting on substrates containing α-glucoside 
linkages present in starch. We found that an abundance 
of Muribaculaceae MAGs that have PULs containing 
GH13 were negatively associated with Amy1 expression 
levels in Ath-HMDP mice (Supplementary Fig. 6D).

We reasoned that variation within the host amylase 
genes locus could affect amylase activity, which in turn 
would result in different availability of carbohydrates 
for microbes in the gut. This could in turn lead to dis-
tinct gut microbial communities (enterotypes). To fur-
ther examine this hypothesis, we characterized the gut 
metagenomes from six commercially available genetically 
diverse mouse strains, C57BL/6 J (B6), A/J (A/J), 129S1/
SvImJ (129), NOD/ShiLtJ (NOD), NZO/HLtJ (NZO), 
and CAST/EiJ (CAST), which harbor diverse genetic 
background (Fig.  3A). These mice (4 − 6 animals per 
strain) were fed a high carbohydrate diet (Supplementary 
Table  7) for 12  weeks. We first measured amylase gene 
copy numbers (CN) using digital PCR and found Amy1 
gene copy number was detected at similar levels among 
all mouse strains (CN = 1 − 2); however Amy2 gene copy 
number showed dramatic variation among the mouse 
strains (CN = 9 − 16) (Fig.  3B). We further found the 
abundance of Muribaculaceae family was significantly 
higher in low amylase gene CN mice (e.g., CAST) com-
paring to high amylase gene CN mice (e.g., B6) (Fig. 3C). 
In addition, bacterial alpha-amylase abundance was also 
significantly higher in low amylase gene CN mice com-
pared to high amylase gene CN mice (Fig.  3D). These 

results suggested that a lower amylase gene copy number 
in the mouse genome resulted in increased Muribacu-
laceae abundance in the gut supporting the hypothesis 
that genetic variation in the amylase gene region could 
be a causal driver for enterotype associated variants on 
chromosome 3 in mice.

Enterotype species are associated with host traits
Because of a large variation in host cardiometabolic phe-
notypes (Supplementary Fig.  7), we next explored the 
associations between CAG species with these host phe-
notypes. Species from the two CAGs discussed above 
showed distinct associations (Fig.  4A). Atherosclerotic 
lesion size was positively correlated with Bacteroides 
sp. (Spearman’s ρ = 0.35, P = 4.1 ×  10−6) and Bilophila 
sp. (Spearman’s ρ = 0.17, P = 4.4 ×  10−2) and negatively 
correlated with Roseburia sp. (Spearman’s ρ = − 0.31, 
P = 5.6 ×  10−5), a finding that was also reported in a pre-
vious study [25]. We further identified positive asso-
ciations for Turicimonas muris (Spearman’s ρ = 0.18, 
P = 0.03), Atopobiaceae bacterium sp. (Spearman’s 
ρ = 0.2, P = 0.015) and negative associations for Dorea 
sp. (Spearman’s ρ = − 0.29, P = 2 ×  10−4) and Enterene-
cus sp. (Spearman’s ρ = − 0.16, P = 0.05) with atheroscle-
rotic lesion size. Plasma levels of HDL and LDL/VLDL 
were positively correlated with bacteria from Firmicutes 
CAG and negatively correlated with bacteria from Bac-
teroidetes CAG. Liver fibrosis was negatively correlated 
with Bacteroidetes CAG species including Bacteroides sp. 
and taxa within the Muribaculaceae family and positively 
correlated with Firmicutes CAG species, such as Sporofa-
ciens sp., Enterenecus sp., and Kineothrix sp. These results 
suggested that host physiology phenotypes are associated 
with gut microbiome enterotypes (Firmicutes and Bacte-
roidetes CAG) in the Ath-HMDP mice.

We next performed bi-directional Mendelian rand-
omization (MR) to assess whether Firmicutes and Bac-
teroidetes enterotypes causally contribute to host traits 
(Supplementary Table 8). We observed significant causal 
relationships between microbial functions’ PC1 and 
liver fibrosed area (P = 7.3 ×  10−3) and HDL cholesterol 
(P = 4.6 ×  10−4) (Fig.  4B, Supplementary Fig.  8). When 
we tested MR considering clinical traits as the exposure 
and microbial functions’ PC1 as the outcome, we did not 
observe significant causal effects (Fig. 4C).

Enterotype functions are associated with host traits
We found that bacterial flagellar functions were over-
represented among the functions that mapped at chro-
mosome 3 locus (Supplementary Fig.  9A), and they are 
noteworthy characteristic that distinguish Firmicutes 
and Bacteroidetes CAGs (Supplementary Fig.  9B). 
We found the abundance of Lachnospiraceae, a family 
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containing many flagellated bacteria, was significantly 
higher in higher amylase gene CN mice comparing to 
low amylase gene CN mice (Supplementary Fig.  10A). 
We observed a strong association between fliC abun-
dance (K02406; encoding flagellar filament structural 
protein) and LDL + VLDL cholesterol (Spearman’s 
ρ = 0.31, P = 5.8 ×  10−10), HDL cholesterol (Spearman’s 
ρ = 0.17, P = 1.8 ×  10−3), liver fibrosis area (Spearman’s 
ρ = 0.17, P = 2.5 ×  10−3), liver cholesterol levels (Spear-
man’s ρ = 0.24, P = 4.1 ×  10−5), and liver triglycerides 

(Spearman’s ρ = − 0.27, P = 4.3 ×  10−6) (Supplementary 
Fig.  11A). Sequence polymorphisms in flagellin gene 
can result in structural variants that influence host rec-
ognition and immune responses [26, 27]. We examined 
the most abundant (relative abundance > 0.01%) flagel-
lin gene variants from the Lachnospiraceae (Roseburia, 
Dorea) and Desulfovibrionaceae (Desulfovibrio) families 
and found that variants in the nD1 TLR5 epitope motif 
in the fliC gene were associated differently with host 
physiology phenotypes (Supplementary Fig.  11B). These 

Fig. 3 Muribaculaceae and gut bacterial alpha-amylase genes are more abundant in mouse strains with low-amylase gene copy numbers. A 
Phylogenetic relationship among the six mouse strains tested, C57BL/6 J (B6), A/J (A/J), 129S1/SvImJ (129), NOD/ShiLtJ (NOD), NZO/HLtJ (NZO), 
and CAST/EiJ (CAST). B Amylase gene (Amy1 and Amy2) copy number in the six mouse strains. C Relative abundance of Muribaculaceae family 
across the six mouse strains fed a high carbohydrate diet and its correlation with host amylase gene copy number. D Relative abundance of gut 
bacterial alpha-amylase gene (K07405) across the six mouse strains and its correlation with host amylase gene copy number. Statistical difference 
among groups was tested by unpaired two-tailed Wilcoxon signed-rank test
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results suggest that flagella may influence the progression 
of liver disease and, consistent with previous work, show 
that genes involved in flagellar assembly were enriched 
in fecal microbiomes of patients with moderate to severe 
fibrosis [28].

Discussion
Genome-wide association studies have identified mul-
tiple host genomic loci associated with the gut micro-
biome in humans and mice; however, most of these 
previous efforts focused on organismal composition, and 

Fig. 4 Host metabolic phenotypes are associated with gut microbial enterotypes. A Spearman’s correlation between bacteria species 
from Firmicutes CAG and Bacteroidetes CAG with host metabolic phenotypes. B Bidirectional MR analysis between host metabolic traits and gut 
microbial functions’ PC1, which is the representative microbial features that distinguish Firmicutes and Bacteroidetes enterotypes. MR beta effect 
sizes using gut microbial functions’ PC1 as exposure and host metabolic traits as an outcome. C MR beta effect sizes using host metabolic traits 
as exposure and gut microbial functions’ PC1 as outcome
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there is limited evidence linking specific functions and 
pathways with host genetic variation [16]. Additionally, 
gut microbiome enterotypes were described in human 
cohorts where a small number of bacterial taxa deter-
mines the stratification of the whole community, but 
there was limited evidence of enterotypes in genetically 
diverse mouse cohorts [29]. The work presented here 
comprehensively characterized gut microbiome com-
position, functions, and metabolic pathways in the Ath-
HMDP mouse cohort. In this population, we identified 
three enterotypes dominated by different phyla includ-
ing Firmicutes, Bacteroidetes, and Verrucomicrobia. We 
also found that the enterotypes were associated with 
bacterial taxa (Firmicutes and Bacteroidetes CAGs) and 
microbial functions (starch and sugar metabolism). The 
Bacteroidetes CAG included key drivers for these asso-
ciations from Muribaculaceae, the most abundant family 
in mouse gut [23].

Using genetic mapping, we identified host genomic loci 
associated with bacterial taxa, functions, and pathways, 
and two of these loci were associated with enterotypes. 
The genetic variant rs31001780 (A/G) at the Chr3 locus 
was significantly associated with Firmicutes and Bac-
teroidetes enterotypes and genetic variant rs31965376 
(A/T) at the Chr1 locus was significantly associated 
with the Verrucomicrobia enterotype. Importantly, the 
expression level of the Amy1 gene, which spans in the 
LD region of the Chr3 locus, was significantly correlated 
with Lachnospiraceae and Muribaculaceae abundances. 
Given the same starch content, genetic variants of the 
Amy1 gene may allow different carbohydrate accessibility 
for gut microbiota and shape the different enterotypes. 
In humans, individuals with higher salivary amylase 
gene (AMY1) copies show higher levels of many gen-
era within the Firmicutes in the gut [15], which aligns 
with our results in mice (i.e., Amy1 gene expression is 
positively associated with Firmicutes abundance). We 
reasoned that the differences in sugar and starch metabo-
lism between Firmicutes and Bacteroidetes CAG species 
may explain how genetic amylase locus variants shaped 
the enterotypes in the mouse gut. Previous work showed 
that mice treated with acarbose, which inhibits amylase 
activity, have an increased abundance of the Muribacu-
laceae family in gut [30–32]. Members of this family pos-
sess starch utilization genes [31]. Consistent with these 
findings we found Muribaculaceae were more abundant 
in low amylase gene copy number mice. This is a different 
amylase gene than the one that was identified to be asso-
ciated with gut microbiome in humans (salivary amylase 
gene AMY1) [15, 33]. We found salivary (Amy1) amylase 
gene expression level and pancreatic (Amy2) amylase 
gene copy number were associated with gut microbiome. 
Both salivary and pancreatic amylases would impact 

carbohydrate availability and potentially influence the gut 
microbiome; thus, loss-of-function mouse experiments 
are needed to directly test the effects of each amylase on 
the gut microbiome.

MR analysis showed that the Firmicutes and Bacteroi-
detes enterotypes represented by the microbial functions’ 
PC1 were associated with increased liver fibrosed area 
and HDL cholesterol levels. Previous studies showed that 
gut microbiome partially explained variations of plasma 
triglyceride and HDL cholesterol levels in humans [34]. 
Another study showed that a high-fat diet increased flag-
ellated bacteria in the gut, which increased apolipopro-
tein A1 (ApoA1) production and HDL cholesterol levels 
in mice [35]. MR seeks to infer causal effects of modifia-
ble exposure using measured variation in genes of known 
function. Successful applications of MR in humans have 
revealed relationships between gut microbiome and 
other molecular traits, including blood metabolites [36], 
short-chain fatty acids [37], and host metabolic traits 
[38, 39]. To the best of our knowledge, our study is the 
first MR application of gut microbiome in a genetically 
diverse mouse cohort. Furthermore, our MR results 
provide evidence for the potentially causal relationship 
between gut flagellated bacteria and plasma HDL cho-
lesterol levels. However, the sample size in this study is 
smaller than that in large-scale human studies, which 
often include thousands of participants. Therefore, fur-
ther research with larger sample sizes will be necessary 
to validate these findings. Additionally, follow-up studies 
will need to be conducted to test this causal relationship 
in mice directly.

We found genetic variants at the amylase gene locus 
were not only associated with Muribaculaceae but also 
associated with Lachnospiraceae, a family contain-
ing many flagellated bacteria. We further reasoned that 
the amylase gene copy number could perhaps indirectly 
affect the abundance of flagellated bacteria because of 
lacking starch degradation functions. Interestingly, pre-
vious work showed that treatment with acarbose atten-
uates experimental non-alcoholic fatty liver disease 
[40] and non-alcoholic steatohepatitis in mice [41]. The 
causal role of flagellated bacteria and the mechanism by 
which it might exacerbate liver fibrosis warrant further 
investigation.

A recent study showed that bacteria flagellin gene vari-
ants from Lachnospiraceae family were associated with 
differential TLR5 activation [26]. We also found that vari-
ants in the nD1 TLR5 epitope motif in the fliC gene were 
associated differently with host physiology phenotypes, 
including atherosclerotic lesions. This underscores the 
importance of bacterial genetic variation in gut micro-
biome association studies. Recent studies have linked 
bacterial SNPs in the human gut microbiome with host 
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phenotypes [42], but investigations of bacterial SNPs in 
the mouse gut microbiome have been limited by a lack of 
host genetic diversity. We demonstrate here that using a 
genetically diverse cohort of mice, such as the HMDP, is a 
effective approach for uncovering gene-level microbiome 
associations with the host.

Together, this work highlights how host genetics can 
shape different microbial enterotypes in the mouse gut 
and identifies potential candidate host genes involved. 
The presented results also suggest that the microbial 
enterotype-associated functions and pathways that are 
the consequence of host genetic variantion may influence 
host cardio-metabolic phenotypes.

Methods
HMDP mouse cohort
Male and female mice from the F1 Ath-HMDP panel 
were maintained in a temperature and humidity-con-
trolled environment under a 12-h light/dark cycle (lights 
on at 6:00 and off at 18:00). Mice were housed by strain. 
All mice were fed a high-fat diet (33 kcal % fat from cocoa 
butter) supplemented with 1% cholesterol (Research 
Diets D10042101) for 16 weeks. Cecal contents were col-
lected immediately after the animals were euthanized. 
Among the 918 animals generated for the original study, 
356 mice had cecal samples available for metagenomic 
sequencing. Clinical phenotypes for this cohort were 
described in a previous study [20].

Validation mouse cohort
Male A/J, C57BL/6  J, 129S1/SvImJ, NOD/ShiLtJ, NZO/
HLtJ, and CAST/EiJ mice were maintained in a tem-
perature and humidity controlled environment under a 
12-h light/dark cycle (lights on at 6:00 and off at 18:00). 
Mice were single housed. All mice were fed a high-car-
bohydrate and low-fat diet (Envigo Teklad TD.200339) 
for 12 weeks. Cecal contents were collected immediately 
after the animals were euthanized.

Metagenomic sequencing
Cecal DNA was extracted from individual mice using 
the PowerSoil DNA Isolation Kit. DNA concentration 
was verified using the Qubit® dsDNA HS Assay Kit (Life 
Technologies, Grand Island, NY). Samples were pre-
pared using the Illumina NexteraXT library prepara-
tion kit. The quality and quantity of the finished libraries 
were assessed using an Agilent bioanalyzer and Qubit® 
dsDNA HS Assay Kit, respectively. Libraries were stand-
ardized to 2 nM. Paired end, 150 bp sequencing was per-
formed using the Illumina NovaSeq6000. Images were 
analyzed using the standard Illumina Pipeline, version 
1.8.2. Low-quality reads were filtered out from raw DNA 
reads using Trimmomatic [43] (v.0.39) with parameters 

(SLIDINGWINDOW:4:20 MINLEN:50). To identify and 
eliminate host sequences, reads were aligned against the 
mouse genome (mm10/GRCm38) using Bowtie2 [44] 
(v.2.3.4) with default settings and microbial DNA reads 
that did not align to the mouse genome were identified 
using samtools (v.1.3; samtools view -b -f 4 -f 8). Samples 
with a total read depth of < 10 million were excluded from 
downstream analyses.

Profiling microbiome composition
Gut microbial taxon was profiled by MetaPhlAn4 pipe-
line (v.4.0.2) using the MetaPhlAn database (mpa_
vOct22) and the ChocoPhlAn pan-genome database 
(mpa_vOct22_CHOCOPhlAnSGB_202212) that con-
tains a collection of around 1 million prokaryotic 
metagenome-assembled genomes [45]. The taxonomy 
clades with average relative abundance > 0.01% and pre-
sent in at least > 20% of samples were kept as micro-
bial taxons for downstream analyses. The unclassified 
SBG taxa were further annotated to the Genome Tax-
onomy Database (GTDB) using mpa_vOct22_CHOC-
OPhlAnSGB_202212_SGB2GTDB.tsv data from the 
MetaPhlan4 pipeline.

Profiling microbiome function and pathway
Quantification of microbial genes was done by aligning 
clean paired-end reads to a previously published mouse 
gut microbiome non-redundant gene catalog [19] using 
Bowtie2 [44] (v.2.3.4) and default parameters. RSEM [46] 
(v.1.3.1) was used to estimate microbial gene abundance. 
The relative abundance of microbial gene counts per mil-
lion (CPM) was calculated using microbial gene expected 
counts divided by gene effective length and then nor-
malized by the total sum. To obtain abundance informa-
tion for microbial functions, the CPM of genes with the 
same KEGG orthologous (KO) annotation was summed 
together. In case there were multiple KO annotations for 
a single gene, we used all KO annotations. Gut microbial 
pathways were profiled using the HUMAnN3 pipeline 
(v.3.0.0), the MetaPhlAn database (mpa_v20_m200), the 
ChocoPhlAn pan-genome database (v296_v201901b), 
and the UniRef90 protein database [47] (v.0.1.1). Path-
ways with average relative abundance > 0.01% detected 
in at least > 20% samples were used for downstream 
analyses.

Enterotype clustering and microbial co‑abundance groups
Gut microbiome data was clustered using partitioning 
around medoid (PAM) clustering via pam() function 
from the R package cluster (v.2.1.2). The Bray–Curtis 
dissimilarity matrix of 166 bacteria species abundance 
was used for PAM clustering. The optimal cluster num-
ber was estimated using the Calinski–Harabasz index via 
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pamk() function from R package fpc (v.2.2–13). In addi-
tion, we tested different parameters k using the pam() 
function, and the optimal cluster number k = 3 gave the 
highest average silhouette width value. The dominant 
phylum in each cluster was determined by the highest 
abundant taxon compared to other clusters. Similarity 
scores between species were calculated using CCREPE 
(compositionality corrected by renormalization and per-
mutation) package [48] (v.1.1.3). The species network was 
visualized using ggnet2() function from R package ggnet 
(v.0.1.0).

Metagenome‑assembled genome
Shotgun sequencing reads were assembled for all 356 
samples using SPAdes [49] (v.3.15.5; metaspades.py 
-k 21,33,55,77), the assembled contigs were quanti-
fied by mapping shotgun reads to contigs using Bow-
tie2 (v.2.3.4). Contigs that were less than 500 bp were 
excluded for downstream analyses. Contigs were then 
binned into MAGs using MetaBAT2 [50] (v.2.17). The 
quality of all MAGs was assessed by genome complete-
ness and contamination using CheckM [51] (v.1.2.2), and 
high-quality MAGs were kept (completeness > 90% and 
contamination < 5%). The high-quality MAGs were derep-
licated using dRep [52] (v.3.5.0; -pa 0.9 -sa 0.99). The final 
dataset contains 436 MAGs. To quantify the abundance 
of each MAG in each sample, shotgun reads from each 
cecal sample were mapped to MAGs using Bowtie2 [44] 
(v.2.3.4) and RSEM [46] (v.1.3.1). Taxonomic assignments 
of these 436 MAGs were using the Genome Taxonomy 
Database Toolkit (GTDB-Tk [53]; v.2.3.2) and the GTDB 
database (ver. R214). Genes from MAGs were predicted 
using Prodigal [54] (v.2.6.3) and annotated to the KEGG 
Orthology database using kofamscan [55] (v.1.3.0) and 
annotated to carbohydrate-active enzymes (CAZymes) 
database using dbcan3 [56] (v.4.1.4) and database 
“dbCAN3_db_v12_20240415”. PULs were identified fol-
lowed by previous study [57], by combining marker genes 
(SusC-SusD), CAZyme annotation, and operon structure.

Genome‑wide association of gut microbiome
The mouse diversity genotyping array was used for geno-
typing and gave approximately 450,000 SNPs. SNPs used 
for each trait were filtered by the following criteria: the 
minor allele frequency (MAF) > 5% and missing genotype 
frequency < 10%. GWAS analysis was performed using 
FaST-LMM [58] (Python v.3.7.4). When testing SNPs 
on chromosome N, all SNPs from other chromosomes 
besides N were used for kinship matrix construction, 
that is the leave out one chromosome (LOOC) approach. 
The kinship matrix was used in the regression model (the 
argument “K0” from fastlmm algorithm). Any bias from 
measuring different numbers of mice for a given trait was 

accounted for by the kinship matrix. Sex was used as a 
covariate in the regression model. All individual mice 
were included in the GWAS regression model. GWAS 
significance thresholds were determined by permuta-
tion tests [20]. A genome-wide significance threshold of 
P < 4 ×  10−6 was used. We defined a study-wide signifi-
cance threshold of P < 4 ×  10−6/(2127 + 108 + 300) = 1.5
8 ×  10−9. Broad sense heritability for each trait was esti-
mated using “repeatability()” function from “heritability” 
(v.1.3) R package. Narrow sense heritability for each trait 
was calculated using all filtered SNPs to estimate the pro-
portion to explain total variations for each trait.

MR analysis
Bidirectional MR analyses were performed to first test if 
microbiome traits causally affect a host phenotype and 
then test if the host phenotypes can causally affect the 
microbiome traits. We identified independent genetic 
variants with P < 1 ×  10−4 as instrument variables in MR. 
We carried out an inverse variance weighted (IVW) test 
using R package TwoSampleMR [59] (v.0.5.6). Egger 
regressions were performed for analyses with more than 
two instrument variables available to test sensitivity and 
horizontal pleiotropy.

Amylase gene copy number analysis
Digital PCR (dPCR) was used to experimentally deter-
mine Amy1 and Amy2 gene copy numbers. dPCR was 
run on the Applied Biosystems QuantStudio Absolute 
Q digital PCR system using Absolute Q DNA Digital 
PCR Master Mix. The Tfrc gene was used as a control 
(TaqMan Copy Number Reference Assay, mouse). Prim-
ers and probes targeting exon 5 of the Amy1 gene 
(Applied Biosystems TaqMan Copy number assay, assay 
ID Mm00085061_cn) were used to determine the Amy1 
gene copy number. Primers and probes for the Amy2 
gene were described in a previous study [14]. One micro-
liter of DNA was added per reaction. Data was collected 
and analyzed by the QuantStudio Absolute Q digital PCR 
system software.

Data and statistical analysis
All data integration and statistical analysis were per-
formed in R (v.3.6.3). Differences between groups were 
evaluated using an unpaired two-tailed Wilcoxon signed-
rank test. Enrichment analysis was performed with 
Fisher’s exact test using a custom R function. Correla-
tion analysis was performed with two-sided Spearman’s 
correlation using the R function ‘cor.test()’. For multiple 
testing, the Benjamini–Hochberg false discovery rate 
(FDR) procedure was used to adjust P values. Data inte-
gration was performed using R packages dplyr (v.1.0.6), 
tidyr (v.1.1.3), reshape2 (v.1.4.4), and data.table (v.1.14.0). 
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Heatmaps were generated using the R package pheatmap 
(v.1.0.12). Other plots were created using the R packages 
ggplot2 (v.3.3.3).

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40168- 025- 02093-y.

Additional file 1. Supplementary Fig. 1 Gut microbiota composition 
and top bacteria species in Ath-HMDP mouse cohort. A. The relative 
abundance of microbiota composition at phyla level in Ath-HMDP 
mouse cohort consuming a high fat diet (33 kcal % fat from cocoa but-
ter) supplemented with 1% cholesterol (Research Diets D10042101) for 
16 weeks. B. The relative abundance of top 50 abundant bacteria species 
and their prevalence in Ath-HMDP mouse cohort. Supplementary Fig. 2 
Gut microbial species and functions and their correlations with three 
enterotype phyla. A. PCoA showing community-level difference among 
mice in the cohort. Three major phyla show large inter-individual variation 
and stratify the mouse samples. B. PCA visualizing the microbial functions 
in the cohort. Three major phyla show large inter-individual variation and 
stratify the mouse samples. C. Spearman’s correlation between microbial 
functions’ PC1 with abundance of Firmicutes, Verrucomicrobia and 
Bacteroidetes. D. Spearman’s correlation between microbial functions’ 
PC2 with abundance of Firmicutes, Verrucomicrobia and Bacteroidetes. 
Supplementary Fig. 3 Genetic associations of gut microbial traits in Ath-
HMDP mice. Genetic associations of gut microbial functions, metabolic 
pathways and species abundance. The density of associated gut bacterial 
functions in the mouse genome is showed on the top. Dashed lines 
represent significance thresholds determined by permutation tests 
(P < 4 × 10–6). Supplementary Fig. 4 Amy1 gene expression level correlates 
with microbial enterotypes and associated species. A. Spearman’s correla-
tion between candidate genes (Amy1, Rnpc3, Col11a1 and Olfm3) in Chr3 
locus with microbial functions’ PC1 and PC2. B. Spearman’s correlation 
between candidate genes (Amy1, Rnpc3, Col11a1 and Olfm3) in chromo-
some 3 locus and abundances of Muribaculaceae and Lachnospiraceae 
families. Supplementary Fig. 5 Host genomic loci are associated with gut 
A. muciniphila abundance. A. Genomic locus at Chr1 193–194 Mbp are 
associated with Akkermansia muciniphila abundance. The lead SNP is 
rs31965376. Dashed lines represent significance thresholds determined 
by permutation tests (P < 4 × 10–6). B. Mice with allele AA or TT at SNP 
rs31965376 visualized in PCoA of species beta-diversity (left) and functions 
beta-diversity (right). C. Relative abundance of Firmicutes, Bacteroidetes, 
and Verrucomicrobia from mice with AA or TT at SNP rs31965376. D. Num-
ber of mice with AA or TT at SNP rs31965376 in each of three enterotypes. 
Statistical difference between groups was tested by unpaired two-tailed 
Wilcoxon signed-rank test. Supplementary Fig. 6 Bacterial starch and 
sugar metabolism is associated with microbial enterotypes’ species. A. Top 
bacterial pathways significantly and oppositely associated with Firmicutes 
CAG and Bacteroidetes CAG (adjusted P < 0.05). B. Spearman’s correlation 
between bacterial species and bacterial functions involved in starch and 
sugar metabolism. Bacterial species from Firmicutes CAG and Bacte-
roidetes CAG showed opposite associations. C. Spearman’s correlation 
between the number of PUL in 31 Muribaculaceae MAG and the cor-
relation coefficient of corresponding MAG’s abundance with Amy1 gene 
expression levels; The value in x axis represents how strong, positively or 
negatively, a MAG is associated with Amy1 gene expression, the value in 
y axis represents how many PULs in that MAG. D. Spearman’s correlation 
between the number of PUL that contain GH13 gene in 31 Muribacu-
laceae MAG and the correlation coefficient of corresponding MAG’s 
abundance with Amy1 gene expression levels. Supplementary Fig. 7 
Summary of host metabolic phenotypes in Ath-HMDP. Boxplots show the 
distribution of data for each host metabolic phenotype in the Ath-HMDP 
population. The coefficient of variation (CV) for each phenotype was cal-
culated. Supplementary Fig. 8 Scatter plots of SNP effect on exposure and 
outcome. A. Microbial functions’ PC1 as exposure and plasma HDL choles-
terol as outcome. B. Microbial functions’ PC1 as exposure and liver fibrosed 
area as outcome. Supplementary Fig. 9 Bacterial flagellar assembly genes 
are associated with microbial enterotype species. A. Enrichment analysis 

using Fisher’s exact test for gut bacterial functions mapping at the hotspot 
locus on Chr3: 112–116 Mbp. B. Spearman’s correlation between bacterial 
species and bacterial functions involved in flagellar assembly. Bacterial 
species from Firmicutes CAG and Bacteroidetes CAG showed opposite 
associations. Supplementary Fig. 10 Lachnospiraceae family is associ-
ated host amylase gene copy number and host metabolic phenotypes. 
A. Relative abundance of the Lachnospiraceae family across six mouse 
strains fed a high carbohydrate diet and its correlation with host amylase 
gene copy number. B. Bidirectional MR analysis between host metabolic 
traits and gut bacterial flagellin gene abundance. MR beta effect sizes 
using gut bacterial flagellin gene abundance as exposure and host 
metabolic traits as outcome. C. MR beta effect sizes using host metabolic 
traits as exposure and gut bacterial flagellin gene abundance as outcome. 
Supplementary Fig. 11 Gut bacterial flagellin gene association with host 
phenotypes. A. Spearman’s correlation between host metabolic traits and 
gut bacterial flagellin gene abundance. B. Spearman’s correlation between 
host metabolic traits and most abundant individual gut bacterial flagellin 
gene abundance from Lachnospiraceae and Desulfovibrionaceae family. 
The flagellin gene sequences were aligned and conserved motifs were 
identified

Additional file 2. Supplementary Table 1. Summary of host physiologic 
traits and gut metagenome in Ath-HMDP mice. Host cardio-metabolic 
phenotypes in Ath-HMDP mice were obtained from previous studies. Gut 
metagenomes were characterized from 356 Ath-HMDP mice, encom-
passing 90 strains (190 male mice and 166 female mice). Supplementary 
Table 2. Gut microbiome traits in the Ath-HMDP mice using MetaPhlAn4. 
Supplementary Table 3. Spearman’s correlation between the microbial 
functions’ PC1 and bacteria species. Supplementary Table 4. Spearman’s 
correlation between the microbial functions’ PC2 and bacteria species. 
Supplementary Table 5. Ath-HMDP MAG summary and annotation. Sup-
plementary Table 6. SNP information for top enterotype associated SNPs. 
Supplementary Table 7. High-carbohydrate diet used in amylase validation 
experiment. Supplementary Table 8. Instrument variables used in MR 
analysis and Egger regressions test for sensitivity and horizontal pleiotropy.
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