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Abstract 

Background House dust serves as a reservoir of a diverse array of microbial life and anthropogenic chemicals, 
both of which can potentially influence the health of occupants, particularly those who spend significant amounts 
of time at home. However, the effects of anthropogenic chemicals on dust microbiomes remain poorly understood. 
This study investigated the presence of anthropogenic chemicals in the dust of homes occupied by elderly occupants 
and explored those chemicals’ relationships with dust microbiomes.

Results We detected 69 out of 76 analyzed anthropogenic chemicals, including endocrine-disrupting chemi-
cals, non-antibiotic pharmaceuticals, and antibiotics, in at least one house dust sample from 32 residential homes, 
with concentrations ranging from 2720 to 89,300 ng/g. Some of these detected compounds were pharmaceuticals 
regularly consumed by the occupants. The dust microbiomes were associated with varying levels of anthropogenic 
chemicals, forming two distinct clusters, each with unique diversity, taxonomy, metabolic functions, and resistome 
profiles. Higher concentrations and a greater variety of these chemicals were associated with an increased co-occur-
rence of antibiotic resistance and virulence genes, as well as an enhanced potential for their transfer through mobile 
genetic elements. Under these conditions, phages, especially phage-plasmids, facilitated the dissemination of antibi-
otic resistance and virulence among bacterial populations.

Conclusions The findings indicate that everyday anthropogenic chemicals are important factors associated 
with the microbes in indoor environments. This underscores the importance of improving household chemical 
stewardship to reduce the health risks associated with exposure to these chemicals and their effects on indoor 
microbiomes.
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Introduction
House dust harbors a diverse microbiome [1], including 
bacteria [2, 3], fungi [4, 5], and viruses [6], with both 
viable and non-viable microbial components [7], along 
with other materials, most of which originate from 
occupant skin [8, 9]. The composition of this microbi-
ome is structured by the deposition of particles from 
indoor air [10], shedding of microbes from humans [2, 
8], and household activities [11], with human-associ-
ated microbes (e.g., from skin and hair) being a major 
contributor [8]. While most house dust microbes are 
not known to be harmful, some fungal allergens [12] 
and bacterial pathogens [12, 13], including antibiotic-
resistant strains of Staphylococcus aureus [13], have 
been detected. Furthermore, a wide repertoire of anti-
biotic resistance genes (ARGs)—the resistome—has 
been identified in house dust bacteria, including patho-
genic strains [2, 14].

The co-occurrence of ARGs and virulence genes (VGs) 
has been reported in pathogenic bacteria [15]. In these 
pathogens, the shorter intergenic distance between 
mobile genetic elements (MGEs) from ARGs and/or 
VGs suggests a role for MGEs in the transfer of antibi-
otic resistance and virulence [16]. The inter-bacterial 
dissemination of ARGs often occurs through horizontal 
mechanisms, such as plasmid-mediated conjugation [17] 
and phage-mediated transduction [18]. Phage-mediated 
transduction can enhance the transmission of ARGs 
in human-impacted environments by integrating these 
genes into bacterial hosts as prophages [19]. Addition-
ally, (pro)phage-plasmids (P-Ps)—genetic elements that 
can undergo horizontal transfer like phages and vertical 
transfer within cellular lineages like plasmids [20, 21]—
not only carry ARGs but also facilitate the inter-bacterial 
spread of ARGs [21]. The distinctive biological character-
istics of P-Ps make them potentially powerful drivers of 
bacterial evolution [21].

In addition to harboring a diverse microbiome, house 
dust contains numerous anthropogenic chemicals 
[22–24]. These include endocrine-disrupting chemicals 
(EDCs) that are widely used in foodstuffs, cosmetics, 
and personal care products [25–27], and pharmaceu-
ticals that may enter indoor settings via excretion from 
the sweat of occupant skin [28], improper disposal and/
or handling of unused drugs [29], and transfer from out-
door air [30]. Although the concentrations of these com-
pounds are generally low, typically from hundreds to 
thousands of nanograms per gram of house dust [31–33], 
chronic exposure to some can have adverse health effects 
including respiratory diseases, neuropsychological disor-
ders, and cancer [34]. Exposure to endocrine-disrupting 
phthalates is associated with the risk of allergies, particu-
larly through ingestion of contaminated house dust [35].

While the microbial and chemical compositions of 
house dust have been individually characterized [2, 22, 
23, 35–37], the influence of anthropogenic chemicals on 
the house dust microbiome remains poorly understood. 
There are known relationships between specific anthro-
pogenic chemicals, such as triclocarban (TCC), triclosan 
(TCS), and parabens, and microbes in indoor dust across 
various public and private buildings [14, 38]. However, 
these studies have largely focused on antimicrobials and 
ARGs, overlooking other anthropogenic chemicals and 
microbial constituents like fungi and viruses and the 
potential mechanisms underlying the spread of ARGs 
among bacterial populations. To address this knowledge 
gap, we investigated the dust microbiome in 32 residen-
tial homes occupied by elderly individuals who regularly 
took medications, as well as 76 anthropogenic chemi-
cals commonly found in pharmaceuticals and household 
products. Our results indicate that the presence of these 
chemicals was significantly associated with changes in 
the diversity and composition of the house dust micro-
biome and the co-location of ARGs and VGs near MGEs 
in bacteria, especially in human pathogens. Furthermore, 
these chemicals were associated with enhanced poten-
tial for transfer of ARGs and VGs via phages, especially 
P-Ps. Our findings suggest that everyday anthropogenic 
chemicals shape the indoor microbiome, highlighting the 
importance of effective household chemical stewardship.

Results
Diverse anthropogenic chemicals in house dust
Sixty-nine of the 76 analyzed anthropogenic chemi-
cals—19 EDCs, 30 non-antibiotic pharmaceuticals, and 
20 antibiotics—were detected in ≥ 1 of the 32 dust sam-
ples, with total (∑) concentrations ranging from 2720 to 
89,300 ng/g dust. EDCs were the most abundant group, 
with a median concentration of 4890  ng/g (Fig.  1a). 
Median concentrations of ∑EDCs were approximately 
three times higher than those of ∑non-antibiotic phar-
maceuticals (1700  ng/g) and approximately 10 times 
higher than ∑antibiotics (448  ng/g) (Fig.  1a). High 
detection frequencies (DFs) and elevated concentra-
tions of bisphenols and parabens were observed within 
the EDC group, with bisphenol A (BPA) being the most 
abundant compound (DF = 100%, median concentra-
tion = 2460  ng/g) (Fig.  1b). Parabens, including methyl 
paraben (MP), ethyl paraben, butyl paraben, benzyl para-
ben (BzP), and propyl paraben, were detected in all sam-
ples, with median concentrations of 4.1 (BzP) to 308 ng/g 
(MP). TCC and the alkylphenol 4-nonylphenol were also 
ubiquitous in house dust (DF = 100%) with median con-
centrations of 213 and 80.8 ng/g, respectively.

Non-steroidal anti-inflammatory drugs (NSAIDs) 
were the most abundant subclass within non-antibiotic 
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Fig. 1 Concentrations of anthropogenic chemicals in house dust. a Concentrations (ng/g dust) of ∑EDCs, ∑non-antibiotic pharmaceuticals, 
and ∑antibiotics. Each point represents an individual sample. b–d Detection frequency (%) (top panel) and concentrations (ng/g dust) (bottom 
panel) for individual (b) EDCs, (c) non-antibiotic pharmaceuticals, and (d) antibiotics. The subclass for each compound is indicated at the top, 
except for triclocarban and triclosan, which are not assigned to any specific subclass. In each box-and-whisker plot, the box represents the median, 
first quartile, and third quartile; the whiskers extend 1.5 times the interquartile range; and the diamonds indicate the mean value
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pharmaceuticals, dominated by paracetamol (DF = 78%, 
median = 502 ng/g) (Fig.  1c). Other compounds 
detected in all samples included the antihistamines 
diphenhydramine and chlorpheniramine (median con-
centrations = 257 and 67 ng/g, respectively), the antie-
pileptic gabapentin (45.3 ng/g), the antiarrhythmic 
lidocaine (18.4 ng/g), and the calcium-channel blocker 
diltiazem (3 ng/g). The presence of four non-antibiotic 
pharmaceuticals consumed routinely by four elderly 
occupants in their respective households was investi-
gated. Three of these medications were detected in all 
the corresponding house dust samples at varying con-
centrations. The benzodiazepine diazepam was found 
at 1.2 ng/g, the NSAID naproxen at 4.6 ng/g, and the 
antidepressant sertraline at 2744.3 ng/g. The fourth 
medication, the antihistamine loratadine, was detected 
at 11.1 ng/g in one of the two corresponding samples. 
These four compounds were also detected in house-
holds without known consumers, although generally 
with lower prevalence and concentration. Specifically, 
sertraline (DF = 15.6%) and loratadine (DF = 37.5%) 
were significantly less prevalent, with median concen-
trations 18 to 74 times lower than in households with 
known consumers. While the concentration of diaz-
epam was similar to that in households with known 
consumers, it was less frequently found (DF = 25%). 
However, naproxen, which reduces fever and alleviates 
pain and inflammation [39], had a DF of 90.6% and a 
median concentration fivefold higher than in a house-
hold with a known consumer.

The analysis of six representative subclasses of antibi-
otics showed that concentrations were primarily driven 
by the sulfonamide sulfadiazine, which ranged from 2.3 
to 1360 ng/g (median: 19.3 ng/g), followed by the nitro-
imidazole metronidazole, with concentrations rang-
ing from 3 to 1250  ng/g (median: 8.5  ng/g) (Fig.  1d). 
Although macrolide antibiotics were observed at lower 
concentrations than other subclasses, they exhibited 
higher DFs. For example, the median concentrations of 
clarithromycin, erythromycin-H2O, and roxithromycin 
were 1.5, 0.6, and 0.5 ng/g, with DFs of 100%, 100%, and 
84%, respectively. Furthermore, the diaminopyrimidine 
trimethoprim and the fluoroquinolone ofloxacin were 

found in all samples, with median concentrations of 2.4 
and 9.3 ng/g, respectively.

Correlation between anthropogenic chemicals and dust 
microbiome clustering
The analysis of 32 house dust samples revealed that on 
average, 93.9% (SD ± 5.8%) of the reads were annotated 
as Bacteria, while Fungi accounted for 5.4% (SD ± 5.5%). 
Viral and archaeal reads were minor fractions, compris-
ing only 0.14% (SD ± 0.06%) and 0.58% (SD ± 0.96%) of the 
reads across the samples, respectively. Across the sam-
ples, 6940 species were detected, with 1141 of these taxa 
considered core (present in all samples). These core taxa 
comprised an average of 77.6% (SD ± 11.2%) of the reads 
per sample (Fig. S1a).

Prediction strength analysis of the microbiomes in all 
dust samples indicated the presence of two distinct clus-
ters (1 and 2). Bray–Curtis dissimilarity analysis of the 
microbiomes further supported this clustering (Fig.  2a), 
with the two clusters explaining 16.9% of the total com-
munity variation (permutational multivariate analysis 
of variance (PERMANOVA); Table  S1). Cluster 1 had a 
significantly lower Shannon diversity than cluster 2 (Wil-
coxon rank-sum test (WRST), padj = 0.0305; Fig. S1b). 
The microbiomes in cluster 2 were associated with vari-
ous anthropogenic chemicals, particularly EDCs and 
antibiotics, according to distance-based redundancy 
analysis (Fig.  2b). Furthermore, the concentrations of 
specific compounds within the three major groups of 
anthropogenic chemicals were correlated with the first 
principal coordinate axis (PCoA1 in Fig. 2a) of the com-
munity composition (Fig. S2a). For example, four of the 
six analyzed parabens were significantly positively cor-
related with the community composition (p < 0.05) (Fig. 
S2a). Significant positive correlations (p < 0.05) were also 
observed among the concentrations of these four para-
bens (Fig. S2b), implying that these EDCs are used con-
currently [40].

The median concentrations of ∑EDCs (6090 ng/g), 
∑non-antibiotic pharmaceuticals (2780 ng/g), and ∑anti-
biotics (176 ng/g) in cluster 2 were significantly higher 
than in cluster 1 (∑EDCs, 4880 ng/g; ∑non-antibiotic 
pharmaceuticals, 1270 ng/g; ∑antibiotics, 115 ng/g) 

(See figure on next page.)
Fig. 2 Differentiation of dust microbiomes into clusters and their association with anthropogenic chemicals. a Principal coordinate analysis 
(PCoA) plot based on the Bray–Curtis dissimilarity of the overall microbiome composition. Samples are colored according to the two clusters. b 
Distance-based redundancy analysis illustrating the associations between endocrine-disrupting chemicals (EDCs) (orange text), non-antibiotic 
pharmaceuticals (blue text), and antibiotics (green text) to cluster differentiation. Ellipses represent 95% confidence intervals. c Association 
of samples within each cluster with different host and environmental factors, including window opening frequency during winter, age group, 
marital status, body-mass index (BMI), and dementia. d The top 12 genus-level bacterial taxa based on their average relative abundance across all 
samples, organized by cluster. All other bacterial taxa were grouped under “Others.” e Relative abundance of species from the genera Streptomycetes, 
Streptococcus, Sphingomonas, Shewanella, and Pseudomonas in clusters 1 and 2, as shown in the PCoA plot in panel (a)
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(WRST, padj < 0.05; Fig. S3a). Specifically, significantly 
higher concentrations were found in cluster 2 for four 
of the five detected NSAIDs (ketoprofen, naproxen, 

paracetamol, and ibuprofen), the antihistamines brom-
pheniramine and chlorpheniramine, the paraben MeP, 
and the antifungal antifluconazole (WRST, padj < 0.05; 

Fig. 2 (See legend on previous page.)
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Fig. S3b). The elevated levels of anthropogenic chemicals 
in cluster 2, both in diversity and concentration, suggest 
that this cluster was primarily associated with greater 
exposure to these compounds compared with cluster 1. 
The clustering showed no statistically significant associa-
tion with the elderly residents’ body-mass index (BMI) 
(χ2 = 4.8, p = 0.09) or any other host or environmental 
factors, though the BMI association suggested a poten-
tial trend (Fig. 2c). Specifically, cluster 2 was more likely 
associated with residents whose BMI was classified as 
abnormal (< 18.5 or ≥ 25) [41], while cluster 1 tended to 
be associated with those whose BMI was classified as 
normal (18.5 ≤ BMI ≤ 24.9) [41]. Additionally, no sig-
nificant differences in Shannon diversity were observed 
across any host or environmental factors (Fig. S1b). 
While HEPA filters effectively reduced indoor  PM2.5 
(WRST, padj = 0.043) and BPA (WRST, padj = 0.036) con-
centrations, they did not significantly affect dust microbi-
ome diversity and composition.

The dominant bacterial genera across all dust sam-
ples were Corynebacterium (7.1 ± 4.8%), Staphylo-
coccus (6.6 ± 4.3%), Micrococcus (5.6 ± 6.0%), Kocuria 
(5.3 ± 4.1%), and Paracoccus (4.6 ± 2.9%) (Fig.  2d). The 
relative abundance of Corynebacterium was significantly 
higher in cluster 1 than cluster 2 (WRST, padj = 0.003). 
Conversely, Paracoccus was significantly more abundant 
in cluster 2 (WRST, padj = 0.004). Several bacterial gen-
era known to be susceptible to antibiotics [42], including 
Streptomyces, Streptococcus, Sphingomonas, Shewanella, 
and Pseudomonas, were enriched in cluster 2, which was 
exposed to elevated levels of antibiotics and antimicro-
bial chemicals (Table  S2), although they had relatively 
low abundance (Fig. 2e). Hortaea werneckii and a Preus-
sia species were the dominant fungal species, comprising 
18.4 ± 23.8% and 13.9 ± 16.9% of the fungal community, 
respectively. H. werneckii was more abundant in clus-
ter 1 (27.4 ± 24.5%) than cluster 2 (1.3 ± 3.4%) (WRST, 
padj = 9.8 ×  10−4), while Preussia sp. was more abundant 
in cluster 2 (23.9 ± 16.5%) than cluster 1 (8.7 ± 14.2%) 
(WRST, padj = 0.022) (Fig. S1c).

Elevated levels of anthropogenic chemicals enriched 
potential functions in dust microbiomes
To understand how the taxonomic differences between 
the clusters translated to variations in functional poten-
tials, the metabolic functions of the microbiomes were 
examined. The dust microbiomes in clusters 1 and 2 
were congruent between their taxonomy and func-
tional pathways (Fig. S4), suggesting that samples with 
similar taxonomies shared similar functional character-
istics. Consistent with the taxonomic analysis, micro-
biome clustering was the strongest determinant of the 
functional differences between clusters, rather than 

participant characteristics, household factors, or HEPA 
filter usage (Table S1).

The core set of MetaCyc pathways (those present 
in ≥ 75% of samples in each cluster) was assessed by 
contributional diversity analysis to compare the path-
way diversity between clusters. For both clusters, the 
core pathways were dominated by those involved in the 
biosynthesis and metabolism of nucleotides and amino 
acids (Table  S3). Despite this functional conservation, 
core pathways for cluster 1 predominantly exhibited high 
within- and between-sample diversity (i.e., “complex 
variable” contributional diversity) (Fig.  3a). Contrast-
ingly, core pathways in cluster 2 exhibited a wide range 
of within-sample diversity, from low to high, showing 
particularly low between-sample diversity (i.e., “sim-
ple” and “complex” conserved contributional diversity) 
(Fig. 3a). The discrepancy between the clusters regarding 
within- and between-sample variations was most likely 
due to the 15 uniquely conserved pathways in cluster 2 
(Table S3). Of these 15 pathways, five were related to the 
biosynthesis of homocysteine, cysteine, and their precur-
sor L-methionine, and these pathways were primarily 
contributed by the human pathogen Streptococcus pneu-
moniae (Fig. 3b). Interestingly, these metabolic pathways 
have been linked to sulfur metabolism and intracellular 
redox homeostasis, increasing pathogens’ resistance to 
various antibiotics subclasses, including β-lactams, tetra-
cyclines, quinolones, and aminoglycosides [43].

Multivariate analysis revealed significant enrichment 
of KEGG Orthology (KO) gene families between the 
clusters, with 1228 KOs enriched in cluster 2, compared 
with 251 in cluster 1 (Table S2). Similarly, 428 MetaCyc 
pathways, covering various aspects of microbial physi-
ology, were enriched exclusively in cluster 2, with none 
enriched in cluster 1 (Table  S2). Notably, cluster 2 was 
characterized by more numerous pathways with high 
relative abundance related to nucleoside and nucleotide 
biosynthesis, as well as amino acid biosynthesis, espe-
cially in the synthesis of essential branched-chain amino 
acids (L-isoleucine, L-leucine, and L-lysine) (Fig.  3c). In 
addition, pathways involved in aromatic-compound deg-
radation, such as the aerobic benzoyl-CoA degradation 
(PWY-1361) that is related to the degradation of ibupro-
fen [44], were enriched in cluster 2 (Table S2).

The analysis of the ARG repertoire in dust samples 
revealed that the resistomes differentiated into two distinct 
clusters, consistent with the clustering of the microbiomes 
(Fig. S5a and Table  S1). The multivariate analysis of the 
268 detected ARGs showed the enrichment of 23 ARGs, 
predominantly conferring resistance to aminoglycosides 
(n = 6), tetracyclines (n = 3), and β-lactams (n = 3) in cluster 
2, while no ARGs were enriched in cluster 1 (Fig. S5b and 
Table  S2). The enrichment of ARGs conferring resistance 
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to tetracyclines in cluster 2 was consistent with the ana-
lytical detection of three tetracycline-class antibiotics (tet-
racycline, doxycycline, and oxytetracycline) in samples 
associated with that cluster at average DFs of 36 to 100% 
and average concentrations of 2.0 to 15.1 ng/g (Fig. S3c).

Association of elevated anthropogenic chemical levels 
with co‑occurrence among ARGs, VGs, and MGEs in dust 
microbiomes
The presence, distribution, and co-occurrence 
of ARGs, VGs, and MGEs on the contigs were 

investigated. In total, 2.7 million non-redundant open 
reading frames (ORFs) were predicted from 1.9 mil-
lion contigs (≥ 1000 bp) assembled from 32 dust sam-
ples. The distribution of ARGs identified from the 
ORFs (Fig. S6a) was consistent with the two distinct 
resistome clusters observed based on the short-read 
analysis (Fig. S5a). Specifically, cluster 2 exhibited a 
greater number (n = 289) and a higher average relative 
abundance (0.036%) of ARGs than cluster 1 (n = 29 and 
average relative abundance of 0.0059%) (Fig. S6a). The 
spread of ARGs is often facilitated by MGEs and linked 

Fig. 3 Differences in contributional functional diversity and enriched functional pathways between clusters 1 and 2. a Differences in contributional 
diversity between clusters for core MetaCyc pathways (pathways present in ≥ 75% of samples within each cluster). Core pathways detected 
in both clusters are labeled as “shared” (triangles). b Examples of conserved pathways (biosynthesis of homocysteine, cysteine, and L-methionine) 
illustrating differences in contributional diversity between clusters. c Enrichment of MetaCyc pathways between clusters analyzed using MaAslin2. 
Only the top 50 statistically significant pathways (adjusted p < 0.05) are shown
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to VGs associated with pathogenic bacteria [21]. Three 
hundred thirty-eight ORFs were classified into 217 VG 
subtypes (Fig. S6b), with VGs being more abundant 
and predominant in cluster 2 (n = 310) than cluster 1 
(n = 28) (Fig. S6b and S6c). Meanwhile, 15,698 MGEs 
were identified, with more in cluster 2 (n = 13,685) 
than cluster 1 (n = 2013). These MGEs encompassed 
proteins involved in various functional processes, 
including integration/excision (IE; e.g., int), replica-
tion/recombination/repair (RRR; e.g., repA), transfer 
(e.g., groL), phage (e.g., clpB), and stability/transfer/
defense (STD; e.g., vapC) (Fig. S6d).

The co-occurrence of ARGs, VGs, and MGEs within 
the house dust microbiomes in the presence of anthro-
pogenic chemicals was investigated by co-occurrence 
network analysis (Fig. S7a). The network analysis, 
irrespective of cluster, revealed strong and significant 
correlations (Spearman’s |ρ|> 0.8, p < 0.001) among 31 
ARGs, 19 VGs, and different MGE categories, includ-
ing IE (n = 474), RRR (n = 161), STD (n = 89), phage 
(n = 40), and transfer (n = 19) (Fig. S7b). Seven of the 
31 co-occurring ARGs conferred resistance to tetracy-
clines (tap, tetO, tetP, tetW, tet39, tetA, and tetA(P)), 
while most others were associated with multidrug 
efflux pumps. Further analysis of the ARG-MGE and 
VG-MGE connections showed that IEs were the most 
frequently linked (n = 231), while phages had the few-
est connections (n = 10) (Fig. S7b). Nevertheless, 
phage-associated proteins played a distinct role in 
the network, exhibiting a higher degree of nodes and 
eigenvector centrality (Fig. S7c), suggesting a central 
and influential position within the overall co-occur-
rence network. Furthermore, phage-associated pro-
teins showed the second-highest vulnerability within 
the network, only lower than IE proteins (Fig. S7d).

Comparing the respective co-occurrence networks 
of ARGs, VGs, and MGEs of clusters 1 and 2 (Fig. 4a), 
the network of cluster 2 exhibited significantly higher 
degree, betweenness centrality, and clustering den-
sity, as well as significantly lower closeness centrality 
(WRST, padj = 2.2 ×  10−16) (Fig.  4b). Consistently, the 
network of cluster 2 showed higher stability when sub-
ject to random attack (Fig.  4c). Differences in the co-
occurring ARGs conferring resistance to tetracyclines 
were also observed, with four (tetW, tet39, tetA, and 
tetA(P)) shared and three (tap, tetO, and tetP) unique 
to cluster 2 (Fig.  4a). The variations in co-occur-
rence patterns between the clusters suggest a poten-
tially stronger co-selection of ARGs, VGs, and MGEs 
that were associated with elevated concentrations of 
anthropogenic chemicals in cluster 2.

Association of elevated anthropogenic chemical 
levels with the co‑localization of ARGs, VGs, and MGEs 
within genomes
The co-localization patterns of ARGs, VGs, and MGEs 
within the representative metagenome-assembled 
genomes (rMAGs) reconstructed from the samples were 
investigated to assess whether anthropogenic chemi-
cals exerted selective pressure facilitating the transfer of 
these genetic elements among members of the dust com-
munities. Of the 106 rMAGs identified, 75 were classi-
fied as medium-quality and 31 as high-quality genomes, 
with 12 identified as human pathogens (Table  S4). 
Among these rMAGs, only three were enriched in clus-
ter 1, two of which were Corynebacterium spp. In con-
trast, cluster 2 contained 46 enriched rMAGs, including 
23 known species, six of which were human pathogens, 
such as Stenotrophomonas maltophilia [45] and Acineto-
bacter johnsonii [46] (Fig. S8a and Table S4). ARGs were 
detected in 38 rMAGs derived from 13 samples, includ-
ing eight samples from cluster 2 (Fig. S8a and S8b). More 
than half of these ARGs confer multidrug resistance. 
Twenty-two rMAGs carried ARGs conferring resist-
ance to antibiotics detected in their corresponding dust 
samples, including diaminopyrimidines, sulfonamides, 
fluoroquinolones, macrolides, and tetracyclines, with 
concentrations of 2–331.1 ng/g (Fig. S8b). To investi-
gate potential resistance to additional antibiotics, we 
focused on six rMAGs carrying β-lactam resistance 
genes. We measured 14 antibiotics from five representa-
tive β-lactam subclasses—carbapenem (n = 2), cephalo-
sporin (n = 4), cephamycin (n = 1), monobactam (n = 1), 
and penicillin (n = 6)—in the four corresponding dust 
samples from which the six rMAGs were reconstructed. 
While no antibiotics from the cephalosporin, cephamy-
cin, or monobactam subclasses were detectable, three 
from the penicillin subclass (penicillinV, amoxicillin, and 
piperacillin) and two from the carbapenem subclass (imi-
penem and metropenem) were found, with penicillinV 
and amoxicillin detected in all four samples at concentra-
tions of 1.8–59 ng/g (Fig. S8c).

ARGs, VGs, and MGEs were co-localized within 26 
rMAGs (Fig. S8a), 22 of which had significantly higher 
abundance in cluster 2 than cluster 1 (WRST, padj < 0.05), 
including six human pathogens, with three of these 
pathogens and six additional rMAGs enriched in clus-
ter 2 (Fig.  5a and Table  S4). The numbers of ARGs and 
VGs detected in each rMAG were significantly corre-
lated (Pearson’s r = 0.69, p = 5.2 ×  10−6), further support-
ing the co-selection of these genetic elements within 
the dust microbiomes due to elevated concentrations 
of anthropogenic chemicals. To evaluate the potential 
transfer of ARGs and VGs between genomes, the nearest 
distances from MGEs to these genes within the contigs 
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Fig. 4 Co-occurrence patterns of ARGs, VGs, and MGEs in the dust microbiomes of clusters 1 and 2. a Network analysis illustrating the correlations 
between ARGs, VGs, and MGEs in each cluster. Only connections exhibiting strong (Spearman’s |ρ|> 0.8) and significant (p < 0.001) correlation 
are represented in the network. Node size is proportional to the number of connections (the degree). b Comparison of node-level topological 
features between subcommunities in the two clusters. Differences between clusters 1 and 2 were assessed using the Wilcoxon rank-sum test. In 
each box-and-whisker plot, the box represents the median, first quartile, and third quartile; the whiskers extend 1.5 times the interquartile range; 
and the diamonds indicate the mean value. Points beyond the whiskers are considered outliers. c The robustness of the two networks was assessed 
by evaluating the proportion of taxa remained as taxa were randomly removed from each network
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Fig. 5 Co-localization of ARGs, VGs, and MGEs in representative metagenome-assembled genomes (rMAGs). a Proportion of the relative 
abundance of rMAGs containing ARGs, VGs, and MGEs in clusters 1 and 2. The colored circle above each bar plot indicates the enrichment 
of rMAGs in the corresponding cluster. Statistically significant differences were assessed using the Wilcoxon rank-sum test. * p < 0.05, ** p < 0.01, 
and *** p < 0.001. b The nearest distances of ARGs or VGs from MGEs in each cluster. In each box-and-whisker plot, the box represents the median, 
first quartile, and third quartile; the whiskers extend 1.5 times the interquartile range; and the diamonds indicate the mean value. c Correlations 
between the total number of ARGs (top) and VGs (bottom) and the average nearest distance of ARGs or VGs from MGEs. d Correlations 
between the total number of ARGs and VGs and the average nearest distance of ARGs or VGs from MGEs across human and non-human pathogens. 
e Composition of the nearest VGs (left) and ARGs (right) across five major categories of MGEs in the rMAGs. Numbers above the bars indicate 
the total count of VGs (left) and ARGs (right)
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were assessed. The average nearest distances from MGEs 
to ARGs or VGs were shorter in cluster 2 than cluster 1 
(Fig. 5b). Furthermore, these distances showed significant 
positive correlations with the number of ARGs (Pear-
son’s r = 0.804, p = 0.005) and VGs (Pearson’s r = 0.657, 
p = 0.038) in cluster 2 (Fig. 5c). Regardless of cluster, for 
the rMAGs with co-localization of MGEs with ARGs and 
VGs, the average nearest distances from MGEs to ARGs 
or VGs were marginally significantly positively correlated 
with the total number of ARGs and VGs in non-patho-
genic taxa (Pearson’s r = 0.52, p = 0.059). Conversely, a 
negative trend was observed in human pathogenic taxa, 
although not statistically significant (Pearson’s r = − 0.61, 
p = 0.27), likely due to the small number of genomes 
(Fig.  5d). Investigation of the transfer vehicles revealed 
that ARGs, primarily encoding multidrug efflux pumps, 
were predominantly transferred via MGEs with a transfer 
life cycle, with VGs mainly transferred by phage-related 
MGEs (Fig. 5e).

Association of elevated anthropogenic chemical levels 
with increased prevalence of phages with ARGs and/or VGs 
and their insertion into hosts
In total, 1108 viral operational taxonomic units (vOTUs) 
were identified (Fig. S9a), with phages classified based on 
putative links between these vOTUs and their in situ and 
ex situ bacterial hosts [47] (Fig. S9b, S9c, and Table S5). 
This analysis identified 530 phages, including 64 
prophages and 94 putative P-Ps, with two of the P-Ps also 
classified as prophages. The putative P-Ps were clustered 
with 24 plasmid types, the dominant types being P1, 
pSLy3, and AB (Fig. S10a). Twenty-nine phages (includ-
ing one putative P-P and one prophage) were enriched in 
cluster 1, while 70 phages (including 26 putative P-Ps and 
three prophages) were enriched in cluster 2 (Table  S2). 
Among the seven high-confidence P-Ps, six showed a 
significantly higher relative abundance in cluster 2 than 
cluster 1 (WRST, padj < 0.05; Fig. S10b). Significantly more 
ARGs and VGs were identified in the phages enriched in 
cluster 2, especially in P-Ps, where all five ARGs and 9 of 
the 11 VGs were detected. In contrast, no ARGs or VGs 
were detected in the phages enriched in cluster 1.

The role of phage-mediated horizontal gene trans-
fer (HGT) of ARGs and VGs among bacteria in the two 
clusters was investigated. All three rMAGs enriched in 
cluster 1, along with 41 of the 46 rMAGs enriched in 
cluster 2, were linked to phages, including both P-Ps and 
prophages. Notably, three pathogenic rMAGs enriched 
in cluster 2 and one in cluster 1 were predominantly 
infected by P-Ps (Fig. S11a). Of the 44 identified links 
between the enriched phages and hosts in cluster 2, P-Ps 
accounted for 80%, other phages 16%, and prophages 4% 
(Fig. 6a). Many of these P-Ps carried ARGs and/or VGs 

and were linked to non-pathogenic rMAGs, although 
some were also linked to pathogenic ex situ hosts (e.g., P. 
aeruginosa [48]). Interestingly, P-P S7C825, linked to the 
rMAG FMD_006_bin.6 (classified as Paracoccus mari-
nus and known to exhibit antibiotic susceptibility [49]), 
carries the same ARG ugd, which confers resistance to 
antimicrobial peptides. However, based on nucleotide 
matches, there is no evidence that this P-P specifically 
inserted ugd into the host. In contrast, only a single link 
was identified between the enriched phages and hosts in 
cluster 1.

Although the P-Ps enriched in cluster 2 were not found 
to have inserted ARGs into their linked hosts, we identi-
fied one prophage (S11C70841_1) and two putative P-Ps 
(S11C610 and S16C4026) in three samples from cluster 2 
that had inserted ARGs, such as erm(46), arr−1, and golS, 
into their respective linked hosts (Fig. 6b). Furthermore, 
a putative P-P (S11C2677) and a high-confidence P-P 
(S11C3896), present in a single sample from cluster 2, 
were identified as having integrated into a host chromo-
some as prophages (Fig. S11a). Specifically, P-P S11C3896 
was identified within the chromosome of the pathogenic 
rMAG FMD_015_bin.10, where several ARGs, VGs, and 
MGEs co-localized within the genome (Fig. S11b). This 
P-P is phylogenetically closely related to Pseudomonas 
phage Y1 (OQ572403.1), which infects the opportunistic 
pathogen P. aeruginosa [48] (Fig. 6c). Although the host 
bacterium FMD_015_bin.10 was classified as P. mendo-
cina, this species is also phylogenetically related to P. aer-
uginosa (Fig. 6d).

Discussion
Dust is ubiquitous indoors and a significant reservoir of 
diverse anthropogenic chemicals and microbes [3]. Stud-
ies of the relationships between anthropogenic chemicals 
and dust microbes in public and private buildings have 
primarily focused on antimicrobial chemicals and ARGs, 
overlooking other anthropogenic chemicals, fungi, 
viruses, and the mechanisms of ARG dissemination [14, 
38]. In this study, we analyzed 76 anthropogenic chemi-
cals, including EDCs, non-antibiotic pharmaceuticals, 
and antibiotics, in 32 dust samples, while characterizing 
the corresponding metagenomes. We found that both the 
prevalence and concentration of these chemicals in dust 
were key factors influencing microbiome differentiation 
into two clusters, each with unique diversity, taxonomic 
composition, functional profiles, and resistomes. In the 
presence of varying levels of anthropogenic chemicals, 
we observed a distinct co-occurrence of ARGs, VGs, and 
MGEs, characterized by higher potential for co-localiza-
tion within genomes. Moreover, evidence suggests that 
phages, particularly P-Ps, enhance the potential for trans-
fer of ARGs and VGs between bacterial populations.
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Among the detected anthropogenic chemicals, EDCs 
showed a significantly higher median concentration 
than non-antibiotic pharmaceuticals and antibiotics. The 
identified EDCs comprise a diverse group, including hor-
mones, some of which are used for oral supplementation, 
as well as bisphenols and antimicrobial chemicals such 
as parabens, TCC, and TCS, which are commonly found 
in plastics, pharmaceuticals, and personal care products 
(PCPs) [50]. Although the use of TCC and TCS in PCPs 
(e.g., detergents, toothpastes, and deodorants) has been 
restricted in recent years due to their acute and chronic 
toxicity and environmental persistence [50], considerably 
high concentrations (from a few dozen to thousands ng/g) 
can still be detected in indoor dust across North America 
[14, 38], Asia [17, 51], and Europe [24]. The present study 
also detected high concentrations and prevalence of TCC 
(100% DF) and TCS (53% DF) in the sampled houses, with 

median concentrations of  102–104 ng/g dust, which was 
approximately tenfold higher than previously detected in 
public facilities (e.g., offices, gyms, and classrooms) [14, 
38] and private homes [24]. Bisphenols (20–100% DF) 
used in plastic products and parabens (100% DF) used 
as preservatives in PCPs and pharmaceuticals were other 
frequently detected EDCs. Multiple bisphenols and para-
bens were often co-detected, suggesting their ubiquitous 
presence and accumulation in indoor environments. 
Specifically, MP was the most abundant paraben deter-
mined in this study with a median concentration (308 
ng/g) comparable to those in indoor dust from China 
(n = 52; median = 320 ng/g), but approximately two- to 
fivefold lower than those collected from the US (n = 40; 
median = 760 ng/g), Japan (n = 22; median = 1470 ng/g), 
and South Korea (n = 41; median = 1310 ng/g) [32]. Addi-
tionally, the median concentration of BPA in this study 

Fig. 6 Phage-mediated dissemination of ARGs and VGs. a The Sankey plot illustrates the enriched links between in situ hosts and phages, 
including prophages and phage-plasmids (P-Ps). ARGs and/or VGs carried by phages are highlighted in orange and green text, respectively (right 
column). The only shared ARG between the in situ host and its linked phage is highlighted (left column). b A schematic depicting the insertion 
of ARGs by one prophage (top panel) and two putative P-Ps (bottom two panels) into their respective host genomes. c A maximum-likelihood 
phylogenetic tree of P-P S11C3896 from this study, alongside 15 phages from the NCBI Virus database. The branch representing this P-P 
is shown in red, with the colored stars indicating the hosts of these 15 phages. Black circles on the trees represent bootstrap values > 50%. d 
A maximum-likelihood phylogenetic tree of the rMAG FMD_015_bin.10 from this study and 1765 non-redundant complete strains of the genus 
Pseudomonas from the NCBI GenBank database. The branch representing this rMAG is shown in red. Black circles on the tree indicate bootstrap 
values > 50%
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(2460 ng/g) was comparable to the levels found in indoor 
dust from Japan (n = 22; median = 2700 ng/g), but lower 
than the concentrations in dust samples from South 
Korea (n = 41; median = 3260 ng/g) [52]. The variations in 
the concentrations of these anthropogenic chemicals may 
reflect differences in the use of specific PCPs or pharma-
ceuticals across populations. A meta-analysis showed a 
positive association between urinary and serum BPA lev-
els and the risk of type 2 diabetes mellitus [53]. However, 
the present study did not find significant differences in 
BPA concentrations in house dust between participants 
with or without a diagnosis of diabetes mellitus. NSAIDs, 
including paracetamol and ibuprofen, were among the 
most abundant and prevalent pharmaceuticals detected 
in a comprehensive study of European house dust [24], 
with concentrations comparable to those found in our 
study. Four non-antibiotic pharmaceuticals consumed 
by elderly occupants were detected in their house dust, 
with two found at higher concentrations than in dust 
from households without known consumers, suggesting 
that these compounds originate from medication use and 
accumulate in the surrounding environment.

In addition to EDCs, the widespread use of antibiot-
ics has undesirable consequences, primarily by promot-
ing antibiotic resistance and facilitating the transfer of 
resistance among bacterial populations [54]. Research 
also indicates that microbial secondary metabolites 
contribute antibiotics to house dust [55, 56]. Our study 
detected many common antibiotics and identified a 
diverse array of bacterial taxa with potential antibiotic 
resistance enriched in cluster 2. Previous studies have 
also reported that certain antimicrobials (TCC, TCS, and 
parabens) are associated with the increased presence of 
ARGs in bacteria [14, 38]. Moreover, growing evidence 
suggests that exposure to non-antibiotic pharmaceuticals 
may also contribute to antibiotic resistance and poten-
tially increase HGT rates among bacteria [57]. Consistent 
with these findings, we observed a higher proportion of 
ARGs encoding multidrug efflux pumps, which exhibited 
an increased potential for transfer in samples exposed 
to elevated levels of anthropogenic chemicals, particu-
larly non-antibiotic pharmaceuticals such as antihista-
mines (e.g., fexofenadine and lidocaine) and NSAIDs 
(e.g., ibuprofen). Although not directly tested in our 
study, exposure to these non-antibiotic pharmaceuticals 
may increase the expression of efflux systems, potentially 
increasing resistance to multiple antibiotics and antimi-
crobial chemicals.

The presence of ARGs in bacteria is often accompa-
nied by VGs due to co-selection under selective pres-
sure, especially in pathogenic strains [58]. A recent study 
reported the co-occurrence of ARGs and VGs in indoor 
dust [36]; however, the specific role of anthropogenic 

chemicals in the co-selection of these genetic elements 
remains unclear. Our study shows a significant positive 
correlation between ARGs and VGs, identifying a co-
occurrence pattern of these two types of genes in cluster 
2. This finding supports the notion that selective pres-
sures from high levels of anthropogenic chemicals pro-
mote the co-selection of both antibiotic resistance and 
virulence in bacteria. These resistant, virulent bacteria 
may be opportunistic pathogens, posing an infection risk 
for immunocompromised individuals [58]. Consistently, 
in cluster 2, we observed a higher prevalence of human 
pathogens that carry both ARGs and VGs, suggesting 
that house dust is both a reservoir and a vehicle for the 
dissemination of these resistant, virulent bacteria.

ARGs and VGs can disseminate widely through HGT, 
facilitated by MGEs, potentially accelerating bacterial 
evolution under environmental stress [59]. In cluster 2, 
the distances between MGEs and ARGs or VGs within 
rMAGs were shorter than in cluster 1. Further investiga-
tion into human and non-pathogens showed contrasting 
patterns. In human pathogens, as the number of ARGs 
and VGs increased, the distance between these genes and 
MGEs decreased. Conversely, in non-pathogens, shorter 
distances between MGEs and ARGs or VGs were sig-
nificantly correlated with lower numbers of these genes. 
Notably, most co-localized ARGs conferred multidrug 
resistance, suggesting that pathogenic and non-patho-
genic bacteria selectively acquire functions for adaptation 
to environments with diverse antibiotics. ARGs and VGs 
located near MGEs in pathogens or rMAGs exposed to 
high chemical stress in the dust samples are likely to have 
increased functional mobility. This gene arrangement is 
similar to those found in pathogenic bacteria from hospi-
tal wastewater treatment systems, where pharmaceutical 
concentrations are presumably high [60, 61]. These find-
ings suggest that bacteria under environmental stress are 
more prone to transferring ARGs and VGs within micro-
bial communities, contributing to the spread of antibiotic 
resistance and virulence in bacterial populations.

Phage-mediated lateral transduction can be more effi-
cient than the transfer of classical MGEs via conjuga-
tion or generalized transduction [62], particularly in 
P-Ps [20]. Some phages, particularly P-Ps, preferentially 
transfer ARGs and VGs between bacterial populations, 
including pathogens, within dust samples exposed to 
elevated levels of anthropogenic chemicals. The spread 
of antibiotic resistance by P-Ps, which has been experi-
mentally confirmed [63], is particularly concerning, as it 
does not require direct cell-to-cell contact and P-P inte-
grons serve as genetic platforms facilitating the acquisi-
tion of novel ARGs [20, 21]. Despite their potential role 
in antibiotic resistance, P-Ps have been documented 
in only a few studies, including those on glaciers [64], 
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marine environments [65], and the mammalian gut [66]. 
Although not all P-Ps carry ARGs or VGs, their strate-
gies to infect hosts increase their potential for transfer. 
For example, the conversion of P-Ps into prophages that 
integrate into bacterial chromosomes was observed in a 
sample with elevated levels of anthropogenic chemicals. 
One possible reason for the conversion from P-Ps to 
prophages is that integration into the bacterial chromo-
some enables P-Ps to evade host defenses that specifi-
cally target circular MGEs [67]. Additionally, integrated 
P-Ps may replicate with the bacterial chromosome and 
no longer require plasmid replicases and segregation sys-
tems [21]. Thus, the effective transfer capabilities of P-Ps 
may facilitate the spread of antibiotic resistance and viru-
lence among bacteria, including pathogens.

This study highlights the interplay between anthro-
pogenic chemicals and microbiomes in residential 
dust. However, it has limitations. First, while a number 
of anthropogenic chemicals were measured, the study 
did not include certain common EDCs (e.g., phthalates 
and flame retardants), medications commonly used by 
the participants (e.g., metformin and aspirin), or other 
dust-related components (e.g., mites and skin-derived 
material). Additionally, because household dust gath-
ers material from multiple sources, such as surfaces, the 
origins of chemical-microbiological interactions remain 
uncertain and may begin elsewhere before accumulating 
and persisting in dust. Second, although we observed that 
distinct fungal taxonomic compositions were associated 
with these anthropogenic chemicals, the specific roles 
of fungi in the interconnected systems between chemi-
cals and human health remain underexplored. Third, 
metagenomic sequencing did not elucidate bacterial via-
bility or the absolute abundance and functionality of key 
genes (e.g., ARGs and VGs) and elements (e.g., prophages 
and P-Ps). Future research should include laboratory 
experiments on the functionality of ARGs and VGs, iden-
tify phages that facilitate the transfer of functional genes 
between bacteria, and use quantitative PCR for absolute 
gene quantification and metatranscriptomic sequencing 
for gene expression analysis. Last, recent studies suggest 
that indoor chemicals and their metabolites in dust have 
a greater impact on occupant health—particularly in rela-
tion to asthma and allergic rhinitis—than the dust micro-
biome itself [68, 69]. Our findings indicate that exposure 
to these chemicals can alter the dust microbiome com-
position, increasing pathogen presence and facilitating 
phage-mediated transmission of antibiotic resistance 
and virulence, which may have significant health implica-
tions. To establish a causal link between anthropogenic 
chemicals, dust microbiome composition, and health 
outcomes, future research should conduct longitudinal 
cohort studies across diverse populations and household 

settings, integrating environmental monitoring, microbi-
ome analysis, and health assessments.

Conclusions
Our study highlights the role of house dust as a reservoir 
for numerous EDCs, non-antibiotic pharmaceuticals, and 
antibiotics. These anthropogenic chemicals are associ-
ated with the diversity and composition of microbiomes 
and the spread of antibiotic resistance and virulence 
among bacterial populations. Additionally, our findings 
highlight the often-overlooked roles of phages in the dis-
semination of antibiotic resistance and virulence, posing 
increased health risks to vulnerable occupants, such as 
children and the elderly. As most people spend signifi-
cant periods indoors, long-term exposure to ARGs and 
VGs accumulated in dust raises concerns about their 
potential impact on occupants’ microbiomes, particu-
larly those of the airway [70] and gut [71]. The diversity of 
anthropogenic chemicals in house dust likely far exceeds 
our measurements, suggesting that numerous substances 
from everyday products, including household items 
and pharmaceuticals, accumulate in dust and influence 
its microbiology. Therefore, there is an urgent need for 
increased awareness and improved chemical stewardship 
to reduce exposure to these chemicals and associated 
microbes in indoor environments.

Materials and methods
Subject characteristics and sample collection
The study was conducted across 32 residential homes in 
urban Hong Kong, each with an average of 2 residents 
and 1–2 elderly individuals aged ≥ 72. On average, the 
elderly participants had lived in their homes for 23 years 
and spent ≥ 20 h a day there. The elderly residents under-
went comprehensive clinical assessments at a local hos-
pital, which included evaluations of common age-related 
health conditions such as diabetes mellitus, hyperten-
sion, and dementia. All but one of the elderly individuals 
regularly consumed medication during the study period. 
No non-elderly residents required long-term medica-
tion. The elderly residents’ BMI was calculated based on 
the provided height and weight data using the formula 
BMI = weight (kg)/height2  (m2). Detailed personal infor-
mation and daily living habitats of the elderly participants 
are presented in Table S6.

Household characteristics, including house size, fre-
quency of opening windows, and frequency of air 
conditioner use, were also collected (Table  S6). Each 
household had an air-purifier (#LA352, LIFAair, Helsinki, 
Finland) containing four activated-carbon plates (#LA31, 
LIFAair) installed in the living room. The device had sen-
sors to monitor the airborne levels of carbon dioxide, 
formaldehyde, and particulate matter  (PM2.5), and could 
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automatically adjust the airflow rate to maintain optimal 
air quality according to its default settings. To investigate 
the impact of additional HEPA filters (#LA21, LIFAair) 
on air quality and microbes, they were randomly installed 
in the air-purifiers of 20 households, while the remaining 
12 households served as a control group. The air-purifi-
ers had been in use for ~ 1  year prior to dust sampling. 
A dust sample was collected from each of the 32 house-
holds by brushing the activated-carbon plates with a ster-
ile soft-bristle brush. The samples were then placed in 
sterile glass containers and stored at − 80 °C until further 
processing.

Chemical extraction and analytical procedures
The dust samples were homogenized using a vortex 
mixer and filtered through a 100-mesh stainless steel 
sieve to obtain particles smaller than 150 µm. Approxi-
mately 50 mg of the sieved dust was weighed and spiked 
with 4 ng of mass-labeled internal standards. The sam-
ple was allowed to equilibrate in the dark for 1 h and 
then extracted as described in previous studies [72, 73] 
with minor modifications. Briefly, each dust sample was 
extracted three times using 4 mL of 0.1 M citric buffer 
(citric acid and sodium citrate, pH 4), followed by 4 mL 
of methanol (HPLC grade; Merck KGaA, Darmstadt, 
Germany), with ultrasonication used to facilitate the 
extraction. The sample was centrifuged at 8000 rpm for 
10 min between each round of extraction. The superna-
tants from the three extractions were then combined and 
reduced to approximately 5 mL under a gentle stream of 
ultra-high-purity nitrogen (≥ 99.995%). Finally, the con-
centrated extracts were diluted to 125 mL with a solution 
of 0.02% formic acid (≥ 98%; Supelco, PA, USA) in Milli-
Q water, and 0.2 g disodium ethylenediaminetetraacetate 
(Sigma-Aldrich, MO, USA) was added to the solution.

Next, the sample was loaded onto a Bond Elut SAX 
solid-phase extraction (SPE) cartridge (500  mg, 6  mL; 
Agilent Technologies, CA, USA) connected in tandem 
with an HLB SPE cartridge (200 mg, 6 mL; Waters Cor-
poration, MA, USA). The SAX cartridge was used for 
cleanup of impurities, while the HLB cartridge was used 
for extraction. Both cartridges were preconditioned with 
8  mL MeOH, 4  mL Milli-Q water, and 4  mL Milli-Q 
water with 0.02% formic acid. After sample loading, the 
HLB cartridge was washed with Milli-Q water contain-
ing 0.02% formic acid and vacuum-dried for 30 min. The 
target chemicals were subsequently eluted from the HLB 
cartridge first with 6  mL MeOH followed by 6  mL of a 
1:1 (v:v) mixture of MeOH and acetone (Merck KGaA). 
The two eluate fractions were combined and concen-
trated to near-dryness under a gentle stream of ultra-
high-purity nitrogen (≥ 99.995%). Finally, the extract was 

reconstituted to 200 µL with a 4:1 (v:v) mixture of Milli-
Q water and MeOH.

Ninety chemicals, as listed in Table  S7, were ana-
lyzed as described previously. These included 24 EDCs 
(including TCC, TCS, parabens, hormones, bisphenols, 
and alkylphenols), 32 non-antibiotic pharmaceuticals 
(including antihistamines, antidepressants, NSAIDs, and 
10 other subclasses), and 20 antibiotics (including nitro-
imidazole, diaminopyrimidines, sulfonamides, fluoroqui-
nolones, tetracyclines, macrolides) for all dust samples, 
together with 14 β-lactams (including monobactams, 
cephamycins, cephalosporins, carbapenems, and penicil-
lins) for four selected dust samples. The target chemicals 
were quantified using an Agilent 1290 Infinity II ultra-
high-performance liquid chromatography instrument 
interfaced with an AB Sciex 6500 triple-quadrupole tan-
dem mass spectrometer (Applied Biosystems, CA, USA), 
utilizing positive and negative electrospray ionization 
(ESI + and ESI-) modes. Chromatographic separation 
was achieved using a Zorbax Eclipse plus C18 column 
(2.1 × 100 mm id, 1.8 µm; Agilent Technologies) con-
nected in series with a Zorbax Eclipse plus C18 guard 
column (2.1 × 5 mm id, 1.8 µm). The column temperature 
was 40 ℃. The sample injection volume was 5 µL, and the 
mobile phase flowrate was 0.2 mL/min.

For the ESI - mode, the mobile phases were ultrapure 
water with 5  mM ammonia acetate and MeOH with 
5 mM ammonia acetate. For the ESI+ mode, the mobile 
phases were ultrapure water with 0.02% formic acid and 
MeOH with 0.02% formic acid. The gradient profiles for 
the mobile phases are provided in Table  S8. The source 
parameters were curtain gas at 30 psi, spray voltage 
at 4500  V, both ion source gases 1 and 2 at 50 psi, and 
the source temperature at 300 ℃. The optimized MS/
MS parameters for the target analytes are provided in 
Table S9.

Quality assurance and quality control for chemical analysis
Duplicate analyses were conducted for each dust sam-
ple, excluding three with insufficient amounts, along 
with procedural blanks (n = 10) and procedural recov-
eries (n = 5). Averaged values of the replicate samples 
were used for statistical analysis. Procedural recoveries 
were determined by fortifying a known amount of the 
target chemicals on 50 mg of anhydrous sodium sulfate. 
The procedural blanks and recovery samples were sub-
jected to the same extraction and cleanup procedures 
as the dust samples. The recoveries for all target chemi-
cals ranged from 28 to 226% (average = 104%), with 
standard deviations varying between 0.1 and 35% (aver-
age = 9%). Method quantification limits (MQLs) were set 
at three times the standard deviation of the procedural 
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blank levels. Values below the MQLs were replaced with 
MQL/2 for statistical analysis.

Metagenomic sequencing and quality control
Approximately 100 mg of the collected dust samples were 
used for genomic DNA extraction. The samples were first 
cut into smaller, manageable pieces and then homog-
enized using sterile scissors. The genomic DNA was then 
extracted using the DNeasy PowerSoil Pro DNA extrac-
tion kit (Qiagen, CA, USA) following the manufacturer’s 
protocol. Four extraction-reagent-only samples were pro-
cessed in parallel with the dust samples to serve as nega-
tive controls. Library preparation and sequencing were 
performed by Novogene (Beijing, China), generating 
150-bp paired-end reads according to the manufactur-
er’s protocol. Briefly, extracted DNA was fragmented to 
an average size of 350 bp using the Covaris LE220R-plus 
system (Woburn, MA, USA). The fragments then under-
went end-polishing, A-tailing, and ligation with full-
length Illumina sequencing adapters, followed by PCR 
amplification using the Nextera DNA Flex Library Prepa-
ration Kit (Illumina, San Diego, CA, USA). The resulting 
PCR libraries were quantified, pooled, and sequenced 
on a NovaSeq 6000 platform (Illumina, San Diego, CA, 
USA).

The raw sequence data was first processed to remove 
sequence adapters using AdapterRemoval (v.2.3.3) [74]. 
Next, quality filtering and removal of human sequences 
were performed using KneadData (v.0.10.0), utilizing the 
human genome hg37 as the reference and the default 
parameters. To identify and remove potential contami-
nant sequences, a co-assembly of reads from the four 
quality-filtered negative control samples was carried out 
using MetaWRAP (v.1.2.1) [75] with the parameter “-m 
1000.” Reads from the dust samples that could be mapped 
to the contigs assembled from the negative controls were 
removed using KneadData. Additionally, all the contami-
nating species identified by the R package “decontam” 
(v.1.12; https:// github. com/ benjj neb/ decon tam) using 
the default threshold were removed from the dataset 
using KrakenTools (v.1.2). Finally, unpaired reads were 
removed from the paired-end FastQ files using fastq-pair 
(v.1.0) [76], yielding an average of ~ 37.9 (SD ± 15.8) mil-
lion paired-end reads retained per dust sample for down-
stream analysis.

Diversity and community composition
Taxonomic classification of the paired-end reads was 
performed using Kraken2 (v.2.1.2) [77] with the stand-
ard Kraken2 database (v.2024.1.12), and species-level 
abundance was estimated using Bracken (v.2.9). Species-
level taxonomy was used to identify factors associated 
with community diversity and compositional changes. 

Based on the taxonomic data, prediction strength anal-
ysis was performed to estimate the optimal number of 
clusters in the community using the K-means algorithm 
and the “prediction. strength” command (with 100 ran-
dom splits) in the R package “fpc” (v.2.2–12). The analysis 
indicated that the highest mean prediction strength was 
0.84 when k = 2, where k is the number of clusters. This 
indicated the presence of two clusters among all samples. 
FindFungi (v.0.23.3) [78] was used to assign taxonomy to 
members of fungal communities.

HUMAnN3 (v.3.7) [79] was used to profile the poten-
tial metabolic functions of the metagenomes, including 
the analysis of KO assignments and metabolic pathways. 
Based on the MetaCyc v24.0 pathway data, contributional 
diversity (Gini–Simpson for within-sample and Bray–
Curtis for between-sample diversity) [80] was calculated 
for each cluster and compared by selecting pathways 
detected in > 75% of samples within each cluster. ARG 
family markers were detected using the “shortbred_quan-
tify” function in ShortBRED (v0.9.4) [81]. Principal coor-
dinate analysis based on Bray–Curtis dissimilarity was 
performed using the “vegdist” function in the R package 
“vegan” (v.2.6–4), and the multivariate homogeneity of 
variances was analyzed to test for differences in multi-
variate dispersions between clusters using the “betadis-
per” function in the same R package. PERMANOVA with 
Benjamini–Hochberg adjustment was applied using the 
“adonis2” function in “vegan” with 999 permutations to 
test the influence of cluster, HEPA filter usage, household 
characteristics  (PM2.5, house size, number of occupants, 
window opening frequency, and air conditioner usage 
frequency), personal information (age, BMI, and marital 
status), and medical diagnoses (diabetes mellitus, hyper-
tension, and dementia) on microbiome composition. The 
effects of anthropogenic chemicals on community differ-
entiation, and antibiotics and antimicrobial chemicals on 
resistome differentiation, were assessed using distance-
based redundancy analysis (db-RDA) with the “dbrda” 
function in “vegan.” The Procrustes test was performed 
to determine the congruency between taxonomic and 
functional composition data using the “protest” func-
tion in “vegan.” To assess α-diversity, paired-end reads 
were subsampled to a read depth of 3 million reads per 
sample using seqtk (v.1.3), which corresponded to the 
sequencing depth of the sample with the lowest num-
ber of reads. The Shannon index was calculated for the 
subsampled dataset in “vegan.” The associations of taxo-
nomic, functional, and antimicrobial resistance data 
with cluster were determined using MaAsLin2 [82] 
with the generalized linear model. An adjusted p-value 
(q-value) ≤ 0.05 was considered statistically significant. 
Statistical significance between two groups was assessed 
using the WRST with false discovery rate adjustment via 

https://github.com/benjjneb/decontam
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the Benjamini–Hochberg method. Comparisons among 
more than two groups were analyzed with the Kruskal–
Wallis rank-sum test. Both tests were performed in the R 
package “stats” (v.4.2.2). A p-value of < 0.05 was consid-
ered statistically significant.

Functional annotation of contigs
The paired-end reads were first assembled into contigs 
using the “assembly” function of MetaWRAP (v.1.2.1) [75] 
with the parameter “-m 1000.” Prodigal (v.2.6.3) [83] was 
then used to identify ORFs from the assembled contigs, 
including their amino acid and nucleic acid sequences, 
using the parameter “-p meta.” CD-HIT (v.4.8.1) [84] 
was used to construct a non-redundant gene catalog, 
with the suggested parameters (sequence identity ≥ 95% 
and sequence coverage ≥ 90%), yielding 2,730,259 ORF 
clusters. ARGs were annotated using the Comprehen-
sive Antibiotic Resistance Database (CARD; v.3.2.8) [85] 
and BLASTp, with an E-value ≤  10−5, identity ≥ 80%, and 
coverage ≥ 80%. VGs and MGEs were annotated based on 
the VFDB database [86] and mobileOG-db (Beatrix-1.6) 
[87], respectively, using the same annotation parameters 
as for ARGs.

The paired-end reads from all 32 metagenomes were 
mapped to the nucleic acid sequences of the ORFs using 
Bowtie2 (v.2.4.4) with the parameter “–fast.” The result-
ing BAM files were processed using Samtool (v.1.2.0)—
the “view” function was used to transfer the files, and the 
“sort” and “index” functions were used to sort and index 
the files, respectively. The coverage of the ORFs was then 
calculated for each sorted BAM file using the “coverage” 
function in CheckM (v.1.2.2). Finally, the relative abun-
dance of each ORF was estimated using the calculated 
coverage and the total number of sequencing reads in 
each sample.

Network analysis
Co-occurrence networks were constructed based on 
strong (|ρ|> 0.8) and statistically significant (p < 0.001) 
correlations between ARGs, VGs, and MGEs that were 
present in at least 50% of the samples. The “corAnd-
Pvalue” function in the R package “WGCNA” was used 
to calculate the correlations and associated p-values 
between the variables, and the “graph_from_data_frame” 
function in the R package “igraph” was used to create the 
graph objects. The co-occurrence networks were visu-
alized using Gephi (v.0.10.1). Edges connecting nodes 
within the same MGE category were excluded from the 
overall co-occurrence network construction (regardless 
of cluster), eliminating redundant features and minimiz-
ing collinearity. The topological properties of the nodes in 
the networks were analyzed using Gephi, and the statisti-
cal differences in these properties between clusters were 

examined using WRST. The vulnerability and robustness 
of the constructed networks were analyzed as previously 
described [88].

Reconstruction and annotation of MAGs
Contigs with lengths > 1000 bp were binned into MAGs 
using the “binning” function of MetaWRAP. The result-
ing MAGs were further refined using the “bin_refine-
ment” function of MetaWRAP with the parameter “-c 
50 -× 10” and dereplicated using the “dRep dereplicate” 
function of dRep (v.3.2.2). In total, 106 representative 
MAGs (rMAGs) with contamination ≤ 10% and com-
pleteness ≥ 50% were generated. The taxonomy of the 
106 rMAGs was annotated using GTDB-TK (v.2.1.0). 
The phylogeny of the MAGs was performed using Phy-
loPhlAn3 [89] and visualized using the Interactive Tree 
of Life (iTOL) tool (https:// itol. embl. de). rMAGs were 
classified as human pathogens if their corresponding spe-
cies were found in both the gcPathogen database [90] 
(accessed June 15, 2024) and the curated human patho-
gen database [91]. The ORFs of the rMAGs were pre-
dicted using Prodigal with the parameter “-p meta,” and 
the annotation of ARGs, VGs, and MGEs followed the 
same methods used for the contigs, with E-value ≤  10−5, 
identity ≥ 60%, and coverage ≥ 80%.

Determination of viruses
VAMB (v.4.1.3) [92] was used to cluster contigs > 1000 bp 
into putative microbial taxa, generating k-mer-compo-
sitions of the sequences and the abundance of the con-
tigs, which were then parsed with PHAMB (v.1.0.1) [93] 
to identify putative viral bins. The quality of these bins 
was assessed using CheckV (v.0.8.1; database v.1.0) [94] 
with the “end_to_end” pipeline. For the proviruses iden-
tified by CheckV, host regions were removed, retain-
ing only the proviral regions of the viral bins for further 
analysis. All viral bins with completeness ≥ 50% were 
clustered into species-level vOTUs based on a 95% ANI 
with a minimum coverage of 85%, using centroid-based 
clustering. Genus- and family-level vOTUs were gener-
ated using a combination of shared genes and amino acid 
identity (AAI) based on Markov clustering as described 
previously [95]. Briefly, viral bins with < 20% AAI or < 10% 
shared genes (using an inflation factor of 1.2) were clus-
tered into family-level vOTUs, while those with < 50% 
AAI or < 20% shared genes (using an inflation factor of 
2.0) were clustered into genus-level vOTUs. The ORFs 
within the vOTUs were predicted using Prodigal with the 
“-p meta” parameter. The annotation of ARGs and VGs 
in these ORFs was performed using the same method 
and threshold as for the original rMAGs. The lifestyle 
of vOTUs was predicted using BACPHLIP [96] and 
VIBRANT [97].

https://itol.embl.de
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Determination of phage–host interactions
Both the in  situ and ex situ hosts of the phages were 
identified as previously described [98]. Briefly, two host 
databases were used to establish the phage–host link, 
in which 552,481 complete bacterial genomes from Ref-
Seq (downloaded from the NCBI database in Novem-
ber 2023) were used for identifying ex situ hosts, while 
106 rMAGs were used for identifying in  situ hosts. 
CRISPR spacers were extracted from the two host 
databases using a custom Python script. Hosts for the 
vOTUs were predicted using a combination of bioinfor-
matic methods. These methods included (i) identifying 
viral sequences with exact matches (or close similarity) 
to host CRISPR spacers, (ii) detecting integrated viral 
fragments within host genomes, (iii) locating matches 
between viral sequences and host tRNA genes, and (iv) 
analyzing host k-mer signatures to identify associations 
with viral sequences. For ex situ host prediction, only 
methods (i) and (ii) were used. For method (i), BLASTn 
was used to compare CRISPR spacer sequences with 
the viral genomes, and matches with ≤ 1 mismatch and 
an E-value ≤  1e−5 were retained. For any CRISPR spacer 
with a match in a viral genome, the repeat sequence 
from the same assembled CRISPR region was compared 
with all bacterial and archaeal genomes via BLASTn 
(E-value ≤  1e−5, 100% nucleotide identity, and 95% cover-
age) to link that CRISPR region (and any viruses harbor-
ing spacers in that CRISPR region) to a host. For method 
(ii), a bit-score threshold of 50 with an E-value ≤  1e−5 and 
a ≥ 96% ANI were used for identifying shared genomic 
regions via BLASTn, and only hits ≥ 1000 bp were con-
sidered. For method (iii), viral and host tRNA genes were 
predicted by tRNA-scan SE-2.0 using the general and 
bacterial/archaeal models, respectively, and BLASTn 
comparison was then performed between the predicted 
viral and bacterial tRNA genes. For method (iv), WIsH 
(v.1.1) [99] was used for host prediction after masking 
tRNA sequences on the viral genomes to improve per-
formance. Additionally, 3024 viral genomes (downloaded 
from the NCBI Virus portal in November 2022) whose 
hosts are invertebrates were used as a decoy database 
after conservatively excluding viruses known to infect a 
host genus under prediction. For each viral genome, the 
WIsH-predicted host with the lowest p-value (≤  1e−5) 
was retained for conservativeness with host assignments.

Identification of prophages and phage‑plasmids
Prophages were identified using CheckV, PHASTER 
[100], and VIBRANT. To identify P-Ps, all vOTUs 
(including phages determined from phage–host links 
and prophages) were screened for plasmid functions by 
searching for proteins specific to plasmid replication and 

partition systems [101, 102]. Specifically, phages smaller 
than 300 kb (cutoff based on chromids at 250 kb and 
domesticated megaplasmids at 300 kb) and larger than 
10 kb were searched for plasmid-associated genes using 
hidden Markov models (HMMs) specific to plasmid rep-
lication and partition systems [102]. A positive hit was 
assigned if the alignment covered ≥ 50% of the protein 
profile with a domain E-value < 10-3. The putative P-Ps 
were classified by clustering with 740 known P-P groups 
[102].

Construction of phylogenetic trees
The phylogenetic relationships between rMAGs affiliated 
with Pseudomonas and their reference genomes from 
NCBI GenBank were inferred using the UBCG2 pipeline 
(v3.0) [103]. The analysis included 1765 non-redundant 
complete strains within the genus Pseudomonas. A maxi-
mum-likelihood phylogenetic tree was constructed using 
FastTree (v.2.1.11) [104] and visualized using iToL.

To infer the phylogeny of the identified P-P S11C3896, 
BLASTn searches were performed against the NCBI 
Virus database (https:// www. ncbi. nlm. nih. gov/ labs/ 
virus/; accessed May 13, 2024) using default parame-
ters, yielding 112 reference sequences. The ORFs of the 
reference sequences and P-P S11C3896 were predicted 
using Prodigal. For marker selection, HMM searches of 
the ORFs were conducted against the profile HMMs of 
virus orthologous groups from the Pfam (v.37.0) [105], 
VOGDB (release 224; https:// vogdb. org/), and TIGR-
FAMs (v.15.0) [106] databases using an E-value thresh-
old of 1 ×  10−3 and alignment coverage ≥ 50%, yielding 63 
markers. The top HMM hits with the highest bit score 
were then individually aligned to the profile HMMs of 
these 63 markers using FAMSA (v.1.5.12) [107]. The 
individual marker alignments were then trimmed with 
trimAl (v.1.4) [108] to retain positions with less than 
50% gaps. The trimmed alignments were concatenated, 
with gaps filled in for missing markers where necessary. 
Finally, a concatenated protein phylogeny was inferred 
from multiple-sequence alignment using FastTree and 
visualized using iToL.
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