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Abstract 

Background Network analyses are often applied to microbial communities using sequencing survey datasets. 
However, associations in such networks do not necessarily indicate actual biotic interactions, and even if they do, 
the nature of the interactions commonly remains unclear. While network analyses are valuable for generating hypoth‑
eses, the inferred hypotheses are rarely experimentally confirmed.

Results We employed cross‑kingdom network analyses, applied trait‑based functions to the microorganisms, 
and subsequently experimentally investigated the found putative predator–prey interactions to evaluate whether, 
and to what extent, correlations indicate actual predator–prey relationships. For this, we investigated algae and their 
protistan predators in biocrusts of three distinct polar regions, i.e., Svalbard, the Antarctic Peninsula, and Continental 
Antarctica. Network analyses using FlashWeave indicated that 89, 138, and 51 correlations occurred between preda‑
tory protists and algae, respectively. However, trait assignment revealed that only 4.7–9.3% of said correlations link 
predators to actually suitable prey. We further confirmed these results with HMSC modeling, which resulted in similar 
numbers of 7.5% and 4.8% linking predators to suitable prey for full co‑occurrence and abundance models, respec‑
tively. The combination of network analyses and trait assignment increased confidence in the prediction of predator–
prey interactions, as we show that 82% of all experimentally investigated correlations could be verified. Furthermore, 
we found that more vicious predators, i.e., predators with the highest growth rate in co‑culture with their prey, exhibit 
higher stress and betweenness centrality — giving rise to the future possibility of determining important predators 
from their network statistics.

Conclusions Our results support the idea of using network analyses for inferring predator–prey interactions, 
but at the same time call for cautionary consideration of the results, by combining them with trait‑based approaches 
to increase confidence in the prediction of biological interactions.
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Background
Microbial life thrives through complex ecological inter-
actions [1]. Depending on the context and the environ-
mental factors, microorganisms engage in a broad variety 
of trophic or non-trophic interactions, positive, negative, 
or neutral, which can dynamically shift between coop-
eration, competition, antagonism, and exploitation [2–5]. 
Disentangling the underlying dynamics shaping com-
munity structure, assembly, and function, as well as the 
impact of the environment on the microbial communi-
ties, requires an understanding of microbial interactions 
[6]. Towards this goal, association network analysis pro-
vides a robust analytical tool to investigate and predict 
microbial interactions [7]. Network analyses are often 
applied to diverse microbial communities using datasets 
derived from high-throughput sequencing. These analy-
ses statistically correlate abundance-based associations, 
which are visualized into a network, with nodes repre-
senting microorganisms and edges representing positive 
or negative associations between taxa [8]. However, net-
works only generate hypotheses about community struc-
ture and are not equivalent to ecological networks, i.e., 
the calculated associations might not accurately reflect 
true ecological interaction [8].

Network interpretation is a complex process that 
requires the careful consideration of several factors, such 
as data type (cross-sectional or time series), environ-
mental parameters, and potential confounding factors 
(indirect interactions or similar niche requirements) [9, 
10]. Due to the lack of comprehensive datasets detailing 
known microbial interactions with which network analy-
ses can be finetuned, experimental validation through co-
culturing is pivotal to ensure the accuracy of the network 
models [1, 11]. However, most network constructions are 
rarely followed by experimental confirmation [9].

Network validation has been explored in only a 
few studies using various experimental co-culture 
approaches. Jiang et  al. [12] found that positively asso-
ciated taxa pairs in co-occurrence networks implied 
relationships such as neutralism, competition, and 
mutualism, varying with bacterial combination and cul-
tivation time. Moreover, Jiang et  al. [13] observed that 
neutralism predominated in 65.6% and 35.7% of positive 
and negative tested network associations, respectively, 
and that positive relationships in gut microbial com-
munities, which might be attributed to the exchange of 
amino acids, short-chain fatty acids, and vitamins, are 
overestimated. Durán et al. [14] examined interkingdom 
microbial competition within the Arabidopsis thaliana 
root microbiome, finding antagonistic interactions by 
assembling synthetic communities. Yet network valida-
tion studies remain scarce mainly due to the intrinsic 
complexity of both the ecological systems tested and the 

calculated networks, as well as the labor-intensive nature 
of microbial isolation, particularly for fastidious and diffi-
cult-to-culture microorganisms [1, 12].

The selection of a suitable ecological system for net-
work validation is fundamental, as it determines the fea-
sibility of experimental manipulation and whether the 
system may be extended to broader ecological theories. 
Terrestrial environments harbor highly diverse microbi-
omes, including members of all three domains of life and 
viruses, all of which play key roles in regulating soil eco-
system processes [15]. Given the heterogeneous nature 
of the soil matrix, where interactions among micro-
organisms and with their environment remain largely 
obscured [7, 10], these ecosystems present both unique 
opportunities and challenges for exploring microbial 
network functions. Among terrestrial ecosystems, bio-
logical soil crusts (biocrusts) have emerged as suitable 
and valuable model systems for advancing ecological 
theories and understanding ecosystem functioning [16]. 
Biocrusts are superficial micro-ecosystems composed of 
soil particles and various proportions of eukaryotic and 
prokaryotic photoautotrophs and heterotrophs [17–19]. 
Polar biocrusts, in particular, exhibit a considerably lower 
complexity than many other microbial communities due 
to the extreme environmental conditions that drasti-
cally reduce biodiversity. They predominantly feature 
microbial primary producers and consumers with short 
life cycles, thus offering exceptional potential to study 
the drivers and functioning of microbial communities 
[20–22]. Additionally, biocrust taxa are relatively easy to 
culture and transport, which enables the construction of 
custom communities in small experimental units [23]. 
Hence, polar biocrusts provide a relatively simple food-
web structure, making them an appropriate system for 
validating network hypotheses.

Nonetheless, even the analysis of low-complex sys-
tems could generate hundreds to thousands of puta-
tive correlations, raising the question: Where to start 
testing? Simplified networks can be attained by reduc-
ing network density through stricter corrected p-value 
thresholds for inferred edges or by increasing cutoffs for 
association strength, prevalence, or abundance filter-
ing [24, 25]. However, applying overly strict criteria can 
result in omitting potentially meaningful interactions, 
which could lead to a less comprehensive network [24]. 
Prior research has employed serial dilutions to reduce 
the complexity of microbial communities, generated in 
silico networks on the reduced communities, and experi-
mentally validated microbial pairs [12, 13]. However, 
these simplified communities may overlook important 
high-order interactions that, in natural conditions, are 
modulated by other species [12]. A promising alternative 
approach is to agglomerate taxa based on taxonomic or 
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functional groups [8]. For instance, Lima-Mendez et  al. 
[26] adopted a trait-based approach by grouping taxa 
into functional sets and validated network-generated 
hypotheses through microscopy, confirming symbiotic 
relationships based on a literature-curated collection of 
574 known symbiotic interactions in marine eukaryotic 
plankton. Building on this concept, applying an ecologi-
cal trait-based approach, which incorporates organism-
specific traits (measurable features of an individual that 
potentially affect its fitness [27]) for network evalua-
tion, could enhance the identification and validation of 
meaningful interactions. Trait-based ecology aims to link 
species diversity and traits with the identification of the 
underlying mechanisms controlling community structure 
and ecosystem functioning [28, 29].

Here, we applied cross-kingdom network inference in 
polar biocrusts using DNA-based sequencing data to pre-
dict putative predator–prey relationships between cer-
cozoans (Rhizaria) and their potential algal prey: green 
algae (Archaeplastida) and ochrophytes (Heterokonto-
phyta). These taxa can dominate in terrestrial environ-
ments in both polar regions and play key roles in nutrient 
cycling and food-web dynamics [17, 30, 31]. Cercozoa 
are probably among the most common predators of ter-
restrial algae in polar biocrusts, as they can dominate 
among heterotrophic protists in biocrusts [32] and make 
up the majority of known terrestrial algivorous protists 

in other terrestrial environments (Fig.  1) [33, 34]. We 
developed taxon-specific DNA-based amplicon sequenc-
ing methods for green algae and ochrophytes to produce 
comprehensive datasets for Cercozoa and their putative 
prey. With the network analyses, we predicted predator–
prey interactions, which we experimentally confirmed via 
food range experiments of here established cultures. We 
show the advantage of supplementing network analyses 
with the assignment of functional traits to increase con-
fidence in predator–prey prediction and further show a 
promising correlation between node statistics and preda-
tor growth rates.

Materials and methods
Study areas and sample collection
This study encompasses the analysis of biological soil 
crusts in three polar regions. In the Arctic, one region 
was included — Svalbard in the Arctic Ocean (78° N). In 
Antarctica, two regions were studied, i.e., King George 
Island (62° S) in the South Shetland archipelago of 
maritime Antarctica and the Thala Hills oasis (67° S) in 
Enderby Land, East Antarctica. A brief description of the 
sampling sites is given below, and detailed information 
about their geographic location and climate is provided 
in Supplementary 1.

Sites with early and mature stages of biocrust devel-
opment were selected. At each site, five replicates were 

Fig. 1 Selected images of algivorous Cercozoa and their prey covered in this study. A Rhogostoma sp. with ingested cells of Auxenochlorella sp. B 
Fisculla terrestris with two ingested cells of Auxenochlorella sp. C Cercomonas celer with food vacuoles containing Chlorellales cells. Euglypha rotunda 
(D, F, G) with food vacuoles containing D Leptosira sp.; F an undetermined Chlorellales; G Bracteacoccus sp. E Rhogostoma sp. with food vacuoles 
containing Leptosira sp. cells. The scale represents 10 µm
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collected, ensuring a minimum separation of 1 m. Sam-
pling consisted of pressing the opening of a sterile plastic 
Petri dish into each biocrust and lifting it gently with a 
spatula disinfected with 70% ethanol. Next, the samples 
were air-dried for 1 to 3  days before sealing the Petri 
dishes with parafilm. Finally, the biocrusts were trans-
ported to Cologne, Germany, for analysis.

Svalbard
Sampling sites comprised glacial moraines and other 
rocky terrains with sparse vegetation, where bird feces 
were present. Various bird species, including terns, skuas, 
and ptarmigans, were observed nesting in the area. The 
sampling campaign took place in July 2021. Forty-five soil 
crust samples were collected at 9 sampling sites in the 
vicinity of Longyearbyen. Three sites west of Longyear-
byen, four in the periglacial area of Longyearbyen glacier, 
and three on the Breinosa mountain were sampled.

King George Island
Sampling took place from January to March 2022. Fifty 
soil crust samples were collected in 10 sampling sites, 
chosen in areas with low human disruption. The sites fea-
tured Arenosols, Cryosols, Leptosols, and Fluvisols [35], 
which had bird droppings from the various species of 
skuas, gulls, terns, petrels, and penguins that visit or nest 
in the area. Three sites were located in the vicinity of Col-
lins refuge and three in the Meseta, North Davis Heights, 
all of them in the periglacial area of Collins. Four addi-
tional samples originated from areas ranging from 300 m 
to 2 km in distance from Bellingshausen Station, on the 
Fildes Peninsula and Ardley Island in the south-west of 
King George Island.

Thala Hills oasis, Enderby Land
The sampled terrain comprised rocky hills with weath-
ered rock formations, occasionally accumulating bird 
droppings (Adélie penguins and south polar skuas nest in 
the area). The sampling campaign was conducted in Feb-
ruary 2022 during the expedition PS128 [36] of the RV 
Polarstern [37]. Twenty soil crust samples were collected 
at four sampling sites located between 700 m to 3.2 km in 
the vicinity of the Molodezhnaya Station.

Chemical properties of soil crusts
Total organic carbon (TOC), total nitrogen (TN), total 
phosphorus (TP), and pH were determined as described 
by Khanipour Roshan et  al. [38]. Shortly, TN and TOC 
were measured with CNS Analyzer after treatment with 
HCl (Vario EL III, Elementar Analysensysteme, Hanau, 
Germany). TP was measured photometrically using 
molybdan blue as a color indicator. The pH was measured 

in a  CaCl2 solution (1:2.5 ratio). Results are available in 
the Table S16.

DNA extraction of soil crusts
Surface Sects. (2–3 mm) of each biocrust were separated 
from the adhering soil using a razor blade, until reaching 
a weight of 0.15 to 0.30 g. DNA was extracted using the 
Quick-DNA™ Fecal/Soil Microbe Midiprep kit (Zymo 
Research, Irvine, CA, USA) according to the manufac-
turer’s instructions. A FastPrep®−24 bead beater (MP 
Biomedicals, USA), equipped with a 2-ml tube holder 
assembly, was used for the bead-beating process, which 
entailed a single cycle at 4.5 m/s for 20 s. The kit includes 
a cleaning and concentration step, and the final elution 
volume was 100 μl.

PCR amplification, library preparation, and sequencing
We aimed to employ taxon-specific metabarcoding 
approaches to obtain saturated data while reducing 
sequencing costs substantially, as with such a protocol all 
samples could be pooled and processed in one sequenc-
ing run per taxon. While there is a protocol available 
to study the Cercozoa in such a manner [39], we devel-
oped new protocols for both algal groups, which can be 
accessed in Supplementary 2. Briefly, after the design 
and successful testing, amplicons were generated using a 
semi-nested PCR approach. PCR mixtures of 11 and 17 μl 
were employed for the first and second PCR, respec-
tively. The final concentrations for all three metabarcod-
ing protocols were as follows: 0.01 units of DreamTaq 
Green DNA Polymerase and 1 × DreamTaq Green Buffer 
(Thermo Fisher Scientific, Dreieich, Germany), 0.2-mM 
dNTPs, and 1  μM of each primer. One nanogram of 
extracted DNA was incorporated on the first PCR, and 
1 μl of the resulting amplicons was used as a template for 
the second. The amplification conditions for the three 
protocols initiated with denaturation at 95 °C (2 min), fol-
lowed by 24 cycles of the three-step process of denatura-
tion (95 °C, 30 s), annealing (Supplementary 2, Table S7; 
30 s), and elongation (72 °C, 30 s), and concluded with an 
elongation step at 72  °C (5 min). After the second PCR, 
successful amplification and correct PCR product size 
were checked with an electrophoresis gel.

Amplicons, including internal standards (Supple-
mentary 3), were purified and normalized using the 
SequalPrep Normalization Plate Kit (Invitrogen GmbH, 
Karlsruhe, Germany), to achieve a concentration of 
1–2  ng/µl per sample, and finally pooled. Sequencing 
was performed by the Cologne Center for Genomics 
(Cologne, Germany) on an Illumina MiSeq platform (Illu-
mina Inc., San Diego, CA, USA). Using the v3 reagent kit, 
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and 2 × 300 cycles, 300-bp-long paired-end reads were 
produced.

Sequence processing
Reads processing, as described by Fiore-Donno et  al. 
[40], can be summarized as follows: raw reads under-
went a quality check with the FastX toolkit (v. 0.0.13) 
[41]. Contigs were assembled by pairing reads using 
mothur (v.1.45.3) [42], allowing no differences in the 
primer sequences. Sequences with minimal overlap of 
200 bp and a minimum length of 290 bp for green algae 
and ochrophytes, and 300 bp for Cercozoa, were selected, 
and those with ambiguities and more than one mismatch 
were removed. Sequences were demultiplexed via the 
detection of their unique primer adapters, which were 
then removed from the reads. Subsequently, and before 
conducting read clustering for the samples, the inter-
nal standard was analyzed and used to define filtering 
thresholds for clustering and denoising. According to 
those results, sequences were clustered into operational 
taxonomic units (OTUs) in mothur, using the abun-
dance-based greedy clustering (AGC) of VSEARCH [43], 
and a similarity threshold of 97%. Next, the sequences 
were taxonomically assigned with the PR2 database 
[44] using BLAST + (v. 2.2.31) [45] with an e-value of 
1e-50, and only the best hit was kept. Nontargeted taxa 
were removed, except for Endomyxa and Chrysophy-
ceae, which were included in the downstream analy-
ses of their respective datasets. The latter included the 
removal of two OTUs representing streptophytic micro-
algae (Interfilum sp. and Cylindrocystis sp.), which were 
subsequently excluded from further analysis. Cercozoan 
reads were then aligned to reference alignments [39]. 
Green algal and ochrophyte reference alignments com-
prise 150 representative sequences originating from the 
Diat.barcode database (v. 9) [46] and 399 sequences from 
the PR2 database, respectively. Both alignments were 
made with MAFFT (v. 7.221) using the L-INS-I algorithm 
(gap opening penalty = 3) [47]. Next, using the reference 
alignments, replicated sequences and chimeras were 
identified, with the latter being detected through the 
implementation of UCHIME [48] in mothur. Misaligned, 
replicated, and chimeric sequences were subsequently 
filtered out from the dataset. Analyses of the internal 
standard revealed that OTUs represented by fewer than 
250 (Cercozoa), 305 (green algae), and 285 (ochrophytes) 
reads, and occurring in less than 3samples, were consid-
ered background noise and were removed accordingly. 
The final OTU counts served as the basis for downstream 
analyses, encompassing the calculation of diversity 
indexes, network analyses, and the confirmation of pre-
dation as a key functional trait of heterotrophic protists 
in polar biocrusts.

Network inference
Putatively biotic interactions were detected and visual-
ized via the calculation of cross-kingdom co-occurrence 
and correlation networks among the three investigated 
taxa. The analysis aimed to infer the role of cercozoan 
predation in shaping microalgae communities. To achieve 
this, we employed two complementary approaches:

FlashWeave
FlashWeave is a probabilistic graphical modeling tool 
designed for inferring high-resolution interaction net-
works from large and heterogeneous microbial sequenc-
ing datasets, based on co-occurrence or co-abundance 
patterns [49]. It is particularly well-suited for microbiome 
data due to its ability to account for compositional effects 
characteristic of sequencing data [50], and to handle 
sparse datasets, explicitly considering zeros to prevent 
indirect associations (spurious edges) between taxa with 
similar absence patterns [51]. Additionally, FlashWeave 
integrates metadata, including environmental factors, as 
additional nodes in the network, enabling the differen-
tiation of direct microbial associations from indirect ones 
driven by shared environmental effects [8, 9].

Network calculation was preceded by two pre-pro-
cessing steps to enhance the reduction of indirect asso-
ciations, following the approach outlined by Freudenthal 
et al. [52]. Firstly, the influence of environmental factors 
on the microbial communities was assessed, namely 
TOC (%), TN (%), TP (g/kg), CN ratio, pH, and sampling 
region. Nonmetric multidimensional scaling (NMDS) 
plots were generated for all data, and the environmen-
tal variables were fitted onto the ordinations (refer to 
the “Statistical analyses,” for details on software and 
methods). Permutational multivariate analysis of vari-
ance (PERMANOVA) was performed to test differences 
in community composition across regions and edaphic 
parameters. Statistically significant environmental vec-
tors, scaled by their correlation values, were added to 
the NMDS plots to visualize their influence on microbial 
community composition. The analysis identified region 
as the variable exerting the strongest influence on the 
communities, and, consequently, network analyses were 
conducted separately for each region. Secondly, spurious 
edges caused by rare species were minimized by applying 
prevalence filters to exclude rare taxa, removing OTUs 
present in fewer than 10% of the samples in each dataset.

Correlation network construction was performed using 
FlashWeave (v. 0.19.0) [49] to infer the microbial puta-
tive interactions, using the Julia environment (v. 1.7.3) 
[53] employing the sensitive mode with default settings. 
To further control for data compositionality, we applied 
a centered-log-ratio transformation separately to each 
of the three taxa abundance datasets. The resulting 
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networks were visualized in Cytoscape (v. 3.10.1) [54]. 
Significant putative interactions between taxa (nodes) 
were aggregated at the order level to simplify interpre-
tation. Node sizes corresponded to the total number of 
reads for each order, and node color denoted the number 
of aggregated genera. Edges represented individual puta-
tive interactions, with line thickness denoting the num-
ber of interactions between two orders and edge colors 
indicating positive (blue) or negative (red) correlations. 
Thus, by integrating region-specific analyses, filtering for 
rare taxa, and employing a robust network inference tool, 
our approach minimized spurious putative interactions 
and generated ecologically meaningful networks that 
were further validated experimentally.

HMSC
To further validate the robustness of our findings and 
confirm predator–prey correlations identified by Flash-
Weave, we employed Hierarchical Modeling of Species 
Communities (HMSC), a Bayesian multivariate form of 
the Joint Species Distribution Modelling (JSDM) frame-
work, framed with generalized linear model (GLM) 
principles [55]. HMSC allows the disentanglement of 
environmental correlations (shared species responses 
to environmental predictors) from residual associations 
(interactions not explained by environmental factors), 
providing valuable insights into potential biotic interac-
tions [56].

We subjected the data to the HMSC workflow and 
constructed networks using a hurdle model with the 
R package Hmsc (v. 3.0–13) [57]. While zero-inflated 
models are not currently implemented in HMSC, a hur-
dle model can address this characteristic of sequencing 
data and consists of two components: one for modeling 
presence-absence and another for modeling abundance 
conditional on presence [56]. As both components are 
statistically independent, the approach enables separate 
exploration of environmental covariates driving species 
occurrence versus those influencing species abundance 
[58]. The first model’s data were truncated to presence-
absence (retaining zeros and setting non-zeros to one) 
and fitted the matrix with a probit (binomial) model. For 
the second model, zeros were treated as missing values, 
and the original abundances were analyzed using a nor-
mal model. Prevalence filters were applied to exclude 
rare taxa, removing OTUs present in fewer than 10% of 
samples (as done with FlashWeave), resulting in a unique 
dataset for the three phyla.

The fixed explanatory variables included were TOC 
(%), TN (%), TP (g/kg), pH, and sampling region, with the 
log-transformed sequencing depth added as a continuous 
variable to control for variation in sequencing effort [59]. 
The sampling site and sample code were incorporated 

as random effects to capture unexplained variation due 
to spatial structure and unmeasured covariates [56]. To 
account for the influence of species traits on interspecific 
interactions, we included functional traits such as nutri-
tional mode (e.g., autotroph, eukaryvore, omnivore) and 
phylum in the models as input parameters for the estima-
tion of species niches [59]. We built species-to-species 
association matrices for null models (using sequencing 
depth only) and full models (including all explanatory 
variables). Null model matrices reflect habitat-driven 
and interactive co-occurrence patterns, while full model 
matrices isolate patterns more indicative of direct inter-
actions by accounting for environmental effects [59]. The 
models were sampled using Markov chain Monte Carlo 
(MCMC) algorithms with four parallel chains. Each 
chain was run for 150,000 iterations, with the first 50,000 
iterations discarded as burn-in. The remaining iterations 
were thinned by retaining every 100th sample, resulting 
in 1000 posterior samples per chain and 4000 posterior 
samples in total. Convergence was assessed through the 
effective sample sizes (ESS) and potential scale reduction 
factors (PSRF). Model fit was evaluated using predicted 
values, with explanatory and predictive power quantified 
as AUC for presence-absence models and R2 for abun-
dance models.

Isolation, cultivation, and identification of algae 
and heterotrophic protists
In order to support the indirect evidence of predator–
prey relationships raised by the network analyses, direct 
evidence was desired. Therefore, potential algal prey 
and predatory cercozoans were cultured for subsequent 
food range experiments. Before isolation, small portions 
of each soil crust (ca. 50 mg) were enriched with Waris-
H medium (pH 7) [60]. To establish monoclonal cul-
tures, individual cells were isolated using glass pipettes 
under an inverted microscope and placed into 24-well 
plates. Green algae and ochrophytes were cultured in 
 SiO3-enriched Waris-H medium. Depending on their 
required prey, heterotrophs were cultured in wheatgrass 
medium (WGM) or Waris-H medium, using bacteria or 
Saccharomyces cerevisiae as prey, respectively (generated 
cultures are available in Tables S9 and S10). The cultures 
were stored at 15 °C, with a light regime of 14/10 h light/
dark, and a light intensity of about 6.5 PPFD (6500-K 
lamp). All cultures were barcoded by targeting the 18S 
rRNA-encoding gene.

Confirmation of predation
Food range experiments were conducted with cercozoan 
predators and algal prey, according to the availability of 
cultures generated in this study. Initially, 11 network-
indicated putative interactions were qualitatively tested 
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to confirm predation, resulting in the images presented 
in Fig.  1. Interactions that passed the preliminary test-
ing were subsequently subjected to experiments aimed 
at quantifying predator feeding rates. Algal cultures not 
older than 1 month, cultivated in  SiO3-enriched Waris-H 
medium, were incubated in the dark a week prior to use. 
Algal inocula were standardized in their abundance using 
a Neubauer chamber for both experimental and con-
trol sets. The microcosms were set up in triplicate sets 
in 24-well plates employing Waris-H medium without a 
nitrogen source, at 15 °C in the darkness to prevent algal 
growth. Subsequently, approximately 20 cercozoan cells 
were manually transferred to each well, thus reducing the 
chance to transfer previous prey of cercozoans. Active 
predator counts were documented over a period between 
20 and 30  days. Chlorophyll autofluorescence intensity 
served as a proxy for cell density and was measured with 
a microplate reader (Varioskan Flash, Thermo Fisher 
Scientific, Waltham, MA, USA). Fluorescence meas-
urements were obtained at 430-nm excitation, 665-nm 
emission, and a 12-nm bandwidth, using the multipoint 
setting at 121 reads per well. Fluorescence was recorded 
at four to six time points, and read averages were calcu-
lated. Additionally, fluorescence calibration curves were 
established for each alga, incorporating increasing algae 
densities determined with a Neubauer chamber. Algal 
fluorescence was transformed to algal densities for the 
final plots.

Statistical analyses
All statistical analyses were performed using R (v. 4.3.0) 
[61]. Diversity analyses were calculated with vegan (v. 
2.6–4) [62], and data manipulation and visualization 
were achieved using the core tidyverse packages (v. 2.0.0) 
[63], RColorBrewer (v. 1.1–3) [64], and ggrepel (v. 0.9.5) 
[65]. Initially, rarefaction curves were calculated with 
vegan::rarecurve (Figs. S3, S4, S5), demonstrating that 
all sample replicates reached sufficient saturation. For 
downstream analysis of the data, the read counts were 
transformed into relative abundances per sample. Data 
were then screened to assess differences in community 
structure between the three regions and to identify outli-
ers. For this purpose, nonmetric multidimensional scal-
ing (NMDS) plots were computed using vegan::metaMDS 
based on Bray–Curtis dissimilarities (beta diversity), cal-
culated using vegan::vegdist. p-values were adjusted for 
multiple comparisons using the Benjamini and Hochberg 
method [66]. Two sampling sites (10 samples) were iden-
tified as outliers and, consequently, were excluded from 
further analyses, resulting in a dataset of 23 sampling 
sites and 116 samples for the 3 regions (Svalbard, N = 46; 
Antarctic Peninsula, N = 45; Continental Antarctica, 
N = 20). Edaphic factors, namely TOC (%), TN (%), TP 

(g/kg), CN ratio, and pH, and the sampling region were 
incorporated into the NMDS plots using the vegan::envfit 
function. Biotic factors, specifically the community com-
positions of Cercozoa, green algae, and ochrophytes, 
were used as determinants of community structure to 
evaluate their role as shaping factors and further sup-
port the hypothesized predator–prey interactions. For 
this purpose, principal coordinates analyses (PCoA) were 
calculated for each data set using vegan::capscale, with 
community compositions serving as input. The PCoAs 
showed that the first two axes explained 19.3% and 11.2%, 
20.7% and 14.25%, and 19.0% and 12.3% of the variation 
in the cercozoan, green algal, and ochrophyte communi-
ties, respectively. The first axis (PCoA1) of each taxon’s 
community was used to predict those of the others. 
To assess differences in beta diversity across sampling 
regions and edaphic factors, we applied permutational 
multivariate analyses of variance (PERMANOVA) with 
vegan::adonis2 using 999 permutations.

Venn diagrams were generated with ggvenn (v. 0.1.10) 
[67], and the final figures were plotted to approximately 
depict OTU abundances using eulerr (online v. 6.1.1) [68]. 
Alpha-diversity metrics were calculated with vegan, and 
statistical comparisons were conducted using ANOVA 
and Tukey HSD post hoc tests, with the packages ggpubr 
(v. 4.3.1) [69] and rstatix (v. 4.3.1) [70].

Analyses of covariance (ANCOVA) were employed on 
the data generated with the feeding rate experiments, to 
assess whether changes in algae densities and predator 
counts were influenced by time, experimental conditions, 
or their interaction. The assumptions of homogeneity of 
regression slopes, homogeneity of variances, and normal-
ity of residuals were assessed. p-values underwent multi-
ple-testing correction using the Benjamini and Hochberg 
(1995) method [66]. Visualization was conducted using 
scales (v. 1.2.1) [71] in addition to the core tidyverse pack-
ages (v. 2.0.0) [63].

Results
Sequencing results
Our first aim was the production of multiple, independ-
ent metabarcoding datasets of a predator group (Cerco-
zoa) and their respective putative prey (here green algae 
and Ochrophyta). Applying the metabarcoding method-
ology established by Fiore-Donno et  al. [39], we gener-
ated 10.0 million paired reads for Cercozoa. Furthermore, 
using our newly developed metabarcoding protocols for 
green algae (Archaeplastida) and ochrophytes (Heter-
okontophyta), we produced 12.4 million and 10.7 million 
paired reads, respectively. The specificity of the respec-
tive sequencing approaches for Cercozoa and green 
algae were high with 96.1% and 80.6% of the sequences 
representing respective target taxa. For ochrophytes, 
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only 28.7% stemmed from the targeted taxa, diatoms 
and chrysophytes, in nearly equal proportions. Despite 
considerable nontarget amplification in the Ochrophyta 
dataset, saturation was reached in all datasets, for all 
sites and replicates (Figs. S3, S4, S5), rendering all data-
sets suitable for further analyses. In total, 604 cercozoan, 
191 green algal, and 80 ochrophyte unique OTUs were 
generated across 116 samples. On average, each sample 
contained 76 cercozoan OTUs (range: 13–164, ± 3.1), 
40 green algal OTUs (15–81, ± 1.4), and 11 Ochrophyta 
OTUs (2–33, ± 0.6, detailed OTU counts and taxonomic 
affiliations are available in Tables S1, S2, S3).

Community composition
To illustrate whether our newly developed protocols pro-
duced distinguishable and representative results for the 
community composition and local diversity of the stud-
ied regions, we conducted alpha-diversity analyses for 
each dataset and performed interregional comparisons.

The cercozoan richness was dominated by Sarcomon-
adea, with 70% of the total 604 OTU count (39 gen-
era). Imbricatea and Thecofilosea contributed 11% (26 
genera), and 9% (17 genera), respectively (Fig.  2a; Sup-
plementary Fig. S7 displays genera names). Numer-
ous OTUs in all datasets were identified only at broader 
taxonomic levels, a common limitation stemming from 
incomplete reference databases. Among 352 Cercozoa 
OTUs that could not be identified up to genus level, 65% 
were assigned equally to the families Allapsidae and San-
donidae (both Sarcomonadea). Twenty-four percent of 
OTUs, mostly representing Sarcomonadea, were present 
across all three regions (Fig. 2b). Alpha-diversity metrics 
indicated that Svalbard exhibited the highest cercozoan 
diversity across the three metrics, namely OTU richness 
(F = 10.368, p = 7.34e-5), exponential Shannon (F = 8.809, 
p = 0.000278), and inverse Simpson (F = 4.955, p = 0.009; 
Fig. 2c; Table S11). Thus, these results demonstrate that 
Svalbard exhibits higher species richness and a more 
evenly distributed community than the two Antarctic 
regions.

Green algae were especially rich in Trebouxiophyceae, 
representing 71% of the total 191 OTUs across 28 gen-
era. Chlorophyceae contributed 24% of OTUs, whereas 
Ulvophyceae and Mamiellophyceae accounted for seven 
and one OTUs, respectively (Fig. 2e, Supplementary Fig. 
S7). Only 37% of OTUs appeared in all three regions, 
and the most widespread genera belonged to Trebouxi-
ophyceae and Ulvophyceae (Fig. 2f ). Most of the unique 
genera (eight) were observed in both Antarctic regions, 
while two green algal genera appeared exclusively in Sval-
bard. Moreover, 17% of OTUs were identified until class 
or order levels. The OTU richness did not vary among 
regions (F = 1.853, p = 0.162). Contrastingly, both the 

inverse Simpson (F = 3.88, p = 0.023; Fig.  2g; Table  S11) 
and exponential Shannon metrics (F = 3.88, p = 0.003), 
supported by subsequent Tukey tests (p = 0.017 and 
p = 0.0017), revealed differences between the two Antarc-
tic regions. Additionally, results for exponential Shannon 
illustrated a higher diversity in Svalbard than in Conti-
nental Antarctica (Tukey test, p = 0.0191). Thus, these 
findings reveal a consistent OTU richness across regions 
but indicate a more uneven community distribution in 
Continental Antarctica compared to Svalbard and the 
Antarctic Peninsula.

The ochrophyte sequencing yielded 80 OTUs, with the 
class Bacillariophyceae dominating the diatom relative 
abundance. The latter encompassed 34 OTUs across 12 
genera (Fig.  2i, Supplementary Fig. S8). Forty-one per-
cent of all diatom OTUs within seven genera were com-
mon in all regions, whereas 26% and 23% of OTUs were 
unique to the Antarctic Peninsula and Svalbard, respec-
tively (Fig. 2j). Nevertheless, most genera occurred wide-
spread, with only three being unique to Svalbard and one 
to the Antarctic Peninsula. Nine OTUs were classified 
under the taxonomically uncertain operational categoric 
name “raphid pennates,” corresponding to Bacillariophy-
ceae. Of the latter, five were found in all regions, while 
four were unique to the Antarctic Peninsula. Among the 
41 chrysophyte OTUs, half were assigned to 5 genera, 
dominated by Spumella (50%) and Ochromonas (25%). 
The remaining 21 taxa were only assigned to clades. 
While most chrysophyte clades and genera appeared 
across the three regions, Paraphysomonas was only 
found in Svalbard. Svalbard’s Ochrophyta OTU richness 
was higher than in Continental Antarctica (Tukey test, 
p = 0.011). Additionally, both exponential Shannon and 
inverse Simpson demonstrated differences between Sval-
bard and the Antarctic Peninsula (Tukey tests, p = 0.0191 
and p = 0.037, respectively; ANOVA results in Table S11). 
Taken together, these findings demonstrate higher spe-
cies richness and evenness in Svalbard for the studied 
ochrophytes.

We conclude that the three different metabarcoding 
approaches successfully exhausted the present diversity 
and are thus suitable for further analyses.

Biotic and abiotic factors shape microbial communities
To investigate whether the hypothesized predator–
prey interactions represent a shaping factor for these 
microbial communities, beta-diversity analyses were 
performed with emphasis on biological factors as deter-
minants (Fig.  2d, h, l). Our analyses indicated the pres-
ence of a biotic impact of Cercozoa on green algae (refer 
to Table  S12 for PERMANOVA results). The cercozoan 
community composition explained 5.4% of the green 
algal community composition (R2 = 0.0537, p < 0.001). 
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Fig. 2 Diversity measures of Cercozoa, green algae, and ochrophytesacross three Polar regions. Chord plots (a, e, and i) depict genus richness 
identified for all regions within the targeted taxa. The chords connect the regions (yellow and blue shades) with the corresponding genera, 
while different chord colors represent distinct classes. Circles next to the taxon names indicate cultivated taxa (gray), specifically highlighting 
algivores (dark green), and algae parasites (light green) in Cercozoa. Chord plots in Supplementary Figs. S6, S7, and S8 display genera names. 
Venn diagrams (b, f, and j) represent unique and shared OTUs within and between sampling regions. Globe sizes are approximately proportional 
to their abundance. Box plots (c, g, and k) display three α‑diversity indices: (1) OTU richness, (2) e(Shannon) for exponential Shannon, and (3) 
inverse Simpson. Significance codes indicate differences between means calculated by ANOVA and subsequent Tukey‑HSD test and are denoted 
as follows: *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. Nonmetric multidimensional scaling ordinations (NMDS, d, h, and l) based on Bray–
Curtis dissimilarities for the three taxa. The structures (PCoA1) of each of the three communities, used as predictors for the other two, are indicated 
by red arrows. For instance, the structures of green algae and ochrophytes were used to predict the structure of Cercozoa, and similar predictive 
analyses were conducted for green algae and ochrophytes. Region centroids are indicated by diamonds and follow the same color coding 
as the legend. The confidence ellipses were drawn at the 0.95 level, indicating the regions within which 95% of the data points are expected to lie. 
The influence of abiotic variables (pH, C, N, P, and C/N ratio) with the highest correlation to the ordination axes are indicated by black arrows. Scaling 
was performed using k = 3 dimensions; only the two first dimensions are visualized
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Vice versa, the green algal community composition 
explained some variation in Cercozoa, albeit to a lower 
extent (3.5%; R2 = 0.0348, p < 0.001). The ochrophyte com-
munity structure explained 2.1% and 3.0% (R2 = 0.0206, 
p < 0.001; R2 = 0.0307, p < 0.001) of the cercozoan and 
green algal community composition’s variation, respec-
tively. Finally, Cercozoa and green algae had only minor 
structuring effects on ochrophytes, accounting for 2.2% 
and 1.7% of their variation (R2 = 0. 0224, p < 0.001; R2 = 0. 
0.0169, p < 0.001), respectively.

To compare the extent to which biological variables 
affect the community composition of the investigated 
taxa with the impact of abiotic factors, we also quanti-
fied to which extent the respective community composi-
tions are affected by abiotic variables. The regional factor 
had the strongest effect on the cercozoan (R2 = 0.1208, 
p < 0.001) and green algal communities (R2 = 0.1429, 
p < 0.001), explaining 12.1% and 14.3% of the varia-
tion, respectively. While for the ochrophyte commu-
nity composition region was the most influential factor 
(R2 = 0.0571, p < 0.001), its effect was comparatively lower, 
with only 5.7% of explained variation. All three taxa were 
highly influenced by the pH, explaining the variation in 
the communities of Cercozoa (10.6%), green algae (8.2%), 
and ochrophytes (4.7%). In contrast, TOC (%), TN (%), 
TP (g/kg), and the CN ratio contributed to a lower extent, 
explaining marginal percentages (< 3.7%) of the variation 
in the three ordinations.

Determination of putative predator–prey interactions via 
cross‑kingdom co‑occurrence networks
To shift from a community perspective to specific puta-
tive interactions between Cercozoa and their prey, we 
employed co-occurrence network analyses as an estima-
tion for a microbial food web.

With FlashWeave, on the OTU level, 407 putative 
interactions (edges, Fig.  3) were identified among 306 
taxa in Svalbard, 422 among 303 taxa in the Antarctic 
Peninsula, and 140 among 135 taxa in Continental Ant-
arctica. On class level, this equals 30, 28, and 23 nodes 
for Svalbard, the Antarctic Peninsula, and Continental 
Antarctica, respectively. The corresponding class-level-
aggregated putative interaction counts were 157, 153, and 
71 for Svalbard, the Antarctic Peninsula, and Continen-
tal Antarctica, respectively. These findings align with the 
observed lower richness of Cercozoa and ochrophytes in 
Continental Antarctica.

Network topological features were computed for the 
OTU level and the aggregated order level (Table  S13). 
Here, the calculations for the latter are described, as tax-
onomic orders resemble approximately functional groups 
with few exceptions (e.g., the class Glissomonadida 
accommodates almost exclusively bacterivores, except for 

the algivorous family Viridiraptoridae). The connectivity 
of the networks, as indicated by the average edge degree, 
was lower for Continental Antarctica (approximately six 
putative interactions) compared to Svalbard and the Ant-
arctic Peninsula (10–11 putative interactions). The Ant-
arctic Peninsula exhibited the highest average clustering 
coefficient and network density, and the shorter average 
path lengths, whereas Continental Antarctica displayed 
the opposite trend. Taken together, these results demon-
strate that the Antarctic Peninsula harbors a more tightly 
connected, denser, and potentially more stable network 
compared to the other regions.

Intra-domain putative interactions predominated 
across the three regions, comprising 310 (78.1%), 290 
(68.7%), and 89 (63.6%) in Svalbard, the Antarctic Pen-
insula, and Continental Antarctica, respectively. Inter-
domain putative interactions predominantly involved 
cercozoan taxa in all regions. Specifically, Cercozoa 
exhibited 72 (17.7%) putative interactions at the OTU 
level with algae in Svalbard. However, only 26, i.e., 6.4% 
of the respective interactions, included algivorous Cer-
cozoa and thus represented putative predator–prey 
interactions. In the Antarctic Peninsula, 20 interactions 
(4.7% of 422) corresponded to putative predator–prey 
interactions, while in Continental Antarctica there were 
13 interactions (9.3% of 140) of such. Notably, the Glis-
somonadida occupied at least half of the total putative 
interactions in each region, despite the vast majority of 
Glissomonadida species do not prey on algae. Interest-
ingly, few putative interactions were found between 
green algae and ochrophytes across all three regions, 
particularly in Continental Antarctica. Taken together, 
these findings suggest that Cercozoa play a crucial role 
in structuring microalgal communities. However, preda-
tion may not be the sole interaction explaining the found 
correlations.

To further validate the results of FlashWeave and 
provide an additional layer of insight into potential 
predator–prey interactions, we employed HMSC to dis-
entangle the environmental and biotic drivers shaping 
the networks. Using the HMSC hurdle model approach, 
we constructed co-occurrence and abundance networks 
for null and full models to identify residual correlations 
that are likely indicative of direct interactions (Supple-
mentary 10, Fig. S9). HMSC yielded species-to-species 
association matrices for presence-absence and abun-
dance data, incorporating environmental variables and 
functional traits to account for both ecological processes 
and shared habitat use. Null models, which include only 
sequencing depth as a covariate, captured a combination 
of co-occurrence patterns from shared environmental 
preferences and interactive effects. Full models, which 
include additional environmental predictors (i.e., TOC 
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(%), TN (%), TP (g/kg), pH, and region), refined these 
associations by isolating residual correlations. Notably, 
the HMSC networks identified a similar proportion of 
predator–prey interactions to FlashWeave, namely 7.5% 
and 4.8% (Supplementary Table  S16), for co-occurrence 
and abundance, respectively.

Effect verification and size estimation of putative 
predator–prey interactions
In order to provide direct evidence of the putative preda-
tor–prey interactions identified in the network analy-
ses, feeding range experiments were conducted with 
algivorous predators and their putative algal prey. The 
FlashWeave correlation network guided our selection 
of correlations for experimental validation and served 
as the basis for hypothesizing predator–prey interac-
tions. Additionally, we used the HMSC models to inform 
these interactions by accounting for environmental 
covariates, species traits, and hierarchical dependencies, 

thereby refining the ecological context of the putative 
associations.

For this, we isolated and barcoded potentially algivo-
rous taxa and their respective prey. According to the 
sequencing results, algivorous Cercomonas, Rhogos-
toma, Fisculla, Assulina, and Euglypha were common in 
all study regions. Moreover, Rhizaspis, Viridiraptor, and 
Eocercomonas appeared in both Svalbard and the Antarc-
tic Peninsula but were missing in Continental Antarctica. 
Among algivorous Endomyxa, Vampyrella and Thalas-
somyxa (Endomyxa) were detected exclusively in Sval-
bard, while Leptophrys was detected in the two Antarctic 
regions. We successfully established cultures of algivo-
rous Cercomonas, Rhogostoma, Fisculla, and Euglypha 
and subjected them to the experiments.

The isolation and culturing of green algae for subse-
quent testing resulted in 38 cultures of barcoded green 
algae. Isolated algae belonged to the classes Chlorophy-
ceae and Trebouxiophyceae, while no representatives 

Fig. 3 Cross‑kingdomco‑occurrence networks of Cercozoa, green algae, and ochrophytes across three Polar regions, as an indicator for putative 
food web interactions. Significant positive and negative putative interactions detected between taxa are depicted for the three studied regions. 
Nodes represent genera grouped at order level; node size is proportional to the total number of reads for each order, and node color indicates 
the number of genera aggregated. Edges represent putative interactions between taxa (blue lines — positive putative interactions; red lines — 
negative putative interactions). Edge thickness represents the number of individual aggregated edges. Black dashed arrows indicate experimentally 
tested putative predator–prey relationships. Abbreviations: Novel C. 12, novel clade 12; Gra, Granofilosea X; Thau, Thaumatomonadida; Eu, 
Euglyphida; The, Thecofilosea X; Tre, Tremulida; Te, Tectofilosida; Ce, Cercomonadida; Lim, Limnofilida; Gl, Glissomonadida; Spo, Spongomonadida; 
Cry, Cryomonadida; C, Cercozoa X; Vam, Vampyrellida; Plas, Plasmodiophorida; Ch, Chlorellales; Wa, Watanabeales; Tre, Trentepohliales; Tr, 
Trebouxiophyceae X; Pr, Prasiolales; Cha, Chaetophorales; Sph, Sphaeropleales; Chla, Chlamydomonadales; Mi, Microthamniales; Tre, Trebouxiales; Sc, 
Scotinosphaerales; Ul, Ulotrichales; Mo, Monomastigales; Ba, Bacillariophyceae; Xa, Xanthophyceae; Chry, Chrysophyceae
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from Mamiellophyceae or Ulvophyceae were observed or 
cultured. Most cultures were identified to genus or spe-
cies level, except for eight, which were assigned only to 
the orders or families Chlamydomonadales, Chlorellales, 
Chlorellaceae, Radiococcaceae, and Haematococcaceae. 
Five ochrophyte cultures were established from Arc-
tic isolates. These included three Pinnularia sp. isolates 
originating from different sites, and one Nitzschia per-
minuta, all of which were present in the environmental 
sequencing results.

The cultures generated in this study enabled the testing 
of 11 network-indicated putative predator–prey relation-
ships (Fig.  4). Initially, all putative interactions under-
went qualitative testing to confirm predation. Notably, 
two putative predator–prey interactions could not be 
confirmed, namely, the interactions involving the highly 
motile alga Chloromonas with the cercozoan Cercomonas 
and Fisculla were not validated. Subsequently, to move 

from qualitative evidence to quantitative results, feeding 
rate experiments were conducted for the remaining nine 
verified predator–prey interactions. ANCOVA analy-
ses of predator count slopes demonstrated considerable 
growth in eight of the tested putative interactions, except 
for Euglypha feeding on Stichococcus (Fig. 4e, Table S14). 
Nevertheless, in all tested interactions, the predators 
exhibited food vacuoles containing the respective algae at 
various stages of digestion (Fig. 1). Moreover, a decrease 
in algal abundance slopes was detected in five putative 
interactions (Table S15), indicating that while predation 
was observed and statistically significant in most tested 
putative interactions, it had a negligible impact on the 
overall abundance of certain algal populations in this 
experimental setup.

We explored various correlations between network 
topological features and the calculated predator growth 
rate of each verified predator–prey interaction, aiming 

Fig. 4 Experimental validation of putative predator–prey interactions. Yellow bars represent predator counts for control conditions, while purple 
bars depict their counts in co‑culture with algal prey (left y‑axis). Blue lines represent algae counts in control conditions, while green lines indicate 
algae counts under predation pressure (right y‑axis). Error bars accompanying each bar display standard deviations. Significance codes derived 
from ANCOVA analyses indicate differences between the treatment and control slopes for both predator counts (Table S14) and algae fluorescence 
(Table S15). The codes are denoted as follows: *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001
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to associate our experimental quantitative data with the 
network analysis derived from network processing. Two 
key node topological features, stress and betweenness 
centrality, were found to increase with higher predation 
growth rates (Fig.  5). Both topological features are cen-
trality measures that highlight the critical roles of cer-
tain taxa within a network. Stress centrality quantifies a 
node’s importance based on the number of times it acts 
as a bridge along the shortest paths of other nodes [72], 
while betweenness centrality indicates a node’s influence 
on the interactions between other nodes in the network 
[73]. Thus, these findings imply a potential relationship 
between predation growth rate and the importance of 
predators in the food web, suggesting that more effec-
tive predators are likely to be more central and play 
critical roles in maintaining the network’s stability and 
functionality.

Discussion
Inferring microbial interactions involves establishing 
hypothesized relationships based on the association 
patterns of taxa in environmental sequencing data and 
ultimately experimentally validating genuine ecological 
interactions [1, 34]. Using this approach, cross-kingdom 
network inference allowed us to predict predator–prey 
relationships between cercozoans and their putative 
prey: green algae and ochrophytes. By combining DNA-
based amplicon sequencing datasets for Cercozoa and 
their putative prey, we produced comprehensive data-
bases, suitable for cross-kingdom network analyses. 
Trait assignment revealed that the majority of network-
indicated associations were unlikely to represent preda-
tor–prey interactions. However, from the tested possible 
predator–prey interactions, 82% of network-indicated 
predator–prey interactions could be validated.

Estimation of biotic interactions
Predation is a major driving force within microbial com-
munities, which directly influences population dynamics, 

Fig. 5 Correlations between two network topological features — (1) stress (a and c) and (2) betweenness centrality (c and d) — and predator 
growth rate. Each topological feature is represented by its calculated value (y‑axes), while predator growth rates were calculated as the exponential 
increase of predator populations per day (x‑axes)
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community composition, and microbial resistance [74–
76]. Given predation’s ecological significance, we aimed 
to investigate the robustness of inferring predator–prey 
interactions from correlation data by experimental vali-
dation. As a first step, we estimated the impacts of biotic 
interactions by (1) determining the extent to which the 
predator and putative prey communities shape each other 
and (2) inferring microbial interactions through network 
analyses. Analysis of beta diversity revealed that biotic 
factors had a key role in shaping microbial communities, 
closely following the dominant influences of region and 
soil pH. Particularly, the interactions between cercozoans 
and green algae were important. The community compo-
sition of green algae exerted a 1.5 times larger effect on 
the Cercozoa than vice versa, suggesting a notable impact 
of cercozoan predation on green algae. The structuring 
effect of ochrophytes on the green algal community was 
approximately 1.8-fold stronger than the reverse. Moreo-
ver, ochrophytes and cercozoans had a similar and small 
impact on each other’s community composition. Notably, 
the shaping effect of cercozoans on green algae was over 
twice as strong as their effect on ochrophytes. Therefore, 
we hypothesized that network analyses would estimate 
fewer putative predator–prey interactions between cer-
cozoans and ochrophytes. These findings highlight the 
shaping role of biotic interactions over microbial assem-
blages, consistent with previous research that emphasizes 
the importance of trophic and other biotic interactions, 
along with environmental effects, in structuring micro-
bial communities [77, 78], and the complex and diverse 
nature of the associations [2, 79].

As microbial interactions influence population dynam-
ics, microbial survey datasets are expected to reveal 
detectable signatures of these interactions [2]. Our cross-
kingdom network analysis of polar biocrusts, known for 
their low complexity and reduced biodiversity, allowed us 
to predict, and subsequently test, predator–prey associa-
tions between cercozoans, green algae, and ochrophytes. 
We found that the majority of the correlations calculated 
for Svalbard, the Antarctic Peninsula, and Continental 
Antarctica were positive inter-domain putative interac-
tions, accounting for 81%, 79%, and 76% of the total cor-
relations in each location, respectively. Interestingly, this 
trend extended to putative predator–prey interactions, 
with the majority also being positive. The former results 
imply that when assessing network-generated putative 
predator–prey interactions, attention should be given to 
all correlations, regardless of their sign (positive or nega-
tive). While predators and prey are expected to positively 
correlate over some spatial scales that allow predators 
to maximize prey encounters, at smaller scales, effective 
predators are expected to reduce or eliminate prey popu-
lations [77]. Moreover, relationships can be time-lagged 

[1] as a result of predation and environmental or popula-
tion changes. Thus, the pervasive occurrence of positive 
putative interactions across all three regions, particularly 
among potential predator–prey interactions, implies that 
the nature of putative predator–prey interactions can-
not be directly attributable to any predefined biological 
functions.

Only 72 (17.7%), 86 (20.4%), and 46 (32.9%) of the 
total correlations occurred between predatory protists 
and green algae or ochrophytes in Svalbard, the Ant-
arctic Peninsula, and Continental Antarctica, respec-
tively. However, considering that only a minor fraction 
of Cercozoa involved in these correlations are algivores, 
trait assignment revealed that 6.4%, 4.7%, and 9.3% of 
the total correlations link predators to suitable prey for 
each respective region in FlashWeave networks, which 
was further supported by similar numbers in HMSC 
networks, showcasing the robustness of our approach. 
Associations with taxa within Glissomonadida accounted 
for at least half of the total putative interactions in each 
region, despite the order comprising almost exclusively 
bacterivores [33]. Accordingly, it probably represents a 
hub taxon within these ecosystems. Glissomonads are 
fast-growing microorganisms that might thrive during 
periods of favorable conditions and become abundant 
in the soil matrix, explaining their high abundance. The 
association of glissomonads and algae, if an interaction 
exists, could be driven by shared environmental prefer-
ences or indirect effects mediated through the microbial 
community rather than direct predation. Another pos-
sibility is that glissomonads might be attracted towards 
microalgae, which are among the dominant carbon fix-
ers in polar areas where plant life is sparse or absent [17], 
and release exudated carbon compounds into the envi-
ronment [80]. Glissomonadida might either scavenge 
those released carbon compounds as osmotrophs [33, 81] 
or prey upon algae-associated carbon-scavenging bacte-
ria, a process rather similar to the microbial loop relying 
on plants [82].

Confirmation of biotic interactions
To provide a basis for comparison, we aimed to gener-
ate three replicated networks from comparable but suf-
ficiently different communities. Among the three regions, 
species richness and evenness for Svalbard and the Ant-
arctic Peninsula were consistently higher, especially for 
cercozoans and green algae (Fig.  2), contrasting with 
Continental Antarctica. Despite this, all regions shared 
over half of their OTUs, while specialist OTUs compris-
ing between 1 and 26%, indicating a considerable overlap 
in species composition (likely due to the presence of cos-
mopolitan or bipolar species), and some degree of ende-
micity. Moreover, our results were in line with previous 
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surveys which concluded that the Antarctic Peninsula 
accommodates a higher protistan biodiversity compared 
to the arid and more extreme continental regions, such 
as the Thala Hills, where our samples originated from 
[21, 83–85]. Beta-diversity analyses supported the pres-
ence of different microbial assemblages across the three 
regions and found this parameter as the primary factor 
driving variation. Association with soil abiotic factors 
indicated low and varied effects on community struc-
ture, with pH showing the strongest correlation. Thus, 
these findings collectively suggest that local climate, fol-
lowed by soil parameters, play significant roles in shap-
ing soil protist communities, in line with past studies 
[6, 86]. We conclude that the community composition, 
although being similar, indeed varied significantly across 
the three sampled regions, enabling us to produce the 
expected distinct, replicated networks of similar commu-
nities, as evidenced by the comparable numbers of calcu-
lated and confirmed putative predator–prey interactions. 
Moreover, by focusing on low-diverse environments and 
predator–prey associations, we aimed and successfully 
sampled the three communities exhaustively, generating 
high saturation in our sequencing data.

To experimentally confirm the predatory impact of 
cercozoans, we complemented network-analyses with a 
trait-based approach. With co-culture experiments, we 
quantitatively measured the impact of protistan preda-
tion pressure on both the algal prey and the predator, 
showing substantial effects of predation in most inter-
actions, evidenced by a significant increase of the mean 
counts of the predators in nine of 11 experiments. Only 
two interactions, involving the highly motile alga Chlo-
romonas, were not validated. Thus, 82% of the asso-
ciations were confirmed, and coupling network analyses 
with a trait-based approach was effective in capturing 
important predator–prey dynamics in the studied 
biocrusts.

The growth rate experiments further revealed that Cer-
comonas sp., Fisculla sp., and Rhogostoma sp. were the 
most vicious predators, i.e., the predators with higher 
growth rates in co-culture with their prey. Here, it must 
be addressed that the laboratory experiments do not mir-
ror natural conditions: the experiments were conducted 
under exclusion of competitors and under optimized 
conditions, i.e., high prey densities, nutrient limitation, 
and in liquid media. We chose to do so, since the opaque 
nature of soil hampers direct observation and thus the 
validation and enumeration of biotic interactions. It 
remains to be seen whether with technical progress 
direct measurements from the environment can supple-
ment indirect, correlational measurements as reported in 
this paper.

Nonetheless, we report a correlation of predator net-
work statistics, increasing stress and betweenness cen-
trality, in two independent networks. Accordingly, it 
seems important predators can be predicted from their 
network statistics (Fig.  4). In the third network derived 
from Continental Antarctica, the same general concept 
might apply; however, due to the absence of many of the 
sampled predator–prey combinations, this could not be 
verified.

Conclusions
Our results underscore the utility of network analy-
ses for inferring predator–prey interactions while also 
emphasizing the importance of integrating these analy-
ses with trait-based approaches to enhance prediction 
accuracy. This combined methodology increases confi-
dence in identifying true biological interactions, dem-
onstrating the effectiveness of a systematic approach for 
studying ecological networks. Further studies applying 
the same trait-based approach and focusing on bacteria-
protist interactions are key to deepen our understanding 
of microbial networks where protists exert a key preda-
tory role. Our developed methodology is largely similar 
to methods used in researching bacterial and protistan 
interactions, i.e., the involvement of separate metabar-
coding datasets and interkingdom network calculations. 
We are confident that the here presented workflow facili-
tates the identification of vicious protistan predators of 
bacteria.
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