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Abstract 

Background  Alterations in the composition and function of the intestinal microbiota have been observed in organ‑
ismal aging across a broad spectrum of animal phyla. Recent findings, which have been derived mostly in simple 
animal models, have even established a causal relationship between age-related microbial shifts and lifespan, sug‑
gesting microbiota-directed interventions as a potential tool to decelerate aging processes. To test whether a life-long 
microbiome rejuvenation strategy could delay or even prevent aging in non-ruminant mammals, we performed 
recurrent fecal microbial transfer (FMT) in mice throughout life. Transfer material was either derived from 8-week-
old mice (young microbiome, yMB) or from animals of the same age as the recipients (isochronic microbiome, iMB) 
as control. Motor coordination and strength were analyzed by rotarod and grip strength tests, intestinal barrier func‑
tion by serum LAL assay, transcriptional responses by single-cell RNA sequencing, and fecal microbial community 
properties by 16S rRNA gene profiling and metagenomics.

Results  Colonization with yMB improved coordination and intestinal permeability compared to iMB. yMB encoded 
fewer pro-inflammatory factors and altered metabolic pathways favoring oxidative phosphorylation. Ecological inter‑
actions among bacteria in yMB were more antagonistic than in iMB implying more stable microbiome communities. 
Single-cell RNA sequencing analysis of intestinal mucosa revealed a salient shift of cellular phenotypes in the yMB 
group with markedly increased ATP synthesis and mitochondrial pathways as well as a decrease of age-dependent 
mesenchymal hallmark transcripts in enterocytes and TA cells, but reduced inflammatory signaling in macrophages.

Conclusions  Taken together, we demonstrate that life-long and repeated transfer of microbiota material from young 
mice improved age-related processes including coordinative ability (rotarod), intestinal permeability, and both meta‑
bolic and inflammatory profiles mainly of macrophages but also of other immune cells.
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Introduction
Organismal aging is accompanied by gradual physiologi-
cal changes leading to a functional decline of almost all 
organ systems. There is evidence highlighting certain 
molecular hallmarks of aging such as genomic instability, 
telomere attrition, and mitochondrial dysfunction [1]. On 
the cellular level, senescence and stem cell exhaustion are 
among the major mechanisms that impair the function-
ality of organs and ultimately contribute to organismal 
death as an inevitable outcome of life [1]. Aging processes 
are not only determined by chronological time but also 
influenced by a complex interplay of genetic, epigenetic, 
environmental, and lifestyle factors [2]. While the passage 
of years indisputably plays a role in the aging of biologi-
cal systems, the rate and manifestation of aging can vary 
significantly among individuals. Environmental factors 
including hygiene and nutrition also play a crucial role in 
shaping the trajectory of individual aging [3–5]. All these 
environmental factors impact on composition and func-
tion of the microbiome, the sum of associated microor-
ganisms. Microbiome composition changes with age with 
conflicting reports of increased diversity in the elderly 
[6], possibly indicating a loss of control mechanisms, 
but also of reduced diversity [7–9], which is associated 
with numerous diseases [10]. Microbiota transfer experi-
ments in killifish indeed demonstrated that the transfer 
of a young microbiome to middle-aged fish could extend 
lifespan [11]; however, direct proof for a causal role of 
aging-related microbiota changes on aging in mammals 
is limited. Two initial studies in mice revealed that trans-
fer of an old microbiome in young mice increased the 
inflammatory tone [12] and that transfer of a microbiome 
from young to old mice could improve behavioral deficits 

and brain function [13–15], yet life-long interventions 
have not yet been attempted. We hypothesized that 
repeated transfers of a microbiome from young individu-
als throughout life may potentiate beneficial effects com-
pared to a singular intervention and delay the organismal 
aging process. We hence conducted a microbiome inter-
vention experiment by colonizing mice during their nor-
mal aging process recurrently every 8 weeks with either 
a fecal microbial transfer (FMT) of the young microbi-
ome (yMB) or by FMT of unrelated mice of the same age 
(isochronic microbiome, iMB) throughout their lifespan 
(Fig. 1). We monitored the host’s physiological responses 
from an organismal down to a cellular level using single-
cell RNA sequencing along with the microbial functional 
adaptations using fecal metagenomics. Our study not 
only provides evidence that a life-long intervention by 
FMT with intestinal microbiota from young mice inter-
feres with features related to aging including intestinal 
barrier integrity and inflammaging, but also delivers 
a comprehensive overview of the molecular and func-
tional changes in the intestinal mucosa and associated 
microbiome.

Results
Life‑long microbiome rejuvenation affects physiological 
parameters and intestinal barrier function in mice
To test whether a microbiome rejuvenation strategy can 
improve or even delay aging-related features, we recur-
rently colonized mice during their normal aging process 
every 8 weeks with either a young microbiome (yMB) or 
with an isochronic microbiome (iMB) of unrelated mice 
of the same age (Fig.  1). Each colonization cycle con-
sisted of a short antibiotic treatment to condition the 

Fig. 1  Schematic representation of microbial rejuvenation experiment. Eight-week-old male C57BL6/J wildtype mice (n = 40) were aged 
until 120 weeks of age and every 8 weeks mice (n = 20 per group) received a microbial transfer from unrelated wildtype mice being either of the 
same age as the recipients (isochronic microbiome transfer—iMB) or being 8-week-old (young microbiome transfer—yMB) with the goal 
to rejuvenate the aging recipient mice with a young microbiome. Mice were monitored throughout the experiment and extensively 
phenotyped at final analysis by functional and behavioral tests (rotarod, grip strength, intestinal barrier function, glucose homeostasis). 
Furthermore, colonic and small intestinal tissue were subjected to bulk and single-cell transcriptome sequencing, and fecal samples collected 
throughout the experiment were subjected to 16S rRNA amplicon sequencing and metagenomics
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intestinal tract for recolonization with the target micro-
biome. Fecal microbiome transfer was performed using 
oral gavage. During the first treatment cycles the mice 
expectedly experienced transient weight loss episodes 
[16–18] from which they quickly recovered once anti-
biotics were stopped. The transient weight loss dimin-
ished with each successive cycle, likely attributed to the 

animals acclimating to the experimental procedure. The 
animals continued gaining additional weight during 
physiological growth (Fig.  2A). Weight curves between 
groups remained similar until week 80 when yMB mice 
started displaying a higher body weight than iMB mice, 
which remained significant until the end of the experi-
ment at week 120 (p = 0.0025 from Mann–Whitney test 

Fig. 2  Microbial rejuvenation improves several host physiological traits. A Weight development. Grey areas denote phases of recurrent microbiome 
treatments. B Survival curve. C Blood glucose measurements during intraperitoneal glucose tolerance test (ipGTT) including area under the curve 
(AUC) summary. n = 5–6 per group. D yMB performed better in RotaRod performance test. *p < 0.05. n = 8–11 per group. E Grip strength 
as measured using a metal grid. n = 8–11 per group. F FITC dextran quantified in serum from vena cava 1 h after oral gavage. n = 5–6 per group. G 
Reduced LPS levels in vena cava serum of rejuvenated yMB mice. **p < 0.01. n = 7 per group
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of the area under curve [AUC] of weeks 80–120). At 
week 120 the experiment had to be stopped as a large 
proportion of iMB mice quickly died (Fig.  2B) suggest-
ing an extended lifespan in yMB mice although it did 
not reach formal statistical significance (p = 0.067 from 
Log-rank/Mantel-Cox test) due to the low number of 
remaining animals. At the end of the experiment, an 
intraperitoneal glucose tolerance test (ipGTT) was per-
formed to monitor glucose homeostasis as alterations in 
glucose metabolism associated with aging in humans due 
to impairments in insulin secretion and action [19]. Our 
data clearly shows that microbiome rejuvenation did not 
alter glucose homeostasis in mice as blood glucose lev-
els did not differ between yMB and iMB (p = 0.2684 from 
Mann–Whitney test of AUC, Fig. 2C) which is congruent 
with published reports noting differences between mice 
and human among glucose metabolism in aging [20]. To 
survey the coordinative ability and strength of the mice, 
a rotarod and a grip strength test were performed. yMB 
mice managed to remain longer on the rotating rod than 
iMB mice (p = 0.0385 from Mann–Whitney test, Fig. 2D), 
thus indicating that microbiome rejuvenation improved 
coordination. In contrast, the force required to detach 
mice from the grid did not differ between the treatment 
groups (p = 0.5999 from Mann–Whitney test, Fig.  2E), 
thus indicating that microbiome rejuvenation did not 
impact muscle function as assessed by grip strength. 
Finally, we analyzed intestinal barrier function, as leaking 
microbial antigens have been postulated to cause chronic 
low-grade inflammation and thereby contribute to the 
aging process [12, 13]. We orally gavaged FITC-labeled 
dextran and then quantified serum fluorescence. yMB 
mice trended towards lower serum FITC levels yet did 
not reach statistical significance due to low sample count 
(p = 0.1234 from Mann–Whitney test, Fig.  2F). Using 
the Limulus amebocyte lysate (LAL) assay we found that 
yMB had significantly reduced serum LPS levels com-
pared to iMB mice (p = 0.0056 from Mann–Whitney test, 
Fig. 2G). These data indicate that microbiome rejuvena-
tion improved intestinal barrier function leading to fewer 
leaked bacterial antigens.

Restoration of metabolic activities in the rejuvenated 
microbiome
We next analyzed the temporal dynamics of the fecal 
microbiota throughout the rejuvenation experiment 
using 16S rRNA gene amplicon and metagenomic 
sequencing. Overall, the natural aging process of the 
host had the most significant impact on longitudinal 
microbiome changes in both treatment groups (Fig. 3A). 
However, the microbiome composition in the yMB inter-
vention samples remained more similar to the initial 
young microbiomes (baseline, 8-weeks-old) than in iMB, 

as indicated by a lower Bray–Curtis distance, particularly 
at later timepoints (Fig. 3B). On a taxonomic level a few 
differences could be detected between yMB and iMB-
treated mice, for example, for Akkermansia and Lacto-
bacillus, both of which have been associated with healthy 
aging. The relative abundance of Akkermansia was 
increased whereas that of Lactobacillus was decreased in 
yMB compared to iMB-treated mice, especially toward 
the end of the experiment (Fig.  3C). Next, we inferred 
the adaptations in functional metabolic capacities of 
the microbial communities (KEGG orthologs) during 
aging and the rejuvenation intervention using the HMP 
Unified Metabolic Analysis Network (Humann3) from 
fecal metagenomic sequencing data. The effect of aging 
on microbiome reaction abundances differed in iMB as 
compared to yMB. Overall, 334 aging-dependent meta-
bolic features (KEGG orthologs) were identified, of 
which the largest proportion (n = 263, ~ 80%) displayed 
an inverse age-dependent direction in yMB as compared 
to iMB, meaning upregulated features in yMB (old ver-
sus young) were found downregulated in iMB and vice 
versa. This indicates a reversal of age-related changes 
due to microbial rejuvenation (Fig. 3D, grey datapoints). 
The remaining metabolic features displayed concord-
ant aging-dependent changes in both treatment groups 
with 35 features being upregulated in old versus young 
mice (Fig.  3C, red datapoints) and 36 being downregu-
lated in both iMB and yMB (Fig.  3D, blue datapoints). 
Together, this indicates that age-dependent changes 
were less pronounced in yMB and thus a decelerated 
microbiome aging. An enrichment analysis among all 
age-associated metabolic features highlighted 19 bac-
terial pathways, all of which were more altered during 
aging in yMB mice compared to iMB mice (Fig. 3E and 
Table  S1). Twelve bacterial pathways were positively 
associated with aging in yMB (i.e. showing a greater age-
related change) but negatively associated with aging in 
iMB including, for example, peptidoglycan biosynthe-
sis, nicotinate and nicotinamide metabolism, thiamine 
metabolism, and oxidative phosphorylation (Fig.  3E). 
Seven additional metabolic bacterial pathways such as 
purine metabolism, biosynthesis of cofactors or pheny-
lalanine and tyrosine and tryptophan biosynthesis were 
negatively associated with aging but less pronounced in 
yMB (Fig. 3E and Table S1). Next, we modeled ecological 
relationships between pairs of bacterial species via flux 
balance analysis, as metabolite exchange is considered a 
keystone feature of a healthy and functional microbiome 
[21]. Antagonistic microbe-microbe interactions, which 
are considered a stabilizing factor for ecological commu-
nities [22–25], were significantly more abundant in the 
yMB-treated group than in iMB mice (Fig. 3F), thus hint-
ing towards a more stable and interacting microbiome 
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Fig. 3  Microbiome rejuvenation reverts various age-associated microbial metabolic functions. A Constrained β-diversity plot of yMB and iMB 
microbiomes over time as determined by 16S rRNA gene amplicon sequencing. B Bray–Curtis distances from the baseline microbiome 
configuration (week 8) are smaller in yMB compared to iMB. A greater Bray–Curtis distance indicates more dissimilar microbiome compositions. 
C Relative abundance of the genera Akkermansia and Lactobacillus. D The majority of metagenome-derived metabolic functions (Humann3) had 
an inverted linear dependence on host age in yMB and iMB. E Pathway enrichment of those metabolic functions revealed distinct aging patterns 
for yMB and iMB. The aging effect in yMB is reduced, i.e. slowed down, in all enriched processes or even inverted for 12 out of 19 metabolic 
pathways. F Increased stabilizing antagonistic predicted microbe-microbe interactions in aged yMB compared to iMB mice
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community in microbially rejuvenated mice, which are 
key features of a healthy host-microbiome ecosystem 
[26]. Altogether, these data therefore suggest that the 
rejuvenated microbiome in yMB mice provided ben-
eficial metabolic functions to the host and thereby may 
contribute to delaying physiological processes associated 
with aging.

Global transcriptional changes in the colon of rejuvenated 
mice
To get insights into the molecular changes in the intesti-
nal mucosa, we performed bulk RNA sequencing of the 
ileum (Fig. S1) and colon (Fig. 4) tissue. Samples collected 
from 11 mice per treatment group were analyzed. We 
focused on two time points comprised of 40 weeks (40w) 
of age and the final time point of ~ 120 weeks (final). We 
first compared the transcriptional signatures between 
samples through a principal component analysis (PCA) 
and correlated them with the sample metadata (Fig.  4A 
and Fig.  S1A). PC1 separated the two time points, 
40 weeks and final, and explained 30.10% of the total var-
iance. PC2 explained 12.95% of the total variance but it 
was driven mainly by the depth of the sample libraries, 
while PC3 was the component most related to the separa-
tion of the samples by treatment, explaining 8.57% of the 
total variance (Fig.  S2). We calculated the gene expres-
sion changes that most contributed to variance using a 
variance partition analysis. Most variance was explained 
not by the model (outliers, timepoint, or treatment) but 
by the residuals (Fig. 4B and Fig. S1B). However, we iden-
tified 697 genes, whose expression was related to either 
yMB or iMB intervention independent of timepoints. We 
separated these genes into up- or downregulated in yMB 
versus iMB treatment and performed an enrichment 
analysis to identify the overarching molecular patterns 
characteristic of yMB intervention (Fig.  4C, Table  S2). 
Within the top 25 enriched terms, we identified mito-
chondrial gene expression, regulation of inflammatory 
response, and macroautophagy among the downregulated 
terms of yMB, while epithelial cell development, ribosome 

biogenesis, and lymphocyte proliferation were character-
istic of upregulated genes in yMB-treated mice. In sum-
mary, the analysis indicated profound changes in colonic 
gene expression along with the different treatment 
groups, which however may originate from different cel-
lular composition or changes in cellular functional states.

Cell type‑specific responses to a young microbiome
We next aimed to map the global transcriptional effect 
of the microbiome rejuvenation intervention onto indi-
vidual cell types using single-cell RNA sequencing. We 
used three mice from each yMB and iMB treatment 
group from the final timepoint (120 weeks). In total, we 
sequenced 53,658 cells isolated from the epithelial layer 
and lamina propria of the distal small intestine of the 
aged yMB and iMB mice with an average of 8943 cells 
per mouse. Of these 53,658 cells, 27,412 were classified as 
epithelial cells, 19,449 as immune cells, and 6797 as stro-
mal cells. We firstly focused on the epithelial compart-
ment, where we annotated 10 cell types based on in-house 
and reference-based markers ( [27, 28]—see “ Methods” 
section for details) (Fig.  4D). Both iMB and yMB treat-
ments were represented in every cell type (Fig.  4E) and 
cell proportions did not differ significantly among treat-
ments due to high interindividual variance (Fig.  S3A). 
Shared and unique transcriptional states among epithe-
lial cells of the iMB and yMB-treated mice were anno-
tated and compared by a pairwise differential expression 
analysis to determine the differentially expressed genes 
(DEGs) characteristic of the yMB treatment for each 
individual cell type (Fig. 4F). Immature enterocytes, tran-
sit amplifying (TA) cells, and enteroendocrine cells dis-
played a higher number of downregulated DEGs in the 
yMB treatment, whereas enterocytes and goblet cells 
were characterized by a higher number of upregulated 
genes in the yMB treatment. Most of the DEGs were 
expressed by two or more cell types, but enterocytes had 
the most unique group of up- or downregulated genes 
(Fig.  4G). Next, we performed an enrichment analysis 
using the potential promoter sequences upstream of the 

Fig. 4  Transcriptional adaptations to the microbiome rejuvenation are specific to subtypes of intestinal epithelial cells. A–C Bulk RNA sequencing 
was performed on colon tissue of 40- and 120-week-old yMB and iMB mice. A Principal component plot. B Genes which expression changes 
contributed to the observed variance attributed to timepoint or treatment model. C Enriched functions among genes that were contributed 
to treatment explained variance. D–L Single-cell RNA sequencing of colonic samples of 120-week-old yMB and iMB mice. D Ten epithelial cell 
clusters were identified based on marker gene expression. E Treatment identity of all individual analyzed cells. F Number of up- and downregulated 
genes per epithelial cell type when comparing yMB vs iMB. G Shared and unique DEGs among epithelial cell types for up- and downregulated 
genes. H Transcriptional regulators enriched in upregulated DEGs. I Enriched functions for up- and downregulated genes (yMB vs iMB) 
in enterocytes, immature enterocytes, TA, and enteroendocrine cells. J Number and strength of predicted receptor-ligand interactions in yMB 
and iMB. K Outgoing and incoming ligand-receptor interaction strength of each epithelial cell type for iMB and yMB treatment. L Mesenchymal 
score reduced in yMB compared to iMB for multiple epithelial cell types indicating reduced EMT. M Reduced mesenchymal score in multiple colonic 
epithelial cells of 3- compared to 30-month-old mice of the tabula muris senis database [27, 28]

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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signature DEGs (only upregulated genes) of each epithe-
lial cell type aiming to identify significantly over-repre-
sented regulatory DNA motives and transcription factors 
that could be engaged by the microbiome rejuvenation 
(Fig. 4H). Among the yMB treatment, TFs that are essen-
tial for correct differentiation and repair of intestinal epi-
thelium were identified in enterocytes (Rxra, Nr1h4, and 
Hnf4a), TA cells (E2f3), Paneth cells (Gata4-5) and enter-
oendocrine cells (Creb1 and Atf2). We further expanded 
our analysis to both up- and downregulated genes in 
yMB and identified enriched GO terms of interest for 
each epithelial cell type (based on the top 25 terms sorted 
by lowest p-adjusted value—Fig.  4I, Table  S2). Down-
regulated genes of yMB intervention from enterocytes 
were enriched for mitochondrial gene expression (mul-
tiple Mrpl genes, e.g., 11, 15, and 20) and antimicrobial 
humoral immune response (Ccl25 and Reg3b) while the 
upregulated genes were enriched for fatty acid metabolic 
process (Fabp1 and Acsl1). For immature enterocytes, the 
downregulated genes of yMB were enriched for regula-
tion of GTPase activity and macroautophagy (Traf6, and 
Atg genes 12, 13, 2a, 2b, 4b, and 9a), while upregulated 
genes were enriched for purine nucleotide metabolic 
process (Acaa2 and Prdx5). For TA cells downregulated 
genes of yMB treatment were involved in mRNA and 
rRNA processing (multiple Rbm genes, e.g., 10, 14, and 
15b) while the upregulated genes were enriched also for 
mitochondrial ATP synthesis (multiple Cox genes, e.g., 
4i1, 5a, and 5b). Finally, in enteroendocrine cells down-
regulated genes of yMB were enriched for macroau-
tophagy (Traf6, and Atg genes 2b, 4d, and 16l2), and the 
upregulated genes were enriched for digestive system pro-
cess and lipid transport (Apoa1 and 4, and Fabp1 and 2). 
Thus, differential functions identified in the bulk RNA 
sequencing data could be validated and delineated to sin-
gle cell types. We further inferred ligand-receptor inter-
action differences between treatments by quantifying 
the signaling communication probability between paired 
cell groups using Cellchat [29]. For each treatment, we 
selected secreted and direct cell–cell contact signals 
to calculate the total number of interactions and their 
strength. This analysis identified an overall decrease in 
the number of interactions for the yMB intervention, yet 
the detected interactions were stronger (Fig. 4J) indicat-
ing a more focused transcriptional response after micro-
biome rejuvenation. All cell types contributed to the 
decrease in the number of interactions, but the increased 
strength of the observed interactions was mostly driven 
by immature enterocytes and TA cells (Fig. 4K). Finally, 
we investigated whether microbiome rejuvenation modu-
lates the epithelial–mesenchymal transition (a process 
of transdifferentiation of epithelial cells that is linked to 
wound healing but also carcinogenesis) by testing the 

propensity of epithelial cells to express signature mesen-
chymal genes (Vim, Ctnnb1, Fn1, Aifm2, Tgfb1, Tgfbr1, 
and Smad2-4). Enterocytes, immature enterocytes, TA, 
goblet and enteroendocrine cells from the yMB interven-
tion had significantly lower mesenchymal scores than 
iMB (Fig.  4L). Using the colon dataset of Tabula Muris 
senis we identified a significantly higher mesenchymal 
score in 30-month-old mice compared to 3-month-old 
mice (Fig. 4M), thus indicating that a transition to a more 
mesenchymal-like state is indeed a feature of old age, 
which could be reduced by our microbiome rejuvenation.

In addition to epithelial cells, we also queried the 
impact of microbial rejuvenation on the immune com-
partment. In total, 19,449 resident immune cells were 
identified, which were further annotated into 16 immune-
specific cell types (Fig.  5A, see “  Methods” section for 
the annotation markers). As for epithelial cells, microbi-
ome immune cell proportions did not differ significantly 
between yMB and iMB due to a high interindividual 
variation (Figs. 5B and 2B). Next, DEGs were calculated 
in yMB versus iMB treatments for each immune cell 
type (Fig. 5C, D). By far the most DEGs were identified 
in macrophages, with around 500 upregulated and 2900 
downregulated genes in yMB (Fig. 5C), then B cells and 
CD8+ T cells followed by approximately 500 DEGs. In 
this case, the vast majority of DEGs were unique to sin-
gle immune cell types (Fig.  5D). Enrichment analysis 
revealed that in macrophages macroautophagy (Traf6, 
and Atg genes 12, 13, 2a, 4b 4c, and 4d) and immune 
processes such as myeloid cell differentiation and regula-
tion of innate immune response (Stat genes 1, 3, 5a, and 
5b) were underrepresented, whereas antigen processing 
and presentation of exogenous peptide antigen via MHC 
class II, response to endoplasmic reticulum stress and 
intrinsic apoptotic signal (Fcer1g, Atf6b, and Tora1) were 
enriched under yMB treatment (Fig. 5E, Table S2). Simi-
lar to epithelial cells, also in immune cells the number of 
ligand-receptor interactions was decreased in yMB, yet 
in contrast, the interaction strengths were also reduced 
(Fig.  5F). Mainly macrophages and T cells contributed 
to the decreased number and diminished strength of 
interactions (Fig.  5G). We aimed to query the immu-
nomodulatory function of the microbiome interven-
tion by creating a module score based on the expression 
of genes that are associated with inflammation during 
aging: Tnf, Ifng, Il1b, Il2, Il6, Cxcl15, Ccl20, Ccl9, Ccr1, 
Nfkb1, Myd88, and Tlr6. This inflammatory score was 
significantly reduced in multiple immune cell types in 
yMB versus iMB intervention including macrophages, 
B cells, MAIT, Tregs, and NKT cells (Fig. 5H). Notably, 
in the Tabula muris senis spleen data, the inflammatory 
score was similarly reduced in B cells, macrophages, 
and mature NK T cells in 3-month-old mice compared 
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Fig. 5  Macrophages are the main responding immune cell type to microbial rejuvenation. Single-cell RNA sequencing of small intestinal 
lamina propria immune cells of 120-week-old yMB and iMB mice. A 16 immune cell clusters were identified based on marker gene expression. 
B Treatment identity of all individual analyzed cells. C Number of up- and downregulated genes per immune cell type. D Shared and unique 
DEGs among immune cell types for up- and downregulated genes (yMB vs iMB). E Enriched functions for up- and downregulated genes (yMB vs 
iMB) in macrophages, B, CD8 + T, and MAIT cells. F Number and strength of predicted receptor-ligand interactions in yMB and iMB. G Outgoing 
and incoming ligand-receptor interaction strength of each immune cell type for iMB and yMB treatment. H Reduced inflammation score in yMB 
compared to iMB in multiple immune cell-types indicating a lower inflammatory tone. I Reduced inflammation score in splenic immune cells 
of 3- compared to 30-month-old mice of the tabula muris senis database [27, 28] indicating an increased inflammation score as a sign of aging
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to 30-month-old mice (Fig. 5I), thus suggesting that the 
observed inflammatory score reduction in yMB indicates 
a rejuvenated profile.

Discussion
Aging is a biologic process that is characterized by grad-
ual molecular, cellular, and systemic changes leading to a 
decline of physiological functions in the organism over 
time [1]. Age-dependent changes in the intestinal micro-
biota have been linked to various physiological hallmarks 
of aging [12–15] and microbiome transfer experiments 
in fish even demonstrated a causal role in the aging pro-
cess [11]. However, life-long interventions have not yet 
been attempted in higher mammals such as mice. In our 
study, we therefore aimed to slow down the aging pro-
cess by employing a microbial intervention strategy that 
involved continuously introducing a young microbiome 
(yMB) into aging mice. We were particularly interested 
in how the microbiome would affect host physiology 
and intestinal cellular functions during aging. Microbial 
rejuvenation by recurrent yMB transfer improved sev-
eral organismal physiological traits along with metabolic 
properties of the intestinal microbiome and transcrip-
tional profiles of specific mucosal cell types, for exam-
ple by boosting energy metabolism in enterocytes but 
blocking pro-inflammatory immune responses in mac-
rophages. Continuous microbiome rejuvenation was able 
to delay physiological and molecular hallmarks of aging 
and ultimately improve organismal functions in mice.

Microbial control of host cellular aging and immune 
response
Aging hallmarks can be classified into physiological 
functions (e.g., nutrient uptake, coordinative ability, or 
strength) and “molecular” features (e.g., reduced energy 
metabolic reactions, mitochondrial dysfunction, or 
improper immune responses). The intestinal microbiota 
has been linked to many of these processes. Our find-
ings on intestinal barrier improvement and immune cell 
changes support previous research in which single colo-
nization of young GF mice with a microbiome of old but 
not young SPF (specific-pathogen-free) mice sufficed to 
induce a proinflammatory environment [12]. Similarly, in 
another study, single colonization of young GF mice with 
a microbiome of old SPF donor mice induced defects in 
the intestinal barrier [13] making it leakier for microbial 
antigens—a physiological trait that under chronic condi-
tions can lead to metabolic and inflammatory diseases. 
Therefore, the tightened intestinal barrier function in our 
yMB mice can be considered as a restored, healthier state 
[30], which is in line with reduced pro-inflammatory 
responses in the intestinal mucosa [31]. Coherent with 
the tightened intestinal barrier, the functional properties 

of the yMB group differed from iMB animals by pre-
senting a more juvenile and beneficial profile with an 
increased abundance of the health-promoting bacterium 
Akkermansia, which has been shown to enhance health- 
and lifespan in mice [32] and to improve metabolic 
parameters in humans [33]. However, in yMB mice we 
found reduced levels of the genus Lactobacillus, although 
several studies indicated health-promoting effects of Lac-
tobacillus paracasei HII01 [34] and Lactobacillus plan-
tarum TWK10 [35]. These seemingly conflicting findings 
might be due to strain differences and the genus Lactoba-
cillus encompasses many different strains. Furthermore, 
in line with the improved physiological parameters, the 
yMB microbiome encoded higher activities of folate and 
thiamine metabolism, which are established as being 
underrepresented in the elderly [36–39], but also lower 
levels of nicotinate/nicotinamide metabolism and tryp-
tophan biosynthesis, which are two key metabolic path-
ways providing anti-inflammatory properties [40, 41] and 
their dysregulation has been linked to aging pathologies 
[42–45]. Further supporting a beneficial profile, cells of 
the intestinal mucosa of microbially-rejuvenated mice 
expressed higher levels of genes involved in purine nucle-
otide metabolism, and the yMB metagenome nucleotide 
metabolism pathways showed a “younger” profile with 
a reduced age association compared to iMB. Reduced 
microbial nucleotide production influences intestinal 
barrier function [46] and a drop of metabolic activity in 
an aging microbiome impairing host metabolic functions 
has recently been reported [47]. Of note, we observed 
in the bulk transcriptome data from colonic mucosa as 
well as in several cellular subpopulations a downregu-
lation of a larger group of transcripts related to mac-
roautophagy. This seems somewhat contradictory to 
previous findings which attributed a protective role of 
functional autophagy during healthy aging [48]. However, 
it must be considered that non-transcriptional mecha-
nisms significantly contribute to autophagic flux [49], 
and therefore our observation of downregulated tran-
scripts may not directly translate to an overall decrease 
in macroautophagy. Clearly, this finding warrants fur-
ther investigation. Epithelial transdifferentiation into 
mesenchymal cells, also termed epithelial-mesenchymal 
transition (EMT), is a developmental process during the 
ontogeny of complex organisms [49]. Pathological EMT 
has been implicated in tumor cell invasion and metasta-
sis, but also in non-malignant processes including aging, 
which coincides with fibrotic changes in many organ 
systems [50–53]. Indeed, we identified a high expression 
of mesenchymal genes in differentiating intestinal epi-
thelial cell types of aging mice (both iMB and yMB), but 
remarkably in mice treated with the young microbiome 
mesenchymal gene expression was reduced.
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Chronic, low-grade inflammation (inflammaging) is 
considered a key contributor to the gradual dysfunc-
tion of healthy physiological processes with increasing 
age. The process links to immunosenescent changes of 
immune cell compartments that typically comprise a sus-
tained innate immune hyperreactivity whereas adaptive 
immune cells are increasingly compromised in their func-
tion [54–58]. In our study, the potential beneficial effects 
of yMB treatment align with the finding that the intesti-
nal epithelium of rejuvenated mice exhibited molecular 
characteristics indicative of reduced pro-inflammatory 
immune responses. Among mucosal immune cells, intes-
tinal macrophages showed the strongest differential 
response to the yMB intervention with the majority of 
genes (for example Cd14, Myd88, Nod2, and Tlr1, 2, and 
6) being downregulated by the rejuvenating treatment. A 
composite inflammatory score based on the expression 
of known age-associated and proinflammatory mediators 
was reduced in various immune cell types in mice with a 
rejuvenated microbiome, thus adding further support to 
a reduced proinflammatory environment in the intesti-
nal mucosa of yMB mice [59]. These aspects collectively 
underscore the benefits of microbiome rejuvenation in 
strengthening mucosal barrier integrity, reducing micro-
bial antigen leakage, and suppressing processes related 
to inflammaging. Bacteria and other microbiome mem-
bers have multiple means to affect host physiological 
processes, for example by producing metabolites that 
can be used by host cells to fuel metabolic reactions [47] 
or by exposing multiple antigens that trigger immune 
responses and train the immune system, which is impor-
tant considering the concept of inflammaging [58]. For a 
comprehensive overview of these molecular interactions, 
we refer to other excellent reviews [1, 60–63]. Although 
our study highlights some molecular features, addi-
tional studies are required to disentangle the mechanistic 
framework of microbiome-host interactions.

Improved mitochondrial function in microbially 
rejuvenated mice and impact on intestinal epithelial 
differentiation
As cells and organisms age, the efficiency of the res-
piratory chain declines, resulting in increased electron 
leakage and decreased ATP production [64]. Perturbed 
mitochondrial function in the intestinal mucosa has been 
shown to predispose to inflammation [65]. In rejuve-
nated mice, we found indications of improved mitochon-
drial function in several cell types within the intestinal 
mucosa. Mitochondria-dependent metabolic pathways 
such as monocarboxylic acid catabolism, fatty acid 
metabolism, oxidative phosphorylation, and respiratory 
electron transport chain activities were strongly boosted 
in enterocytes and TA cells of yMB compared to iMB 

mice. Moreover, the expression of mitochondrial ribo-
somal proteins was reduced in enterocytes of yMB mice. 
Notably, this group of evolutionary conserved genes has 
been linked to longevity and extended lifespan by induc-
ing mitonuclear protein imbalance and an unfolded 
protein response [66]. Mitochondrial metabolism is asso-
ciated with the production of reactive oxygen species 
(ROS), which play various roles in cellular functions such 
as pathogen defense. However, elevated ROS levels can 
also result in DNA damage, mutations, and malignant 
transformation [1]. Therefore, the increased metabolic 
activity of enterocytes and TA cells in yMB could point 
to both beneficial as well as detrimental processes in IEC. 
Notably, transcription factor enrichment analysis among 
the cell type-specific and yMB-dependent most upregu-
lated genes highlighted several transcription factors that 
regulate differentiation and proliferation. For example, 
HNF4A, which controls epithelial cell differentiation and 
homeostasis [67], was overrepresented in yMB, whereas 
NFYA, which was underrepresented in yMB, has been 
linked to gastric adenocarcinomas [68] and aggressive-
ness of colorectal cancer [69]. ATF2, which was overtly 
present in yMB intervention, maintains epithelial regen-
erative capacity and protects against cell death during 
intestinal epithelial damage [70]. Taken together, these 
results highlight the potential microbial contribution 
to healthy aging by tuning mitochondrial function in a 
strongly proliferating cell type.

Uniqueness of our study and potential limitations
Previous studies described physiologic rejuvenation 
upon single microbiome interventions in young mice 
[13–15]; however, these studies mainly employed germ-
free mice, which have an altered immune system and 
intestinal mucosa with malfunctioning absorption and 
compromised permeability [10, 11]. Thus, we tried to 
circumvent this issue by using conventionally raised 
SPF mice and recurrently colonized them with either 
an isochronic or a young microbiome for their entire 
lifespan. We employed antibiotic preconditioning fol-
lowed by repeated immediate seeding with yMB or iMB 
donor fecal material [26]. Previous studies have sug-
gested that incorporating antibiotic therapy enhances 
efficacy in human FMT settings [71–73] by overcoming 
the resilience of the recipient microbiome and thereby 
improving engraftment, which is why we chose this 
approach in our proof-of-concept study. It must how-
ever be noted that schemes and effects of condition-
ing regimens vary widely in clinical studies, and the 
impact of repeated conditioning on engraftment and 
development of antibiotic resistance gene repertoires 
in mice remains to be clarified. At least in our study, 
we could not detect any differences in the emergence 
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of antibiotic-resistance genes between yMB and iMB 
(Fig.  S4). Nevertheless, we cannot rule out a potential 
confounding effect by the antibiotic cocktail, e.g., by 
shifting normal aging processes in both groups, which 
may hamper the generalizability of the finding to non-
antibiotic treated animals. However, due to the identi-
cal treatment of both experimental groups, we consider 
this setup suitable to allow the conclusion that the 
observed phenotypic effects are specific to and caused 
by the yMB treatment. Due to the longitudinal study 
design, in which all animals in this cohort received 
treatment (antibiotics followed by either iMB or yMB), 
we were unable to reliably distinguish the residen-
tial “aged” microbiome from the donor microbiome. 
Future, larger-scale studies are needed to systemati-
cally compare the effects of gavage with solvent alone, 
antibiotic pre-treatment, and untreated aging controls 
to establish causal relationships between physiological 
changes and specific microbial taxa and/or functions.

We performed multiple OMICs analyses (bulk RNA 
sequencing, single-cell RNA sequencing, metagenom-
ics) from small and large intestinal tissues and feces to 
thoroughly characterize the molecular adaptations dur-
ing the microbiome rejuvenation experiment. However, 
due to technical problems, not all analyses are available 
from all tissues: the single-cell RNA sequencing failed 
from colon samples due to a high percentage of dead 
cells in the preparation and the tabula muris senis sin-
gle-cell RNA sequencing database only contains data 
from colon tissue but not of small intestinal tissue. To 
account for this limitation, we performed bulk RNA 
sequencing from both small and large intestinal tissue, 
which revealed largely similar responses in both tissues.

Despite a relatively large initial number of animals 
(n = 20 per group) we narrowly missed the major 
endpoint of increased lifespan in the final part of the 
study. One potential explanation is the variability in 
the biological response to the treatment and the fact 
that several animals died in both groups at a relatively 
early timepoint, due to lesions introduced by the gav-
age. The study design itself may have contributed to the 
outcome; specifically, the dosing regimen of antibiotic 
treatments or the frequency of fecal microbiota trans-
fers may not have been optimal for maximizing lifespan 
extension. We see it as a strength of our study, how-
ever, that we were able to detect significant changes in 
healthspan-related parameters (e.g., permeability and 
dampening of inflammation) that could precede meas-
urable extensions in lifespan. Future pre-clinical studies 
should consider these variables, include a control group 
without antibiotic pre-conditioning, use less invasive 
FMT methods, and potentially incorporate a longer 
follow-up period.

Conclusions
Continuous microbiome rejuvenation in mice sufficed 
to delay or even reverse several aging hallmarks includ-
ing an improved coordinative ability, a tightened intesti-
nal barrier, a dampened inflammatory tone, and altered 
metabolic profiles. The functional responses to micro-
biome rejuvenation vastly differed among cell types of 
the intestinal mucosa with, for example, boosted energy 
metabolism in enterocytes, but reduced proinflamma-
tory responses in macrophages, indicating highly specific 
interactions between members of the intestinal microbi-
ome and host cells. Altogether, our findings highlight the 
therapeutic potential of microbiome-based interventions 
to delay or alleviate aging-related pathophysiologies and 
promote healthy aging.

Methods
Animals
All animal experiments were approved by the local 
animal safety review board of the federal ministry of 
Schleswig Holstein and conducted according to national 
and international laws and policies (V 312–72,241.121–
33 (95–8/11) and V242-62,324/2016 (97–8/16)). 
C57Bl6/J mice were purchased from Charles River Labo-
ratories and housed in the Central Animal Facility (ZTH) 
of the University Hospital Schleswig Holstein (UKSH, 
Kiel, Germany) under specific-pathogen-free (SPF) con-
ditions. All mice were kept under a 12-h light cycle and 
fed a regular gamma-irradiated chow diet ad libitum.

Microbiome rejuvenation
Eight-week-old male C57Bl6/J mice (n = 60) were sub-
jected to successive 8-week-long cycles consisting of (i) 
a microbiome depletion for 14  days via antibiotic treat-
ment, (ii) immediate recolonization via fecal microbiota 
transfer and (iii) 6  weeks of an intermittent phase. To 
deplete the microbiome, mice were administered a cock-
tail of broad-spectrum antibiotics composed of ampicil-
lin (1 g/L), vancomycin (500 mg/L), neomycin (1 g/L) and 
metronidazole (1  g/L) (Sigma Aldrich) [74, 75] ad  libi-
tum via drinking water in light protected bottles. Suc-
cess of microbiome extinctions was controlled by DNA 
extraction from fecal pellets (see below) followed by 
real-time PCR amplification using 16S rRNA gene uni-
versal primers (F: ACT CCT ACG GGA GGC AG, R: 
GAC TAC CAG GGT ATC TAA TCC) and probe (CAG 
CAG CCG CGG TA) that target the V3–V4 region of the 
bacterial 16S rRNA gene. qPCR was performed in dupli-
cate on a VIIA 7 PCR system (ThermoFisher, Waltham, 
MA) [76, 77]. Colonization by fecal microbiota transfer 
was performed as described previously [77, 78]. Briefly, 
freshly collected fecal pellets of unrelated and untreated 
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male C57Bl6/J mice of the same age (isochronic micro-
biome transfer, iMB) or 8  weeks of age (young micro-
biome transfer, yMB) were resuspended in sterile PBS 
(~ 75  mg fecal material per ml PBS) and recipient anti-
biotics-treated mice were orally gavaged with 200  µl of 
the freshly prepared suspension to restore the depleted 
microbiomes. Up to five recipient mice were co-housed 
in individually ventilated cages (Green Line, Techniplast). 
Mice were weighed every 2 weeks and fecal pellets were 
collected before and after every antibiotic treatment, 
immediately frozen on dry ice, and stored at − 80  °C. A 
first batch of mice was killed by cervical dislocation and 
analyzed at 40 weeks of age, whereas all remaining mice 
were kept in the experiment until 122  weeks of age or 
until they had to be sacrificed for ethical reasons. Glu-
cose tolerance was tested the week before sacrifice using 
an established protocol [78, 79]. Briefly, after fasting for 
4  h, mice were i.p. injected with 20% D-glucose (2  g/kg 
body weight) and blood was drawn from the tail vein at 
30, 0, 15, 30, 60, 90, and 120 min to measure blood glu-
cose levels using an Accu-Chek Inform II glucometer 
(Roche). After a short recovery and washout phase, intes-
tinal permeability was measured as described below and 
blood was collected from the vena cava, mice were killed 
and tissues were removed for histological and molecular 
analyses.

Intestinal permeability assayin vivo
Intestinal permeability was quantified in the blood of 
mice using two parallel methods—FITC dextran gavage 
and HEK-Blue-TLR4 reporter assay—using established 
protocols as described before [76]. Briefly, mice of the 
microbiome rejuvenation experiment were fasted for 4 h 
and orally gavaged with 4  kDa FITC dextran (Sigma–
Aldrich, 60 mg/100 g body weight). After 1 h mice were 
euthanized and blood was collected into gel-contain-
ing tubes. The serum was isolated by centrifugation at 
10,000 × g for 5  min and diluted 1:1 with PBS. Fluores-
cence was measured on a spectrophotometer in 96-well 
plates at 528  nm. After background subtraction, FITC 
dextran concentrations were calculated using a stand-
ard curve prepared in PBS ranging from 0 to 800 μg/mL 
4-kDa FITC dextran. In parallel, LPS levels were quanti-
fied in the blood of the yMB and iMB-treated mice using 
a HEK-Blue-TLR4 reporter cell line (Invivogen, hkb-
htlr4) assay was used to measure the presence of LPS 
released in the serum. Cells were maintained according 
to the manufacturer’s protocol. Ten microliters of serum 
from yMB and iMB-treated mice were added to a flat bot-
tom of a 96-well plate. HEK cells (140,000 cells/ml) resus-
pended in HEK-Blue detection medium (Invivogen) were 
added to each well. After overnight incubation at 37  °C 
in 5% CO2, plates were read on an Infinite M200 Pro 

Microplate Reader spectrophotometer (Tecan) at 620 nm 
and LPS levels were calculated using a standard curve of 
purified LPS according to the manufacturer’s protocol.

Bulk RNA sequencing
Total RNA was extracted from colon biopsies using the 
RNeasy Mini Kit (Qiagen) according to the manufac-
turer’s protocol. RNA concentration and integrity were 
analyzed using a TapeStation 4200 System (Agilent) and 
a Qubit 4 fluorometer (ThermoFisher Scientific). RNA 
libraries were prepared using TruSeq stranded mRNA 
Kit (Illumina) according to the manufacturer’s instruc-
tions. All samples were sequenced using an Illumina 
NovaSeq6000 sequencer (Illumina, San Diego, CA, USA) 
with an average of 23 million paired-end reads (2 × 50 bp) 
at IKMB NGS core facilities. We used Tophat 2 [4] and 
Bowtie 2 [5] to align reads. Reads were mapped to the 
mouse genome (MGI assembly version 10) using Tophat 
2 program. Expression counts were normalized by library 
size. Normalized gene expression values of the tran-
scripts were computed by HTSeq [6]. To identify genes 
that were related to isochronic and young microbiome 
rejuvenation treatment differences we applied a variance 
partition approach using the variancePartition R pack-
age (v1.33.11). We further grouped these genes into gene 
ontology terms (GO) by performing a GO enrichment 
analysis for biological processes using the clusterProfiler 
package for R (version 4.10.1). To group the genes into 
up- or downregulated in the yMB intervention we used 
DEseq2 (v1.42.1) [7] to identify the differences in expres-
sion between the treatment groups based on their logfold 
change.

Single‑cell transcriptome sequencing
The small intestine was flushed with cold PBS, opened, 
and cut into two halves longitudinally. Intestinal epi-
thelial cell (IEC) and lamina propria (LP) cell fractions 
were then isolated from one-half of the small intestine 
using the Lamina Propria Dissociation Kit (Miltenyi 
BioTech, Bergisch Gladbach, Germany) according to 
the manufacturer´s protocol with minor deviations as 
described before [8]. The composition of these cell frac-
tions was analyzed by flow cytometry on a FACS Calibur 
flow cytometer (B&D, Heidelberg, Germany) with Cell-
quest analysis software (Becton Dickinson). The anti-
bodies used are listed in Table S3. These IEC and LP cell 
fractions were immediately subjected to emulsion PCR 
using the 10 × Chromium system (10 × Genomics, Pleas-
anton, CA, USA) and the 10 × Chromium Single Cell 
gene expression V3 reagent kit according to the manufac-
turer’s instructions. Approximately 15,000 cells per sam-
ple were loaded. Eleven libraries were pooled and then 
sequenced on an Illumina NovaSeq6000 with 2 × 100 bp 
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on an S2 flow. Sequences were mapped using cell ranger 
(v3.0.2) to the GRCm38 Mus musculus genome reference. 
We used the unfiltered feature-barcode matrices and 
applied custom filter settings under Seurat package envi-
ronment (v3.1.2). Cells that were potentially disrupted 
or had an increased likelihood of being doublets (cells 
with less than 200 or more than 5000 reads mapping to 
genome, with more than 25% of mitochondrial reads 
or less than 10% of housekeeping reads), were removed 
according to best practices [80]. Doublet detection was 
performed using DoubletFinder R package (v2.0.2). IEC 
and LP objects were merged per mouse sample, then 
all samples were integrated per mouse and into a single 
object containing both iMB and yMB groups. The merged 
object was analyzed using standard Seurat workflow [81]. 
We used all genes to scale the data, identified the top 
2000 variable features for the principal component analy-
sis, used the top 80 dimensions for finding neighbors, 
and ran the dimensionality reduction (UMAP). Clusters 
were identified using a shared nearest neighbor (SNN) 
modularity optimization clustering algorithm with a res-
olution of 0.2 [82]. Clusters were classified into compart-
ments based on the expression of prototypical marker 
genes (epithelial cells: Epcam, Krt8, Krt18; stromal 
cells: Col1a1, Col1a2 Col6a1, Col6a2, Vwf, Plvap, Cdh5, 
S100b; immune cells: Cd52, Cd2, Cd3d, Cd3g, Cd3e, 
Cd79a, Cd79b, Cd14, Fcgr3, Cd68, Cd83, Csf1r, Fcer1g). 
Epithelial cells were further classified into individual 
IEC subtypes using biomarkers previously described in 
published literature [83]: enterocytes (Apoa4), proxi-
mal enterocytes (Apoa4 and Casp6), enterocytes distal 
(Apoa4 and Fabp6), immature enterocytes (Apoa4 and 
Prss32), stem cells Lgr5+ (Stmn1), Transit Amplifying 
(TA) cells (Stmn1 and Tubb5), Paneth cells (Lyz1), gob-
let cells (Agr2), tuft cells (Dclk1) and enteroendocrine 
cells (Chga). Immune cells were further classified to cell 
types using the SingleR package (version 1.0.6) (Aran 
et al., 2019) and biomarkers: B cells (Cd19), Macrophages 
(C3ar1), CD8+ T cells (Cd8a), Cd4+ T cells (Cd4), plasma 
cells (Sdc1), non-classic myeloid cells (Aif1), MAIT cells 
(Eomes), Treg cells (Foxp3), ILC1 (Il7r), ILC2 (Il7r and 
Th1), ILC3 (Il7r and Il23r), NKT cells (Cxcr3), Den-
dritic cells (DC) (Flt3), plasma DC (pDC) (Ccr7), Prolif-
erative lymphocytes (Mki67), and granulocytes (Csf3r). 
We calculated the cell type proportion for each sample 
of mice, we tested the differences in cell proportions 
between treatments by a Mann–Whitney test for non-
parametric data. Differentially expressed genes (DEGs) 
between yMB and iMB treatments were identified per 
cell type using a Wilcoxon Rank Sum test with a log-fold 
difference of 0.1 between the two treatments (adjusted 
p value < 0.05 based on Bonferroni correction using all 
genes in the dataset). We used these genes to perform a 

GO enrichment analysis for biological processes using 
the clusterProfiler package for R (version 4.10.1) [83]. The 
most interesting GO terms from the top 25 GO list for 
both downregulated and upregulated genes under yMB 
treatment were plotted by cell type. Furthermore, we 
calculated the upregulated genes for each combination 
of cell type and treatment to do a transcription factor 
enrichment analysis using RcisTarget for R package (ver-
sion 1.20.0). Finally, we used CellChat package for R (ver-
sion 2.1.2) to identify the ligand-receptor pairs that were 
enriched for one of the treatments and which cell types 
of ligand-receptor pairs were most impacted by the treat-
ments. To test whether our findings might represent age-
related features, we performed a parallel analysis using 
the large intestinal subsets of Tabula Muris Senis [27, 28]. 
Similarly to our study, we used their annotated epithelial 
cell types and further annotated the missing (e.g., “nan” 
as enteroendocrine cells based on the markers described 
above) and tested whether the stromal gene module 
and the inflammatory score module showed a differ-
ence between young (3-month-old mice) and aged mice 
(30-month-old mice) in the epithelial compartment of 
large intestine and spleen of Tabula Muris Senis dataset.

Microbiome analysis using 16S rRNA gene amplicon 
sequencing
DNA was isolated from fecal material using the DNeasy 
PowerSoil Kit (Qiagen) following the manufacturer’s 
protocol. Extracted DNA was eluted from the spin filter 
silica membrane with 100 µl of elution buffer and stored 
at − 80 °C. 16S rRNA gene amplicon profiling and MiSeq 
sequencing were performed as described earlier [84, 
85], with the following modifications: the V3–V4 region 
of the 16S rRNA gene was amplified using the dual bar-
coded primers 319F (ACT CCT ACG GGA GGC AGC 
AG) and 806R (GGA CTA CHV GGG TWT CTA AT) 
[86]. Each primer contained additional sequences for 
a 12-base Golay barcode, Illumina adaptor, and a linker 
sequence [87]. PCR was performed using the Phusion 
Hot Start Flex 2X Master Mix (NEB) in a GeneAmp 
PCR system 9700 (Applied Biosystems) and the follow-
ing program (98  °C for 3  min, 25–30 × [98  °C for 20  s, 
55 °C for 30 s, 72 °C for 45 s], 72 °C for 10 min, hold at 
4 °C). The performance of the PCR reactions was checked 
using agarose gel electrophoresis. Normalization was 
performed using the SequalPrep Normalization Plate 
Kit (Thermo Fisher Scientific, Darmstadt, Germany) fol-
lowing the manufacturer’s instructions. Equal volumes 
of SequalPrep-normalized amplicons were pooled and 
sequenced on an Illumina MiSeq (2 × 300 nt). MiSeq 
sequence data was first subjected to quality control and 
sample mapping using MacQIIME v1.9.1 (http://​www.​
werne​rlab.​org/​softw​are/​macqi​ime). Briefly, sequencing 

http://www.wernerlab.org/software/macqiime
http://www.wernerlab.org/software/macqiime
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reads were trimmed keeping only nucleotides with a 
Phred quality score of at least 20, then paired-end assem-
bled and mapped onto the different samples using the 
barcode information. The sample-mapped MiSeq 16S 
rRNA gene amplicon sequence data were then further 
processed using DADA2 [88] workflow (https://​benjj​neb.​
github.​io/​dada2/ bigdata.html) with default parameters 
resulting in abundance tables of amplicon sequence vari-
ants (ASVs). Taxonomy was assigned using the Bayesian 
classifier provided in DADA2 and using the Silva rRNA 
database v.138 [89]. Uni- and multivariate analyses of the 
16S rRNA gene amplicon data were done in R (v.4.2.1) 
under phyloseq [90] (v.1.40.0), vegan [91] (v.2.6–2) and 
MAasLin2 [92] (v.1.10.0). All samples for diversity anal-
yses were normalized by rarefaction to the minimum 
shared read count to account for differential sequencing 
depth among samples. Relative abundance was calculated 
by dividing the number of reads for an ASV by the total 
number of sequences in the sample. Beta diversity was 
computed using Bray–Curtis and differences were visu-
alized after a constraint analysis of principal coordinates 
based on Bray–Curtis distances. To detect differences 
in changes in microbial features between yMB and iMB 
over time or among mucosal or luminal small intestine 
or colon tissue, we built linear mixed models using the 
MaAslin2 package [92] in previously wrench normal-
ized abundances [93]. The model included time or/and a 
treatment group, and individual mice as a random vari-
able. p values were corrected for multiple hypothesis 
testing using the Benjamin-Hochberg procedure, and a 
false discovery rate < 0.05 was defined as the significant 
threshold. Only features appearing in at least 20% of the 
samples were included in the analysis.

Microbiome analysis using 16S rRNA gene amplicon 
sequencing
DNA was isolated from fecal material using the DNeasy 
PowerSoil Kit (Qiagen) following the manufacturer’s 
protocol. Extracted DNA was eluted from the spin filter 
silica membrane with 100 µl of elution buffer and stored 
at − 80 °C. 16S rRNA gene amplicon profiling and MiSeq 
sequencing were performed as described earlier [84, 
85], with the following modifications: the V3–V4 region 
of the 16S rRNA gene was amplified using the dual bar-
coded primers 319F (ACT CCT ACG GGA GGC AGC 
AG) and 806R (GGA CTA CHV GGG TWT CTA AT) 
[86]. Each primer contained additional sequences for 
a 12-base Golay barcode, Illumina adaptor, and a linker 
sequence [87]. PCR was performed using the Phusion 
Hot Start Flex 2X Master Mix (NEB) in a GeneAmp 
PCR system 9700 (Applied Biosystems) and the follow-
ing program (98  °C for 3  min, 25–30 × [98  °C for 20  s, 
55 °C for 30 s, 72 °C for 45 s], 72 °C for 10 min, hold at 

4  °C). Performance of the PCR reactions was checked 
using agarose gel electrophoresis. Normalization was 
performed using the SequalPrep Normalization Plate 
Kit (Thermo Fisher Scientific, Darmstadt, Germany) fol-
lowing the manufacturer’s instructions. Equal volumes 
of SequalPrep-normalized amplicons were pooled and 
sequenced on an Illumina MiSeq (2 × 300  nt). MiSeq 
sequence data was first subjected to quality control and 
sample mapping using MacQIIME v1.9.1 (http://​www.​
werne​rlab.​org/​softw​are/​macqi​ime). Briefly, sequenc-
ing reads were trimmed keeping only nucleotides with a 
Phred quality score of at least 20, then paired-end assem-
bled and mapped onto the different samples using the 
barcode information. The sample-mapped MiSeq 16S 
rRNA gene amplicon sequence data were then further 
processed using DADA2 [88] workflow (https://​benjj​neb.​
github.​io/​dada2/ bigdata.html) with default parameters 
resulting in abundance tables of amplicon sequence vari-
ants (ASVs). Taxonomy was assigned using the Bayesian 
classifier provided in DADA2 and using the Silva rRNA 
database v.138 [89]. Uni- and multivariate analyses of the 
16S rRNA gene amplicon data were done in R (v.4.2.1) 
under phyloseq [90] (v.1.40.0), vegan [91] (v.2.6–2) and 
MAasLin2 [92] (v.1.10.0). All samples for diversity anal-
yses were normalized by rarefaction to the minimum 
shared read count to account for differential sequenc-
ing depth among samples. Relative abundance was cal-
culated by dividing the number of reads for an ASV by 
the total number of sequences in the sample. Alpha 
diversity measures and beta diversity were computed 
using Bray–Curtis and differences were visualized after 
a constraint analysis of principal coordinates based on 
Bray–Curtis distances. To detect differences in changes 
in microbial features between yMB and iMB over time 
or among mucosal or luminal small intestine or colon 
tissue, we built linear mixed models using the MaAslin2 
package [92] in previously wrench normalized abun-
dances [93]. The model included time or/and a treatment 
group, and individual mice as a random variable. p val-
ues were corrected for multiple hypothesis testing using 
the Benjamin-Hochberg procedure, and a false discovery 
rate < 0.05 was defined as the significant threshold. Only 
features appearing in at least 20% of the samples were 
included in the analysis.

Metagenomics
The fecal DNAs were subjected to shotgun metagen-
omic sequencing performed at the Competence Cen-
tre for Genomic Analysis (Kiel). DNA libraries were 
generated using the Illumina DNA Prep kit following 
the manufacturer’s instructions. Libraries were then 
pooled and sequenced on an Illumina NovaSeq 6000 
with 2 × 150  nt for approximately 30,000,000 reads per 

https://benjjneb.github.io/dada2/
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sample. Raw reads were adapter trimmed using cuta-
dapt (version 2.8) and quality trimmed to a mean Phred-
Score > = 30 using prinseq lite (version 0.20.4). Reads 
shorter than 50  bp were subsequently discarded. To 
remove host DNA contamination, only reads that did not 
map against the mouse reference genome (GRCm38.99, 
2020–02–03) via HISAT2 (version 2.1.0) were kept for 
further analyses. For performance reasons, the remain-
ing reads had to be downsampled to 30 million reads 
per library via Seqtk (version 1.3-r114-dirty), which 
resulted in (at most) 60 million reads per sample given 
paired-end sequencing with a forward and reverse read 
library each. The obtained metagenomic reads were used 
with the Humann3 pipeline (version 3.0.1) to gener-
ate KEGG ortholog count estimates per sample. Due to 
low mapping rates, 5 samples had to be removed from 
further metagenomic analyses leaving n = 9 samples for 
iMB 72 weeks, n = 5 for iMB 120 weeks, n = 12 for yMB 
72 weeks, and n = 7 for yMB 120 weeks respectively.

Prediction of ecological relationships
Interactions between members of the microbiome but 
also the host form the basis for many ecosystem proper-
ties including nutrient cycling and food webs. Here, the 
ecological interactions refer to the growth of a given bac-
terium of the microbiome in comparison to the entire 
microbiome. Metagenomic reads were mapped against 
a collection of 181 mouse fecal metagenomic assembled 
genomes (MAGs) and their respective metabolic models. 
This abundance data was then combined with the predic-
tion of ecological relationships [94] between each pair 
of bacteria (MAG) as previously described [47] for each 
individual mouse microbiome community. Briefly, we 
employed flux balance analysis, a mathematical approach 
for studying metabolic networks built from all known 
reactions in an organism, to estimate the growth of each 
single bacterial model and compared this growth rate to 
that achieved by the models when co-grown in pairs of 
two different bacterial species. For more details on FBA, 
please see [47]. The six types of ecological relationships 
[94] and their frequencies among each microbial com-
munity were inferred with the R package EcoGS (https://​
github.​com/​marin​gos/​EcoGS).

Statistical analysis of microbiota metabolic functions 
and ecological relationships KEGG ortholog count 
tables and ecological relationship abundances were 
subsequently analyzed with R. Only features (namely 
KEGG orthologs or ecological relationships) with abun-
dance greater zero in at least 10% of the samples were 
considered for further analysis. Then the raw abun-
dances were normalized sample-wise by the total sum 
scaling method. Relative KEGG ortholog abundances 

were transformed with the formula log10(x + 0.01) + 2, 
in order to keep zero counts at zero after log10 trans-
formation while offsetting the non-zero values only 
minimally. Since ecological relation abundances 
were all non-zero, a simple log10 transformation was 
employed for those. For each feature, the abundance 
data was modeled as the dependent variable in a lin-
ear mixed-effects model with age, treatment, and their 
interaction term as fixed effects as well as with mouse 
identifier as random effect (function lmer from package 
lme4 version 1.1–29). Probability values were corrected 
for multiple testing via the method of Benjamini and 
Hochberg (function p.adjust with method = “BH”). Fea-
tures with a significant false discovery rate (FDR ≤ 0.05) 
in the interaction term of age and treatment were fur-
ther evaluated. The estimated regression coefficients of 
age for each treatment group were extracted from the 
linear mixed-effects models for each KEGG ortholog 
and plotted. Finally, significantly different KEGG 
orthologs were checked for their membership in KEGG 
pathways with function enricher (minGSSize = 3, 
maxGSSize = 500, pAdjustMethod = “BH”) of package 
clusterProfiler (version 4.4.1) and the KEGG pathway 
annotation database of the Humann3 software (version 
3.0.1). As the enrichment analysis was based on only 
the significantly different KEGG orthologs as input, all 
pathways with a p value p ≤ 0.05 and with at least three 
features enriched for that pathway were reported to 
condense the gene results into a higher-level context 
(pathways). Log2 fold changes of pathway abundance 
were calculated between time-points 120 and 72 weeks 
for all features of an enriched pathway individually and 
then summarized via their arithmetic mean.

Antibiotic resistance genes
Metagenomic reads were mapped against known anti-
biotic resistance genes obtained from the comprehen-
sive antibiotic resistance database [95] (CARD, v3.1.2) 
using HISAT2 (version 2.1.0) followed by statistical 
analysis of read counts per antibiotic resistance (ABR) 
gene of the “protein_homolog” and “protein_overex-
pression” category in R. Statistical differences in read 
counts were tested for each ABR gene between treat-
ment groups of the same age via Wilcoxon Rank Sum 
test followed by p value adjustment for multiple testing 
via the method of Benjamini and Hochberg. Addition-
ally, the combined total read counts over all ABR genes 
and the combined read counts of the ABR genes within 
a resistance class were compared between treatment 
groups of the same age with the same methodology. No 
statistical significance was reached after correction for 
multiple testing via the Benjamini–Hochberg method.

https://github.com/maringos/EcoGS
https://github.com/maringos/EcoGS
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Statistical analysis
Biostatistical analyses were performed using GraphPad 
Prism (version 8) software (GraphPad, Inc, La Jolla, 
CA, USA), MacQIIME v1.9.2, or R (v 3.2.5). Specific 
comparisons and analyses are described in the individ-
ual method sections. Differences between the groups 
were considered significant at p < 0.05 and the data are 
presented as means ± SEM.
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Additional file 1. Fig S1. Bulk transcriptional adaptations to the microbi‑
ome rejuvenation in ileum tissue. Bulk RNA sequencing was performed 
on ileum tissue of 40- and 120-week-old yMB and iMB mice. A) Principal 
component plot. B) Genes which expression changes contributed to 
the observed variance attributed to timepoint or treatment model. C) 
Enriched functions among genes that were contributed to treatment 
explained variance. Fig S2. Principal component analysis for bulk RNAseq 
data.Canonical correlation of the relationship between the five first 
principal components and the particular groups of interest. “Treatment” 
corresponds to either iMB or yMB, “Timepoint” corresponds to the time of 
microbial transfer, “Reads” corresponds to a measure of library depth per 
sample, and “Genes” corresponds to a measure of library depth for genes 
present in all samples. Fig S3. Cell proportions as determined from single 
cell RNAseq data. A-B) Box plots of cell type proportions in epithelial cells 
(A) and immune cells (B) separated by treatment. iMB cell proportions are 
colored in blue and yMB in red. Cell proportions were calculated for each 
individual sample. Nonparametric t test statistics were used to compare 
the two treatments with corresponding p-value for each comparison. 
Fig S4. Antibiotic resistance gene counts do not differ among yMB and 
iMB. Counts of (A) total and (B) individual antibiotic resistance genes were 
determined in the metagenomic data from 72w and 120w samples of the 
yMB and iMB treatment groups. Table S1. Enriched KEGG pathways in fecal 
yMB and iMB metagenomes. Table S2. Enriched gene functions in bulk 
and single cell RNA sequencing data. The three worksheets contain (i) the 
legend with information on the terms and data and the enriched gene 
functions in (ii) bulk and (iii) single cell RNA sequencing data. Celltype = 
Cell type annotated for the single cell analysis. Signal = Gene down- or 
upregulated when compared between yMB and iMB interventition. ID = 
Gene ontology identification code. Description = Gene ontology descrip‑
tion. We focused on Biological process. GeneRatio = Ratio of identified 
genes divided by all genes of the respective GO category. BgRatio = Ratio 
of the size of the geneset compared to all unique genes in entire collec‑
tion. pvalue = Significance value. qvalue = FDR-adjusted p value. geneID 
= GeneIDs that contributed to the GO term. Count = Number of genes 
that contributed to the GO term. SYMBOL = Gene SYMBOL that contrib‑
uted to the GO term. The table can be accessed via this permanent link: 
https://​tinyu​rl.​com/​3az89​9ds. Table S3. Antibodies used for FACS analyses 
of isolated intestinal cells.
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