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Abstract 

Background Plasmids act as vehicles for the rapid spread of antibiotic resistance genes (ARGs). However, few studies 
of the resistome at the community level distinguish between ARGs carried by mobile genetic elements and those 
carried by chromosomes, and these studies have been limited to a few ecosystems. This is the first study to focus 
on ARGs carried by the metaplasmidome on a global scale.

Results This study shows that only a small fraction of the plasmids reconstructed from 27 ecosystems representing 
9 biomes are catalogued in public databases. The abundance of ARGs harboured by the metaplasmidome was sig-
nificantly explained by bacterial richness. Few plasmids with or without ARGs were shared between ecosystems 
or biomes, suggesting that plasmid distribution on a global scale is mainly driven by ecology rather than geography. 
The network linking plasmids to their hosts shows that these mobile elements have thus been shared between bac-
teria across geographically distant environmental niches. However, certain plasmids carrying ARGs involved in human 
health were identified as being shared between multiple ecosystems and hosted by a wide variety of hosts. Some 
of these mobile elements, identified as keystone plasmids, were characterised by an enrichment in antibiotic resist-
ance genes (ARGs) and CAS-CRISPR components which may explain their ecological success. The ARGs accounted 
for 9.2% of the recent horizontal transfers between bacteria and plasmids.

Conclusions By comprehensively analysing the plasmidome content of ecosystems, some key habitats have 
emerged as particularly important for monitoring the spread of ARGs in relation to human health. Of particular note 
is the potential for air to act as a vector for long-distance transport of ARGs and accessory genes across ecosystems 
and continents.
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Background
Microorganisms, the invisible architects of Earth’s eco-
systems, use an astonishing array of genetic tools to navi-
gate the ever-changing ecosystems they inhabit. Central 
to their genetic repertoire are plasmids, circular or linear 

fragments of DNA that exist alongside chromosomal 
DNA, carry genes that confer diverse benefits to their 
host microorganisms [1].

Most plasmids encode accessory genes that can 
expand the ecological niche of their hosts by, for exam-
ple, breaking down toxic compounds or providing new 
metabolic capabilities [2]. These advantages range 
from metabolic pathways that enable the use of spe-
cific resources to virulence factors that aid in patho-
genicity [3]. Plasmids are also critical players in the 
spread of resistance to antibiotics such as penicillins, 
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aminoglycosides, sulphonamides and last-resort antibi-
otics such as colistin or carbapenems [4]. In particular, 
the spread of antibiotic resistance genes via plasmids 
is a pressing concern, as most antibiotic resistance 
genes of public health importance are located in 
mobile genetic elements (MGEs) [5] including viruses 
[6]. Unfortunately, most studies of the resistome do 
not distinguish between antibiotic resistance genes 
(ARGs) harboured by extrachomosomal elements and 
chromosomes, whereas these genes may perform func-
tions unrelated to antibiotic resistance [7]. Indeed, 
many ARGs have been shown to confer resistance only 
when inserted into MGEs [8]. The associations between 
ARGs and MGEs are therefore significant and have pro-
found effects on phenotypic resistance [7, 9, 10]. The 
genetic context, especially as harboured by a plasmid, 
is thus essential for tackling antibiotic [11]. In addition, 
the plasmids can include other mobile elements such as 
insertion sequences (IS), composite transposons, inte-
grons (attC sites and intI genes), integrative and conju-
gative elements (ICE) [12].

Plasmids therefore act as vehicles for the rapid dissemi-
nation of ARGs, contributing to the global challenge of 
antibiotic resistance whose the success is based on three 
aspects: the communication space, the vehicle for com-
munication and the interpretation of the message by the 
recipient [13]. Understanding how plasmidome gene 
contents interact within environments is pivotal for deci-
phering the mechanisms underlying the spread of ARGs 
and devising strategies to combat antibiotic resistance. 
Intermicrobiome communication can be facilitated by 
shuttle bacterial species belonging to generalist taxa, able 
to multiply in the microbiomes of various hosts. Plasmids 
that can replicate in a broad range of hosts are of con-
cern as they may drive gene exchange over large phylo-
genetic distances [14]. These broad host-range (BHR) 
plasmids associated with ARGs have often been isolated 
from habitats such as produce, soils, manure, wastewater 
or rivers (cited in Castañeda-Barba et al. [4]). More gen-
erally, the gene exchanges could be shaped principally by 
ecology rather than geography or phylogeny [15]. None-
theless, it is important to note that these conclusions are 
primarily drawn from a limited set of ecosystems, with a 
predominant focus on the human microbiome. To effec-
tively combat the growing threat of antibiotic resistance, 
it is crucial that current antibiotic resistance prediction 
procedures are significantly enhanced by considering 
horizontal gene transfer. Such considerations should be 
incorporated early in the preclinical analysis of antibiot-
ics. Moreover, when assessing the risk associated with 
a new antibiotic, it would also be prudent to base this 
assessment on a comprehensive understanding of the 
resistome within specific environments where human 

pathogens could interact with potential bacterial donors 
[16].

A holistic approach to ARG development and risk 
assessment has the potential to strengthen our efforts 
in addressing the challenge of antibiotic resistance. As 
our understanding of the dynamic relationship between 
microorganisms and their environments deepens, the 
study of plasmidome content within structured habitats 
emerges not only as a scientific endeavour but also as a 
crucial pursuit within the One Health framework. One 
Health approach to antibiotic resistance depends on the 
progress of understanding multi-hierarchical systems, 
encompassing communications among environments. 
Although laboratory studies with pure cultures pro-
vide invaluable knowledge, it is now important to also 
incorporate experimental set-ups that aim to reflect the 
diversity of plasmids. The advent of metagenomic tech-
niques has revolutionised the study of plasmidomes [17]. 
This approach allows researchers to uncover unexplored 
genetic reservoirs harboured by plasmids in complex 
communities (i.e. metaplasmidome). As a result, spe-
cific experiments have explored the metaplasmidome 
in relatively restricted environments using specialised 
experimental protocols [18]. However, the advent of new 
procedures that combine high-throughput sequenc-
ing and advanced bioinformatics tools now allows the 
comprehensive decoding of plasmid content in a wide 
array of metagenomic experiments providing a holistic 
view of the gene exchanges [19]. This approach not only 
offers the potential to study the plasmidome on a global 
scale but also offers insights into the complex interac-
tions between humans and different environmental con-
texts (wastewater, natural ecosystems…) within the One 
Health paradigm.

This study, by reconstructing plasmids from various 
public databases covering different ecosystems (human, 
insect, aquatic, soil, etc.), represents the first step towards 
deciphering their genetic content and their involvement 
in gene flow on a global scale.

Results
Main characteristics of the metaplasmidome
A total of 16,836,376 plasmid-like sequences (PLSs) were 
identified from a dataset of 15,023 metagenomes (total-
ling 985.1 Gb of assembled data). On average, these con-
tigs represented 10.7% of the assembled data in terms 
of base pairs (bp). After read recruitment, an average 
plasmid content of 11.3% was observed. However, sig-
nificant variation was observed, with the proportion of 
this MGE being as low as 1% in the marine metagenome 
and rising to 25.1% in the human gut (Supplementary 
Fig.  1). The human oral and gut, and wastewater treat-
ment plant (WWTP) ecosystems were characterised by 
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higher proportions of plasmid content. The detection of 
the attC cassette recombination sites (expressed as sites 
per megabase) in the various ecosystems highlights that 
overall the freshwater ecosystems harboured the highest 
ratio (> 0.44 sites per megabase) (Supplementary Fig. 2). 
The air metagenomes were also characterised by high 
ratio of 0.42 attC sites per megabase.

After clustering, 6,244,208 non-redundant plasmid-like 
clusters (PLCs) were found in metagenomes with a mean 
length of 3.9 kb (max: 868.3 kb). These PLCs constitute 
the metaplasmidome.

Only a small fraction of PLCs was catalogued in the 
plasmid RefSeq database (0.1%) and the new IMG/PR 
database (3.1%), which collects plasmids in microorgan-
isms and metagenomes from JGI. Kmer-based analysis 
revealed that plasmidomes from various environments 
and reference databases (such as RefSeq and PLSDB) are 
clustered together (Supplementary Fig.  3). In particu-
lar, metaplasmidomes from the human gut exhibit the 
closest association with the reference database mMGE, 
which focuses primarily on human mobile genetic ele-
ments and the plasmids [20]. Some PLCs found in ice, 
human vagina and invertebrate guts are highly divergent 
from each other. Among the 159,635 PLCs found within 
the metagenome-assembled genomes (MAGs) of the 
Earth microbiome catalogue [21], 55,536 were unique.

Out of the PLCs, a total of 25,124,994 proteins were 
predicted. Among these, 10,879,720 were successfully 
annotated using the PFAM database, and 2,138,773 
matched against the KEGG database. The annotation 
constructed using the KEGG database was very similar 
to that obtained using the plasmid reference database 
(i.e. RefSeq), with a predominance of transposases (Sup-
plementary Fig.  4 and Supplementary Table  1). Overall, 
compared to chromosomes, the metaplasmidome was 
significantly enriched in transposases, conjugal transfer 
pilus and type IV system (P-adj < 0.05—DESeq2, Supple-
mentary Fig. 4).

The functional annotation of PLCs with KEGG data-
base enables the visualisation of three main clusters (Sup-
plementary Fig. 5) which share similar types of hallmark 
and accessory genes. The first cluster encompassed air, 
human skin, urban and sheep ecosystems. The second 
cluster predominantly included terrestrial and freshwater 
environments. The last cluster comprised all animal and 
human ecosystems, with a few exceptions, such as the 
sheep ecosystem mentioned earlier, and freshwater sedi-
ment and ice ecosystems, which grouped with this third 
cluster.

Resistance genes encoded by PLCs
The ARGs represented 2.44% of the annotated genes 
from metaplasmidomes. The main types of resistance 

identified in the predictions were ABC transporters 
(33.7%) and glycopeptide resistances (32.6%) (Supple-
mentary Table  2). Mapping metagenomic reads against 
these antibiotic resistance genes (ARGs) allowed a quan-
titative exploration of the underlying resistance mecha-
nisms by ecosystem (Fig.  1A) and their distribution 
worldwide. In general, ARGs were most abundant in 
human gut and wastewater ecosystems, and notably less 
frequent in marine environments, regardless of location 
(Supplementary Fig.  6). This approach allows to group 
closely related environments based on their predominant 
resistance type. Interestingly, human and animal guts 
showed clustering tendencies with the wastewater envi-
ronment (Fig. 1B). The air, sediment and river metagen-
omes did not cluster with any of the other environments. 
The air environment was distinguished by the dominance 
of the MFS transporter and the river environment by the 
enrichment of chloramphenicol resistances. There was 
not relationship between ARGs and metal resistance 
genes (MRGs) expressed in RPKM (r = 0.082). The abun-
dance of MRGs was highest in the riverine metagenome, 
followed by wastewater (Supplementary Fig.  7). Among 
the human biomes, the skin and oral ecosystems showed 
the highest abundances.

Mobile genetic elements and CRISPR systems detected 
in PLCs
A total of 32,895 PLCs carrying integrons (0.5% of PLCs) 
were detected when searching for attC sites and intI 
genes. Furthermore, it was observed that PLCs contain-
ing antibiotic resistance genes (ARGs) were significantly 
enriched for integron components (chi-square test, P 
value < 0.001). Other MGEs capable of integrating into 
the host DNA were mainly insertion sequences (IS) with 
terminal inverted repeats (left and right) with 17,982 
hits distributed among 16,992 PLCs (0.27% of PLCs). 
The top 5 of IS identified were ISKpn14, IS401, ISSsp2, 
IS26 and ISPme1. Among the top 10 of the CDS flank-
ing these MGEs, the majority were hypothetical proteins 
(94.26%), with few identified as ARGs (1.46%). Other 
features detected in the PLCs allow the study of inter-
plasmid competition. Specifically, 0.51% of the PLCs 
encoded CAS proteins, and class 1 systems were found 
to dominate the metaplasmidome landscape, accounting 
for 93.1% of the systems. In addition, in the metaplasmi-
dome, 287,730 spacers were detected on 13,937 PLCs tar-
geting 503,786 other PLCs.

Main factors associated to metaplasmidome distribution
Overall, there are only a few PLCs that are shared 
between the different biomes investigated (Supple-
mentary Fig.  8A). The NMDS revealed minimal overlap 
between the environments (Fig.  2A); the dissimilarity 
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Fig. 1 A ARG abundances harboured by metaplasmidome (PLCs) in the different ecosystems studied and B heat map of the resistance categories 
(colour is graded from yellow to red to reflect increasing abundance). The quantification was assessed after mapping reads against genes predicted 
on PLCs (Supplementary Fig. 15D)
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Fig. 2 A NMDS computed from the distances between all PLCs highlighting a clustering by main biomes. At the level of the ecosystem, 
the ANOSIM test gives R = 0.92 (P < 0.001). B Intersection between the different biomes restricted to PLCs hosting ARGs
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between samples was significantly explained by the eco-
system to which they belonged to (ANOSIM statistic 
r = 0.92, P < 0.01). The main factor driving this clustering 
pattern based on ecosystem and biome is the microbial 
community (supplementary material Fig. 8A), dissimilar-
ity and taxonomic diversity, while geographic distance 
is a weaker predictor (r = 0.25, P < 0.01 Mantel test). A 
similar pattern was observed when examining the dis-
tances between samples by focusing only on the PLCs 
with ARGs. These distances were highly correlated with 
the ecosystem (r = 0.93, P < 0.01, ANOSIM test) and taxo-
nomic composition (r = 0.82, P < 0.01), while showing lit-
tle dependence on geographic location (r = 0.27, P < 0.01). 
The curated human gut microbiome database [22] ena-
bles to focus on the human microbiome and specifically 
examine the distribution of PLCs, with particular empha-
sis on disease markers. Among the potential explanatory 
variables (countries, sex, disease, body mass index or 
BMI, and age), BMI was the main factor accounting for 
the differences between PLCs (P < 0.01, PERMANOVA 
test), although it explained only a small proportion of 
the total variation in the data (15%). The other variables 
accounted for only 12.3% of this variation. Ultimately, the 
distribution of PLCs in the human gut was not effectively 
explained by these variables alone.

Thus, ecosystems and their associated microbial com-
munity composition emerged as the dominant factor 
influencing plasmid diversity, with some PLCs being 
shared across multiple habitats. The upset diagram 
clearly shows that the most common intersections were 
found between only two biomes: human and wastewater, 
freshwater and terrestrial or wastewater (Supplementary 
Fig. 9A). Notably, a limited number of PLCs were found 
to be shared among by at least three biomes. The most 
significant cases included human biome in combina-
tion with animals, urban and wastewater. In this study, 
the PLCs affiliated to pBi143, identified as a marker of 
human faecal contamination [23], were detected not only 
in the human gut but also in wastewater, air, and, sur-
prisingly, predominantly in riverine ecosystems. These 
specific PLCs were not detected in the other ecosystems 
studied. The pattern is different when only the few PLCs 
referenced in public databases are considered (Sup-
plementary Fig.  9B). In this scenario, many PLCs were 
shared between different biomes. Focusing solely on 

PLCs containing ARGs, the most frequent associations 
were observed between two biomes, specifically fresh-
water and terrestrial or wastewater (Fig. 2B). The human 
biome was associated to wastewater and a noteworthy 
association link this biome to freshwater, wastewater, 
urban, air and animals. Among animals, pig, chicken and 
bovine shared PLCs with human gut. Only 308 and 52 
PLCs were common to the 8 and 9 biomes, respectively.

Bacteria‑PLCs connections
The presence of protospacers in PLCs or their detection 
in MAGs allowed the construction of a bipartite network, 
linking the MAGs constructed by Nayfach et  al. [21] to 
PLCs through 1,512,877 edges. By analysing the main 
centrality parameters computed from this network, we 
identified 1022 PLCs (Supplementary Table 3) that were 
highly connected to MAGs (with high degree, between-
ness and strength) and referred thereafter as generalist 
or keystone PLCs (keyPLCs) (Supplementary Fig.  10). 
Overall, these keyPLCs had specific features; 9% of these 
PLCs harboured CAS proteins compared to 0.51% for the 
whole metaplasmidome and 78 PLCs among these key-
PLCs targeted 44,087 PLCs (8.7% of the PLCs). Finally, 
142 keyPLCs (13.8%) harboured CRISPR elements. In 
addition, 405 (39.6%) contained ARGs, and 435 (42.5%) 
were linked to a MAG classified by its taxonomy as a 
putative human pathogen. These two features repre-
sented only 7.9% and 4.1% of the total network, respec-
tively. These keyPLCs were thus enriched in ARGs and 
potentially involved in pathogenicity and human health. 
Two keyPLCs, unknown in the reference databases, are 
presented as examples in the supplementary materials 
(Supplementary Figs. 11 and 12).

In order to quantitatively identify the main pathways of 
ARG dispersal, reads were recruited to keyPLCs carrying 
ARGs and their associated MAGs within the network. As 
expected, a significant correlation was observed between 
the recruited reads (r = 0.6, P < 0.05). To focus on the 
main ecosystems involved of the dissemination of ARGs, 
the mapping was restricted to the nodes of this network 
involved in the human health (Fig.  3). Overall, these 
results highlight the important role of air and wastewa-
ter in the dissemination of ARGs. Other biomes, such as 
freshwater and animals, may also contribute to the spread 
of these plasmids, albeit to a lesser extent. Surprisingly, 

(See figure on next page.)
Fig. 3 Main ecosystems involved in the spread of ARGs with an impact in the human health inferred from host of plasmids (MAGs) (A) and keyPLCs 
(B). These Sankey diagrams were constructed from recruited reads on MAGs and keyPLCs that met the following criteria: keyPLCs with ARGs, 
MAGs linked to these keyPLCs with a taxonomic affiliation to a putative pathogen, and nodes detected in human ecosystems (keyPLCs or MAGs 
detected in human ecosystems inferred from metadata). The width of the link was directly related to the base covered by the mapping, normalised 
by the number of the reads mapping for each ecosystem
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Fig. 3 (See legend on previous page.)
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terrestrial and urban environments do not seem to have a 
strong connection to human health, whereas the ice eco-
system was involved.

The distribution of the PLCs across the world
The MAGs, potentially involved in human health, are 
distributed globally, spanning across low to high-income 
countries (Supplementary Fig.  13). The geographical 
localisation of MAGs [21] in the original publication and 
PLCs in this study allowed to compute the geographical 
distances associated with the network edges. As a result, 
the distances between MAGs and PLCs varied from 0 to 
19,964 km, with an average distance of 7770 km, connect-
ing different geographical locations across the planet. A 
similar pattern emerges when looking specifically at the 
most important PLCs related to human health (Fig. 4).

Finally, this study highlights few ubiquitous PLCs (i.e. 
360 present in at least 8 biomes), the majority being 
restricted to a specific biome, and have a large global dis-
tribution. Plasmid-hosting bacteria may therefore belong 
to generalist taxa that are able to thrive in different envi-
ronments and thus play a key role in the widespread 
spread of ARGs. To test this hypothesis, metagenomic 
reads were aligned against microbial species (MAGs 
clustered with an ANI > 0.95), included in the network. 
These species were typically found in a median of two 
habitats, although there were cases where they were pre-
sent in up to 18 different habitats. Interestingly, micro-
bial species interacting with keyPLCs had a significantly 
broader distribution across ecosystems (P < 0.001) and 

biomes (P < 0.001) when compared to other microorgan-
isms within the network. Among these different biomes, 
it is particularly interesting to examine the relationships 
with the human biome. The taxonomic composition of 
bacteria found in human metagenomes and at least in 
four other biomes was predominantly characterised by 
Proteobacteria, Firmicutes, Bacteroidetes and Actinobac-
teria. In particular, certain bacteria belonged to known 
pathogen species such as Pseudomonas putida, Klebsiella 
pneumoniae, Acinetobacter baumannii, Campylobacter 
jejuni, Bacteroides fragilis or Alcaligenes faecalis (Sup-
plementary Fig.  14). Furthermore, the median ANI dis-
tance between each MAG associated with each keyPLC 
was 0.10 (0–0.28), and the taxonomy inferred from these 
MAGs revealed that 474 keyPLCs were associated with 
microbial species belonging to at least 2 phyla.

Horizontal gene transfer within the metaplasmidome 
and with microorganisms
The PLCs in the network were randomly sampled and the 
recent horizontal gene transfer (HGT with 100% iden-
tity between genes) with bacterial chromosomes (i.e. 
MAGs) linked to these PLCs was evaluated. On average, 
this transfer represented 4.35% (± 0.68%) of the predicted 
genes of these PLCs from a random sampling. Consider-
ing only the keyPLCs in the network, this proportion was 
significantly higher, reaching 16.1% and involving 4820 
MAGs. The ARG represented 9.2% of the recent trans-
fers between MAGs and PLCs. Among the top 10 most 
represented genes (excluding the category ‘hypothetical 

Fig. 4 Relationships inferred from microorganisms (MAGs) and keyPLCs involved in the human health. The red lines link MAGs and plasmids 
from the geographical localisation of MAGs in the original publication [21] and keyPLCs in this study. The names of biomes were adjusted to align 
the nomenclature of this paper with that of Nayfach et al. [21]
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protein’), the ARGs were represented by three antibiotic 
efflux pumps and two genes conferring resistance to gly-
copeptide antibiotics (VanS and VanR) (Supplementary 
Table 3).

Recent HGT between PLCs involved 240,846 transfers 
greater than 500  bp and 137,511 greater than 1000  bp 
with 100% identity. By dereplicating the HGT involved 
fragment greater than 1000  bp, 66,076 DNA fragments 
were analysed in depth. Firstly, 2.9% of these PLCs con-
tained specific mobile genetic elements, mainly inser-
tion sequences (IS) and inverted repeats (IR), and were 
therefore enriched in these elements. According to the 
metaplasmidome annotation, transposase (KO7497) was 
the most represented gene in this transfer. These hori-
zontal gene transfers did not preferentially involve anti-
biotic resistance genes (ARGs), although these genes 
accounted for 1.8% of all genes, compared to 2.44% for 
the entire plasmidome. Among the resistance mecha-
nisms, ABC transporter and glycopeptide resistance 
dominated, following the general pattern found in the 
entire metaplasmidome.

Discussion and conclusions
This study marks the pioneering effort to unravel the 
plasmid landscape through metagenomic experimen-
tation, operating on a global scale spanning diverse 
habitats unified by biomes. Historically, plasmid inves-
tigations have predominantly focused on host cultiva-
tion, particularly in the context of pathogenic forms that 
impact human, animal and plant health. Other studies 
have used specialised protocols to isolate plasmid frac-
tions from chromosomal ones prior to sequencing (cited 
in Hilpert et  al. [19]). However, the available data from 
such approaches are limited, and the experimental pro-
tocols are not yet standardised. Furthermore, plasmids 
often remain ungrouped during binning due to their 
high copy numbers and distinct genomic signatures from 
their hosts, and are rarely included in MAGs [24]. Few 
of the PLCs identified in this study have been previously 
referenced in public databases or included in MAGs as 
defined in the study by Nayfach et al. [21], whereas it has 
been estimated that almost 50% of bacteria carry more 
than one plasmid [25]. Overall, the comparative analysis 
performed in the current study shows a weak similar-
ity between data newly acquired and those from public 
databases and recent metaplasmidome surveys, except 
for data related to human ecosystems. Finally by using 
existing or new bioinformatics tools [26, 27] or by com-
bining different approaches (i.e. this study), these new 
data-driven studies allow to better understand the char-
acteristics of plasmids in the environment (gene con-
tent, ecology…) and to expand dedicated databases [28]. 
However, detecting plasmids in metagenomes presents 

several challenges. Plasmid sizes can vary widely, ranging 
from approximately 1 kbp to over 1 Mb, and assemblies 
are often fragmented [19]. As a result, these extrachomo-
somal elements are frequently incomplete and classified 
either based on the presence of hallmark genes, when 
identifiable, or solely on sequence signatures such as 
k-mer patterns [29]. Therefore, the presence of contami-
nants in the PLC database built in this study cannot be 
ruled out. Moreover, intriguing mobile elements such as 
phage-plasmids [30] may have been excluded from this 
analysis. For the human biome, the findings align with 
previous research, suggesting that the proportion of plas-
mids in metagenomes is around 20% such as in the gut 
or oral cavity [31]. The majority of proteins encoded by 
PLCs were of unknown features. The metaplasmidome’s 
gene content included accessory genes also present in 
chromosomes but differed significantly, as expected, in 
the genes involved in conjugation. CAS proteins are likely 
to be involved in the war between MGE [32]. Thus, the 
CAS proteins were detected in 3% of plasmids referenced 
in the RefSeq database. In this metaplasmidome, the 
percentage was lower; however, the class 1 system was 
overwhelmingly predominant according to this previous 
study. The enrichment of keyPLCs in CAS-CRISPR could 
therefore explain their ecological success.

ARGs harboured by the metaplasmidome
The presence of ARGs in plasmids is not extensively 
documented in the literature and can vary depending 
on the annotation methodology. The ARGs can indeed 
have a low identity with public databases, demonstrating 
that the vast majority of the functional resistance genes 
in ecosystems represent novel sequences [33]. From dif-
ferent resistome studies performed on metagenomic 
data (i.e. resistome), Nesme et  al. [34] reported a range 
of abundances from 0.05% in chicken gut to 5.6% in 
human faeces. More specifically, according to this study, 
Yu et  al. [27], by exploring human metaplasmidome, 
found numerous genes encoding antibiotic resistances 
including mostly efflux pumps and genes targeting spe-
cific classes of antibiotics, such as glycopeptides. The 
abundance of antimicrobial resistance, which is linked 
to the selection and persistence of plasmids in an envi-
ronment, may be dependent on the antibiotic concentra-
tions. Based on the limited data available in the literature, 
the quantification of ARG (i.e. RPKM) in the metaplasmi-
dome can be related to the antibiotic load in the aquatic 
ecosystem as this concentration increases from the sea, 
to rivers and polluted aquatic ecosystems as WWTP. 
Intriguingly, our study revealed a high abundance of 
ARGs in environments, such as the insect gut metagen-
ome, where the antibiotic load is thought to be low. Nev-
ertheless, insects harbour ARGs, including efflux pumps 
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which confer resistance to antibiotics when transferred 
to Escherichia coli [7]. Similarly, animals such as rats 
and mice are characterised by high levels of ARGs. Some 
studies suggest that plasmid-mediated resistance may be 
favoured in environments with relatively low antibiotic 
concentrations [4]. These results suggest that antibiotic 
concentration may not be the primary explanatory factor 
for ARG abundance in this context. Antibiotic concentra-
tions in the environment are relatively low (e.g. ranging 
from 10  ng/L to 10  μg/L in aquatic environments) [35], 
which are significantly lower than therapeutic doses in 
human blood plasma. Other factors, such as the linkage 
of ARGs and metal resistance genes in plasmids, allow 
heavy metals to act as a co-selective agent in the emer-
gence and spread of antibiotic resistance [36]. However, 
this study shows that there is no significant relationship 
between these two types of resistance at the metagen-
ome scale. Instead, according to an empirical model [4], 
ARG abundance was mainly explained by bacterial rich-
ness (r = 0.54, P < 0.001) (supplementary material Fig. 8B). 
This suggests that higher microbial diversity increases the 
likelihood of finding a host that supports the persistence 
of a particular plasmid. Thus, bacterial diversity does not 
appear to be an obstacle to the spread of plasmid-associ-
ated antimicrobial resistance, contrary to the conclusions 
of Cuadrat et al. [37] based on the entire resistome.

The gene flow between the ecosystems seems limited
The gene content of the PLCs, including ARGs, is intri-
cately linked to the type of ecosystem or biome, and 
consequently, to the taxonomic composition. These find-
ings suggest that the dynamics of plasmids in environ-
ment are identical regardless of the presence or absence 
of ARGs. From an in-depth study of human gut, Yu et al. 
[27] evidenced rather a strong biogeographic signal at 
the individual level and in the lifestyle of the populations. 
However, by studying the gene exchange that connects 
the human microbiome, Smillie et al. [15] show also that 
the plasmid network is shaped by ecology rather than 
geography. This new study provides evidence for such a 
pattern across multiple habitats, confirming that plas-
mids can be found within the same ecosystem type but 
in different geographical locations. Similarly, using bacte-
rial isolates from the human gut, Yang et  al. [14] found 
that plasmids were shared between bacterial hosts across 
geographically distant environmental niches. This obser-
vation may be explained by increased human contact on 
a global scale, particularly during the era of industriali-
sation. However, it is important to consider that aquatic 
environments and air habitats also act as mobile plat-
forms, facilitating the spread of genes such as ARGs and 
accessory genes across the globe.

However, certain plasmids carrying ARGs have been 
identified as being shared between biomes, and knowl-
edge of the sources and reservoirs of ARGs is essential 
for controlling their spread. While most studies draw 
conclusions from the resistome, this study allows us 
to identify the main pathways of plasmids from differ-
ent habitats to humans. The human biome was linked 
to wastewater and, more interestingly, to freshwater, 
animals, urban and air. More specifically, the keyPLCs 
highlighted the importance of air and wastewater as 
pathways for the spread of ARGs. In particular, urban 
and wastewater environments were logically associated 
with human biomes, as these biomes can share micro-
organisms through simple contact and faecal discharge, 
respectively. The strong associations of certain biomes, 
including human, with animals was also expected as 
domestic animals are affected by antibiotics treatments. 
Interestingly, terrestrial ecosystems showed limited PLCs 
sharing with other biomes, including the human biome, 
and did not appear to play a role in the dissemination 
of ARGs to humans. This is surprising given that some 
studies have suggested that terrestrial ecosystems har-
bour the most diverse pool of ARGs [34] and have been 
proposed as a reservoir of resistance genes available for 
exchange with clinical pathogens [38]. Soil itself is a sta-
tionary complex characterised by great heterogeneity and 
harbours numerous ARGs, independent of human antibi-
otic use [7]. Nevertheless, physical forces such as air can 
transport soil particles, including bacteria, on an inter-
continental scale. The marine environment was charac-
terised by few ARGs as expressed in RPKM, regardless of 
location whereas the analysis of TARA Oceans data [39] 
seems to highlight numerous ARGs in plasmids. Only 
certain zones with high anthropogenic activity had a 
significant impact on marine habitats [40]. This environ-
ment shared PLCs, with or without ARGs, mainly with 
freshwater ecosystems. Bacterial adaptation to saline or 
non-saline environments involves specific evolution-
ary processes, such as a metaproteome characterised by 
different isoelectric points [41]. The gene flux between 
saline and non-saline environments could therefore be 
classified as a rare event.

Keystone PLCs travel across ecosystems as hitchhikers 
embedded in the BHRs
The network established between PLCs and bacterial 
MAGs highlights keyPLCs that are characterised by an 
enrichment in antibiotic resistance genes (ARGs) and 
CAS-CRISPR components. In addition, certain well-
documented pathogens carrying ARGs have the ability 
to cross different environments before posing a threat 
to humans. Among the pathogens associated with these 
specific keyPLCs, bacteria belonging to the ESKAPEE 
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pathogens were found. Among these pathogens, Acine-
tobacter baumannii serves as a prominent case study, 
having evolved from a state of complete antibiotic sus-
ceptibility to multidrug resistance [42]. These genes have 
been horizontally transferred from a variety of bacte-
rial genera, with some originating from environmental 
sources. Klebsiella pneumoniae is known to have been 
the first isolate to carry carbapenem resistance genes, 
which are critical for treating serious infections and 
combating multidrug-resistant Gram-negative bacterial 
infections [43]. Other bacteria were found to be associ-
ated with keyPLCs, such as those in the genus Kluyvera 
and Ochrobactrum, which are known to harbour resist-
ance genes with a high degree of genetic similarity to 
those found in pathogenic microorganisms [44].

There are two main explanations for the ecological 
success of such plasmids. First, the majority of bacteria 
associated with these keyPLCs belong to versatile taxa 
that are able to thrive in the microbiomes of different 
habitats, thereby facilitating communication between dif-
ferent microbiomes. These taxa act as ‘microbial hubs’ 
within scale-free networks, connecting a wide range of 
microbiota [13]. These keyPLCs were associated with 
bacteria that have a broad distribution across differ-
ent ecosystems. As a result, these plasmids facilitate the 
spread of ARGs across diverse habitats worldwide, using 
bacteria—including many pathogens—as hosts for direct 
transmission. In addition, these plasmids could be trans-
mitted indirectly through commensal bacteria inhabiting 
the human digestive system, eventually reaching patho-
gens that cause human disease. Second, these plasmids 
have the ability to replicate in a wide range of hosts, 
potentially driving gene exchange over different phylo-
genetic distances. Such broad host-range plasmids were 
detected among keyPLCs, as the genetic distance of the 
bacteria associated with these plasmids can span at least 
two phyla. Rahube et al. [45] highlighted the transfer of 
IncP- and IncPromA-type plasmids from Gammapro-
teobacteria to many different recipients belonging to 11 
different bacterial phyla in terrestrial environment. BHRs 
associated with ARGs have been frequently isolated from 
habitats such as soils [46], wastewater [47] or rivers [48].

It is reasonable to assume that these plasmids confer 
benefits on their hosts under antimicrobial pressure. This 
observation, as noted by Wang and colleagues [49], is 
particularly evident for antimicrobial resistance plasmids 
in WWTPs, where they may confer a selective advantage. 
However, these new data show that this conclusion can 
be drawn independently of the presence of antibiotics, 
even at low concentrations. The main ARGs detected 
in this study were related to efflux pumps. These genes 
confer antibiotic resistance but are known to have a more 
general role in the environment, such as pumping various 

biocides (metals, toxins, etc.) out of the cells and confer-
ring a positive fitness effect to the host [50]. In addition, 
this association, BHR-keyPLCs, certainly promotes gene 
transfer between distant lineages. Specifically, this study 
focuses on plasmid-host transfer and sheds light on a hot 
spot of HGT. Recent gene transfers highlighted in this 
study mainly involve ARGs and multidrug export. Trans-
fer to a plasmid has several advantages for the host. For 
example, many ARGs may not confer resistance when 
immobilised on the genome, but they do when carried by 
plasmids [8]. Interplasmid ARG transfer could also accel-
erate the dissemination of the antibiotic resistance in 
bacterial pathogens [51]. However, in despite the exten-
sive analysis of numerous plasmids, this study does not 
provide evidence to support the promotion of such genes 
or specific mechanisms. Such an evolutionary strategy 
cannot be widespread because it must occur between 
compatible plasmids, i.e. that can coexist in a same bacte-
ria over several generations.

Identifying hot spots for ARG dissemination: key areas 
for surveillance
It has been argued that research, surveillance and inter-
vention strategies to mitigate the spread of resistance 
require a comprehensive approach that recognises the 
interconnectedness of human health with that of ani-
mals and our shared environment. Thus, soil microbiota 
has been suggested as one of the ancient evolutionary 
sources of antibiotic resistance and are often considered 
as potential reservoirs. This study suggests that this envi-
ronment is not the primary pathway for ARG dissemi-
nation, particularly when focusing on the mobilome. By 
comprehensively analysing the plasmidome content of 
different ecosystems and tracing the main route of plas-
mid pBI143, three habitats emerged as particularly signif-
icant: wastewater, as expected, together with freshwater 
(mainly river) and air. Additional findings highlight the 
importance of freshwater and air environments for gene 
flow. While previous studies have highlighted the preva-
lence of recombination sites (attC) in marine ecosystems 
compared to human ecosystems [52], this current study 
reveals the highest ratio of recombination sites in the 
metagenomes of freshwater and air ecosystems. Fresh-
water ecosystems, particularly rivers, are recognised as 
important hubs for ARGs and play a critical role in facili-
tating horizontal gene transfer and the evolution of resist-
ance [53]. These ecosystems are affected by the input 
of antibiotics from various sources, including human 
urine and faeces, and animal manure used as fertiliser. 
However, air as a vector for ARG dissemination is often 
overlooked in surveillance efforts, and its role in plasmid-
mediated gene flow has been largely neglected. Thus, 
animal faeces, hospital and WWTPs could be one of the 
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major sources of airborne ARGs (see review Segawa et al. 
[54]). For example, the bioaerosol generated by munici-
pal sewage can potentially travel many kilometres and 
be deposited on soil and water [55]. The airborne bacte-
ria and birds could be responsible for the anthropogenic 
ARGs detected in remote glaciers [56]. This relationship 
between glacier and air could explain the involvement of 
the ice ecosystem in the spread of ARG (Fig. 3).

Conclusion
This study significantly expands the database of plas-
mid sequences, highlighting that a significant number 
of genes remain uncharacterised. In addition, it provides 
critical insights into the primary pathways for plasmid-
transmitted ARGs, thereby improving our understanding 
of their spread across different environments. Of par-
ticular note is the potential for air to act as a vector for 
long-distance transport of ARGs across ecosystems and 
continents. It is therefore essential to extend studies to 
the air and to include this environment in surveillance 
networks to better monitor and control the spread of 
antibiotic resistance.

Methods
The methods used in this study are presented graphically 
in the supplementary materials (Supplementary Fig. 15).

Datasets and metadata
Plasmid content was predicted from assembled data 
already publicly available or constructed from reads for 
this study. The assembled data supplied by Tully and col-
leagues [57], metasub consortium [58] and TARA ocean 
[59] were used for the human microbiome, the built envi-
ronment and the marine ecosystem, respectively. For 
assembly in the current study, reads from metagenomes 
were selected from two main databases. For the soil eco-
system, the metagenomes were selected from the dedi-
cated curated database ‘TerrestrialMetagenomeDB’ [60]. 
For the other environments, metagenomes were selected 
from the SRA metadata. Data were manually curated to 
remove metabarcoding data and retrieve some GPS loca-
tions from original publications. Some metadata specific 
to the human gut [22] were extracted from the following 
repository: https:// gmrepo. human gut. info/ data. All the 
data (accession numbers and main metadata) are sum-
marised in Supplementary Table  5 and Supplementary 
Fig.  16. In addition, the taxonomic composition of the 
metagenomes was assessed using metaphlan (v3) [61] 
with a subsample of 20,000,000 reads. Bacterial richness 
corresponded to the number of species assessed by this 
tool.

Plasmid prediction and clustering
If the metagenomes were not assembled, reads were 
assembled by using megahit 1.2.9 with the meta-
large option [62] after cleaning the data with bbduk2 
(qtrim = rl trimq = 28 minlen = 25 maq = 20 ktrim = r 
k = 25 mink = 11 and a list of adapters to remove) from 
the bbtools suite (https:// jgi. doe. gov/ data- and- tools/ 
softw are- tools/ bbtoo ls/) (Supplementary Fig. 15A).

Plasmids were predicted for each assembly 
(length > 2  kb) (Supplementary Fig.  15B) by using both 
reference-based and reference-free approaches (Sup-
plementary Fig.  17) as described in previous works [19, 
63] and available on the github website (https:// github. 
com/ meb- team/ PlasS uite/). The databases used for the 
first approach included those for chromosomes (archaea 
and bacteria) and plasmids from RefSeq, as well as the 
MOB-suite tool [64], SILVA [65] and phylogenetic mark-
ers hosted by chromosomes [66]. The database created 
for this purpose is available at this address https:// github. 
com/ meb- team/ PlasS uite/? tab= readme- ov- file#1- prepa 
re- or- downl oad- your- datab ases. Two reference-free 
methods were applied to contigs that were not affiliated 
with chromosomes (discarded) or plasmids (retained in 
the first step): PlasFlow [29] and PlasClass [67]. Previ-
ously undetected viruses were removed by using Viral-
Verify (https:// github. com/ ablab/ viral Verify) [68] that 
provides in parallel plasmid/non-plasmid classification. 
This step would also remove potential plasmid-phage 
elements as described by Pinilla-Redondo et al. [30], but 
would minimise false positives. Eukaryotic contamina-
tion was removed by aligning the sequences against the 
NT database and human chromosomes (GRCh38) using 
minimap2 [69] with -x asm5 option. Contigs mapping 
with 95% identity for at least 80% coverage were removed. 
The predicted plasmids, hereafter referred as plasmid-
like sequences (PLSs), were grouped by ‘scientific names’ 
(i.e. 27) such as defined in the SRA metadata (air, lake, 
wetland…) and subsequently named ecosystems. These 
ecosystems were grouped in 9 biomes (Supplementary 
Table 5). The data were then dereplicated by ecosystems 
using cd-hit-est with a threshold of 99%. The dereplicated 
PLSs were then clustered using MMseqs2 [70] with 80% 
of coverage an 90% of identity (–min-seq-id 0.90 -c 0.8 –
cov-mode 1 –cluster-mode 2 –alignment-mode 3 –kmer-
per-seq-scale 0.2) to define plasmid-like clusters (PLCs).

Functional annotations
Gene annotation of PLCs (Supplementary Fig. 14C) was 
based on prokka [19] (https:// github. com/ meb- team/ 
PlasS uite/ tree/ master/ PlasA nnot), using a dedicated 
database specifically designed for the identification of 
plasmid markers and ARGs using ResFAM [71]. In a 
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subsequent step, predicted proteins were subjected to 
functional annotation by alignment to the PFAM data-
base using hmmer3 (–cut_ga) [72] and KEGG using 
KoFamScan (https:// github. com/ takar am/ kofam_ scan). 
Only significant KEGG results as determined by this last 
tool were selected in the final annotation. The BacMet 
database (version 2.0) was used for antibacterial biocide 
(BRG) and metal resistance gene (MRG) predictions [73]. 
Comparison with this database was performed using 
MMseqs2 (easy-search -s 5.7 -e 1e-3 -c 0.5 –cov-mode 1) 
with an identity cut-off of 70% and a coverage of at least 
50% [52].

Cas genes were identified using the CRISPRCasFinder 
program [74] within a singularity container (https:// 
crisp rcas. i2bc. paris- saclay. fr/ Home/ Downl oad). Inte-
gron (intI) prediction was processed from genes with a 
specific hmmer profile (intI.hmm) available at https:// 
git- r3lab. uni. lu/ sushe el. busi/ inton ate [75]. Gene mobility 
in integrons is controlled by the presence of attC sites, 
which are 55 to 141 nucleotide long imperfect inverted 
repeats. These sites within this large DNA dataset were 
identified from PLCs and reads (i.e. metagenomes) 
using a hidden Markov model [76] (https:// github. com/ 
marib uon/ HattCI). The outcomes were filtered based 
on Viterbi scores (Vscore in the output file) greater than 
7.5 to minimise false positives according to the original 
paper. MobileElementFinder [77] was used to detect the 
following types of MGEs: insertion sequences (IS), unit-
transposons (Tn), composite transposons (ComTn), 
integrative mobilisable elements (IME) and miniature 
inverted repeats (MITEs). Finally, conjugative plasmids 
(PLCs) were classified using plascad (https:// github. com/ 
pianp ianyo uche/ plasc ad) [78].

Functional annotation comparisons between PLCs 
and microbial chromosomes were based on predicted 
genes derived from the reads to identify specific features. 
First, reads mapped to PLCs were distinguished from 
unmapped reads, which were considered to be chromo-
somal. Protein prediction was performed on the reads 
using FragGeneScan [79], and the proteins were anno-
tated against PFAM and KO databases. These annota-
tions were then compared using the DSeq2 tool [80].

Backmapping and PLC coverage
Clean reads were mapped to the PLCs using bwa [81] 
and the results were merged using samtools [82] to 
retain reads with an identity greater than 95% (msam-
tools filter -b -l 50 -p 95 -z 80 –rescore –besthit) (https:// 
github. com/ arumu gamlab/ msamt ools) (Supplementary 
Fig.  15D). The mappings (or recruitment reads) to the 
predicted genes were deduced from the gff file accord-
ing to the procedure described by the OSD consortium 
(https:// github. com/ Micro B3- IS/ osd- analy sis/ wiki/ 

OSD- assem blies). Briefly, this pipeline uses gff2bed, bam-
Tobed and bedtools [83] to affiliate reads to a specific 
gene. In this step 12,833 metagenomic experiments (i.e. 
samples) were considered (Supplementary Table 5) each 
using a subset of 2,000,000 reads to reduce the computa-
tional burden (e.g. Tully et al. [57]). The average coverage 
of PLCs for each ecosystem was calculated from these 
‘bam’ files using samtools (v1.16.1) [82] with the coverage 
command. For mapping to the plasmid pBi143 identified 
among the PLCs, a marker of human faecal contamina-
tion [23], all reads for all metagenomes were mapped and 
the results were normalised by the bp total in the sample.

From this backmapping on PLCs and genes, two 
matrices were generated (Supplementary Fig.  15E), 
representing predicted PLCs × metagenomes or 
genes × metagenomes expressed in reads or base pair 
(bp) counts. The row of this second table can then be 
sorted to select genes of interest as, for example, ARGs 
or KOs. These matrices were filtered to remove spuri-
ous occurrences of PLCs or genes. A PLC or gene was 
excluded from an ecosystem if it was either present as a 
singleton in all samples, or present in less than 1% of the 
metagenomes.

Gene abundance calculation
From the generated gene matrix, the rows (i.e. genes) 
associated with genes of interest (e.g. ARGs) were 
selected. The columns were normalised by the gene 
length and the number of clean reads. The data were 
multiplied by 1,000,000 to obtain the RPKM. From the 
ARG affiliation (ARO ontology), a resistance mechanism 
can be inferred and displayed by a heat map using the R 
package.

Computation of distances
Computing the Bray–Curtis distance on such large 
dimensional PLC/gene × metagenome matrices requires 
significant computational resources (Supplementary 
Fig.  15F). To overcome this, the matrices were divided 
into smaller parts (50 columns each) and all combina-
tions (part against part) were parallelised on a high per-
formance computing (HPC) system. The result was a 
12,833 × 12,833 matrix which was analysed by NMDS, 
ANOSIM and Mantel statistics using the vegan package 
[84].

Comparative analyses
The PLSs identified in this study were compared with 
various public databases using minimap2 [69] with the 
parameters ‘-x asm5’ and requiring at least 80% coverage. 
Bray–Curtis distances between plasmids from the PLS 
grouped by ecosystems and different public databases 
(RefSeq, IMG/PR, etc.) were calculated using Simka [85] 
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with default settings. Subsequently, NMDS analysis was 
then performed using the vegan package [84] based on 
these distances (Supplementary Fig. 15G).

A bipartite network linking microorganisms to PLCs
A bipartite network was constructed using metagenome-
assembled genomes (MAGs) from different ecosystems 
defined by Nayfach et al. [21] and the PLCs built in this 
study (Supplementary Fig.  15H). Edges were defined 
based on the presence of PLCs (i.e. mapping) in 52,515 
MAGs or spacer-protospacer pairs. The PLCs in the 
MAGs were detected by mapping performed with mini-
map2 with a minimum identity and coverage of 90% and 
80% [69]. This procedure allows to identify 55,536 PLCs 
associated with 14,358 MAGs. Two tools were used to 
detect CRISPR in MAGs: MetaCRT with default param-
eters [86] and PILER-CR (-minarray 4 -quiet -minspacer 
20 -mincons 0.97) [87]. MetaCRT results were filtered 
using parser_metaCRTout.R [88]. The spacers contained 
in MAGs contigs > 2  kb with at least 3 repeats were 
pooled and clustered with cd-hit-est (-g 1 -T 16 -M 20000 
-c 0.9 -d 0 -s 1 -aL 1 -aS 1). A total of 451,132 unique 
spacers > 25 bp were then identified in 12,470 MAGs. A 
BLASTn search was performed using these non-redun-
dant spacers as queries against the predicted PLCs. 
Spacer matches with at least 95% coverage and identity 
then defined a protospacer on PLCs and were retained 
for further analysis. By combining these results, a bipar-
tite network with 23,498 MAGs and 596,156 PLCs nodes 
and 1,512,877 edges was built with the package igraph 
under R [89]. The main network parameters computed 
(betweenness, degree, strength and closeness) associated 
to the PLCs mean coverages were analysed by a principal 
component analysis (package ADE4 [90]) to determine 
the main keystone among the PLCs in the network (Sup-
plementary Fig. 10).

Evaluation of the generalist taxa in the network
The ANI distances between all 23,498 MAGs in the 
bipartite network were calculated using Mash [91] with 
default parameters. The MAGs were then grouped into 
clusters using the ‘bClust’ function with a complete link-
age, a part of the ‘micropan’ package implemented in the 
R software [92]. MAGs were classified as belonging to 
the same species if their distance was less than 0.05 [57]. 
A subset of reads (2,000,000) from 12,833 metagenomic 
experiments were aligned to the 23,498 MAGs using bwa 
and the results were subsequently filtered with msam-
tools according to the methods described above (back-
mapping chapter). Species coverage was calculated for 
each ecosystem. This value was determined as the mean 
coverage across the MAGs belonging to the respective 
cluster.

Horizontal gene transfer
In this work, both types of HGT were assessed: between 
bacteria (MAGs) and PLCs, taking into account the 
connection established in the network (Supplementary 
Fig. 15H), and between PLCs themselves.

To assess recent transfer between MAGs and PLCs, 
genes on chromosomal contigs of MAGs (without pre-
dicted plasmids) were predicted using Prodigal [93]. 
These genes were compared to the predicted genes on 
PLC using BLASTn [94] and only identical genes were 
selected. All MAGs associated with keyPLCs were ana-
lysed for recent transfers. For comparison with gene 
transfers not involving keyPLC, 3 random samples of 
1000 PLCs were made. To analyse the recent transfer 
between PLCs, all PLCs were compared by BLASTn 
and only DNA fragments of 500 and 1000 bp with 100% 
identity were selected [95].
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