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Distinct microbes, metabolites, and the host 
genome define the multi‑omics profiles 
in right‑sided and left‑sided colon cancer
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Abstract 

Background  Studies have reported clinical heterogeneity between right-sided colon cancer (RCC) and left-sided 
colon cancer (LCC). However, none of these studies used multi-omics analysis combining genetic regulation, micro-
biota, and metabolites to explain the site-specific difference.

Methods  Here, 494 participants from a 16S rRNA gene sequencing cohort (50 RCC, 114 LCC, and 100 healthy con-
trols) and a multi-omics cohort (63 RCC, 79 LCC, and 88 healthy controls) were analyzed. 16S rRNA gene, metagen-
omic sequencing, and metabolomics analyses of fecal samples were evaluated to identify tumor location-related 
bacteria and metabolites. Whole-exome sequencing (WES) and transcriptome sequencing (RNA-seq) were conducted 
to obtain the mutation burden and genomic expression pattern.

Results  We found unique profiles of the intestinal microbiome, metabolome, and host genome between RCC 
and LCC. The bacteria Flavonifractor plautii (Fp) and Fusobacterium nucleatum, the metabolites L-phenylalanine, 
and the host genes PHLDA1 and WBP1 were the key omics features of RCC; whereas the bacteria Bacteroides sp. A1C1 
(B.A1C1) and Parvimonas micra, the metabolites L-citrulline and D-ornithine, and the host genes TCF25 and HLA-DRB5 
were considered the dominant omics features in LCC. Multi-omics correlation analysis indicated that RCC-enriched Fp 
was related to the accumulation of the metabolite L-phenylalanine and the suppressed WBP1 signal in RCC patients. 
In addition, LCC-enriched B.A1C1 was associated with the accumulation of the metabolites D-ornithine and L-citrulline 
as well as activation of the genes TCF25, HLA-DRB5, and AC079354.1.

Conclusion  Our findings identify previously unknown links between intestinal microbiota alterations, metabolites, 
and host genomics in RCC vs. LCC, suggesting that it may be possible to treat colorectal cancer (CRC) by targeting 
the gut microbiota–host interaction.

Keywords  Left-sided colon cancer, Right-sided colon cancer, Metagenomics, Metabolomics, Host genomics, Multi-
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Background
The difference between left-sided colon cancer (LCC) and 
right-sided colon cancer (RCC) has gained global atten-
tion due to the heavy burden of this cancer in both devel-
oping countries and developed countries [1, 2]. Although 
colon cancer is often grouped as one disease, accumulat-
ing evidence has demonstrated biological and clinical dif-
ferences between proximal and distal colon tumors. For 
this reason, colon cancer is topographically classified into 
RCC, originating from the colon proximal to the splenic 
flexure, including the cecum, ascending colon, and trans-
verse colon, and LCC, arising from the colorectum dis-
tal to the splenic flexure, including the descending colon, 
sigmoid colon, and rectosigmoid [3–8]. This classification 
considers the embryonic development whereby the prox-
imal colon originates from the embryonic midgut and 
is perfused by the superior mesenteric artery, whereas 
the distal colorectum is derived from the hindgut and is 
served by the inferior mesenteric artery. The discrepan-
cies among RCC and LCC, including an older patient 
age at diagnosis, poorer differentiation, a more advanced 
stage, and a worse prognosis for RCC vs. LCC, corrobo-
rate the classification, which is potentially caused by the 
distinct carcinogenesis and pathological behaviors attrib-
uted to genetic differences [9–12]. Previous studies have 
sought to explain these differences by analyzing signifi-
cantly mutated genes and RNA expression [13]. However, 
these studies merely analyze the association between 
clinicopathologic features and genetic profiles, and there 
is no integrated multi-omics analysis that illustrates the 
distinct molecular profiles and the corresponding patient 
prognosis among different locations of colon cancer.

In recent years, the advancement of sequencing tech-
niques has enabled researchers to investigate and under-
stand the involvement of microbes and metabolites in the 
development of colonic tumorigenesis. Previous stud-
ies have identified some site-specific bacteria [14–16] 
and distinct host genetic characteristics between RCC 
and LCC [9, 13, 17]. However, most of these studies 
only detected bacteria at the genus level and did not use 
multi-omics analysis combining host genetic regulation, 
microbiota, and metabolites to explain the site-specific 
difference of colon cancer. Therefore, the present study 
aimed to investigate the gut microbiome, metabolome, 
and host genome spectrums and their multi-omics asso-
ciation between patients with RCC vs. LCC.

Methods
Clinical specimens and study design
Feces and fresh tumor specimens were prospectively 
obtained from patients with primary sporadic colorec-
tal cancer (CRC) and healthy controls at Fudan Univer-
sity Shanghai Cancer Center, Shanghai, China. For the 

primary sporadic CRC group, fecal samples were col-
lected preoperatively, and fresh tumor specimens were 
collected during surgery. For the healthy control group, 
volunteers confirmed as not having any gastrointesti-
nal tumors after colonoscopy screening were recruited. 
Each fecal and tissue sample was collected in a sterile 
tube and then stored at − 80  °C prior to microbial and 
genomic analyses. None of the participants were treated 
with chemotherapy, antibiotics, or probiotics for one 
month before enrollment in this study. Ethical approval 
was obtained from the Institutional Review Board of 
Fudan University Shanghai Cancer Center, and written 
informed consent was provided by all participants before 
sampling.

This study consisted of two cohorts, including a 16S 
rRNA gene sequencing cohort (16S-seq) and a multi-
omics cohort [metagenomics, metabolomics, tumor 
whole-exome sequencing, and transcriptome sequencing 
(Meta/liquid chromatography-mass spectrometry (LC–
MS)/ WES/RNA-seq)]. Overall, 494 patients with RCC 
(n = 113), LCC (n = 193), or healthy controls (n = 188) 
were analyzed. The 16S-seq cohort consisted of 264 CRC 
patients and healthy controls whose fecal samples were 
collected preoperatively and detected using 16S rRNA 
gene sequencing. Data were analyzed to search for bac-
teria that were associated with the tumor location: i.e., 
RCC (n = 50), LCC (n = 114), and healthy controls (con-
trol, n = 100). In the multi-omics cohort, fecal samples 
from 230 preoperative patients with CRC and healthy 
controls were collected and detected by metagenomic 
sequencing and LC–MS to further obtain deeper insights 
into the gut microbiota species and metabolite identifica-
tion. Among them, 59 matched fresh tumor samples (26 
RCC patients and 33 LCC patients) were extracted from 
the multi-omics cohort (all existing samples are available 
from the tissue biobank), and WES and RNA-seq of the 
tumor samples were performed to obtain the genomic 
expression patterns related to the tumor locations. The 
multi-omics design and key results are summarized in 
Fig. 1.

Fecal DNA extraction for microbiome analysis
Genomic DNA of the fecal samples was extracted by 
using the QIAamp DNA Stool Mini Kit (Qiagen, Hilden, 
Germany), according to the manufacturer’s guidelines. 
The DNA integrity and size were verified by 1.0% agarose 
gel electrophoresis, and DNA concentrations were deter-
mined by using a NanoDrop spectrophotometer (Nan-
oDrop, Germany).

High‑throughput 16S ribosomal RNA gene sequencing
16S rRNA gene amplification was performed using the 
primers (319F: 5′-ACT​CCT​ACG​GGA​GGC​AGC​AG-3′; 
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806R: 5′-GGA​CTA​CHVGGG​TWT​CTAAT-3′) direc-
tionally targeting the V3 and V4 hypervariable regions 
of the 16S rRNA gene. To differentiate each sample and 
yield accurate phylogenetic and taxonomic informa-
tion, the gene products were attached with forward and 
reverse error-correcting barcodes. The amplicons were 
quantified after purification and sequenced on the MiSeq 
PE300 sequencing instrument (Illumina, San Diego, CA, 
USA) by using 2 × 300  bp chemistry, according to the 
manufacturer’s specifications.

DNA library construction and metagenomic sequencing
Sequencing libraries were constructed by a TruSeq 
Nano DNA LT Library Preparation Kit (Illumina). DNA 

was fragmented by dsDNA Fragmentase (New England 
Biolabs, Ipswich, MA, USA) and incubated at 37  °C for 
30 min. Blunt-end DNA fragments were generated by fill-
in reactions and exonuclease activity. The provided sam-
ple purification beads were used for size selection. An 
A-base was then added to the blunt ends of each strand, 
preparing them for ligation to the indexed adapters. Each 
adapter contained a T-base overhang for ligating the 
adapter to the A-tailed fragmented DNA. These adapt-
ers contained the full complement of sequencing primer 
hybridization sites for single, paired-end, and indexed 
reads. Single- or dual-index adapters were ligated to the 
fragments, and the ligated products were amplified by 
the polymerase chain reaction. After library purification, 

Fig. 1  A schematic flow diagram of the study design. This study consisted of two cohorts, including a 16S rRNA gene sequencing cohort (16S-seq) 
and a multi-omics cohort (metagenomics, metabolomics, tumor whole-exome sequencing, and transcriptome sequencing (Meta/LC–MS/WES/
RNA-seq)). Overall, 494 patients with right-sided colon cancer (RCC, n = 113), left-sided colon cancer (LCC, n = 193), or healthy controls (n = 188) 
were analyzed. The 16S-seq cohort consisted of 264 colorectal cancer (CRC) patients and healthy controls whose fecal samples were collected 
preoperatively and detected using 16S rRNA gene sequencing. Data were analyzed to search for bacteria that were associated with the tumor 
location: i.e., RCC (n = 50), LCC (n = 114), and healthy controls (control, n = 100). In the multi-omics cohort, the fecal samples from 230 preoperative 
patients with CRC and healthy controls were collected and detected by metagenomic sequencing and LC–MS to further obtain deeper insights 
into the gut microbiota species and metabolite identification. Among them, 59 matched fresh tumor samples (26 RCC patients and 33 LCC patients) 
were extracted from the multi-omics cohort in our tissue biobank, and WES and RNA-seq of the tumor samples were performed to obtain genomic 
expression patterns related to each tumor location. The multi-omics results are summarized in the Taxa, Metabolites, Genes, and Network boxes
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quantification, and quality control, high-through-
put sequencing was carried out on the NovaSeq6000 
platform (Illumina), according to the manufacturer’s 
specifications.

Sequencing data analysis
16S rRNA gene sequencing data
The raw data of 16S rRNA gene sequencing were ana-
lyzed by using the QIIME2 platform (v2020.2) [18, 19]. 
Briefly, the DADA2 plugin was used to filter the sequenc-
ing reads and to obtain the feature tables and feature 
sequences. The taxonomy information of the sequencing 
reads was assigned against the Silva Database (v138.1). 
Alpha and beta diversity analyses were conducted by 
using the diversity plugin. Principal component analysis 
was conducted to display the distance among samples. To 
identify differentially abundant taxa among groups, the 
Wilcoxon rank-sum test with the Benjamini–Hochberg 
method was performed on the fecal microbiota composi-
tion between groups.

Metagenomic sequencing data
The raw sequencing reads were processed to obtain valid 
reads for further analysis. First, the sequencing adapters 
were removed from the sequencing reads by using cuta-
dapt (v1.9). Second, the low-quality reads were trimmed 
by using fqtrim (v0.94) with a sliding-window algorithm. 
Third, the reads were aligned to the host genome by 
using bowtie2 (v2.2.0) to remove host contamination. In 
order to obtain the species-level information, the clean 
reads were aligned to the suggested database (v202003) 
by using Kraken2 software (v2.1.1) [20] and Braken soft-
ware (v2.5) [20]. The database can be freely downloaded 
from the Kraken2 website (ftp://​ftp.​ccb.​jhu.​edu/​pub/​
data/​krake​n2_​dbs/).

Fecal metabolite extraction and LC–MS analysis 
for the Meta/LC–MS cohort
The fecal metabolite extraction method was adapted 
from a previously published protocol [21]. First, all chro-
matographic separations were performed by using an 
ultra-performance liquid chromatography (UPLC) sys-
tem (SCIEX, Macclesfield, UK). An ACQUITY UPLC 
HSS T3 column (100  mm × 2.1  mm, 1.8  μm, Waters, 
UK) was used for the reversed-phase separation. The 
column oven was maintained at 35 °C, and the flow rate 
was 0.4 mL/min. The mobile phase consisted of solvent A 
(water, 0.1% formic acid) and solvent B (acetonitrile, 0.1% 
formic acid).

A high‐resolution tandem mass spectrometer (Tri-
pleTOF5600plus, SCIEX) was used to detect the 
metabolites that eluted from the column. The Quadru-
pole Time‐of‐Flight was operated in both positive- and 

negative-ion modes. The curtain gas, ion source gas 1, 
and ion source gas 2 were set at 30 psi, 60 psi, and 60 psi, 
respectively, and the interface heater temperature was 
650℃. For positive- and negative-ion modes, the ion-
spray voltage floating was set at 5000  V and − 4500  V, 
respectively. The mass spectrometry data were acquired 
in information-dependent acquisition mode. The time-
of-flight mass range was 60–1200 Da. During the acquisi-
tion, the mass accuracy was calibrated every 20 samples. 
Furthermore, a quality control sample (pool of all sam-
ples) was acquired after every 10 samples in order to 
evaluate the stability of the LC‐MS during the whole 
acquisition. The detailed methods for LC–MS raw data 
file processing, calculation of the exact molecular mass 
data (m/z), online Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and Human Metabolome Database 
(HMDB) database annotation, and quality control have 
been described previously [22].

After processing the information with eXtensible Com-
putational Mass Spectrometry (XCMS) software, we 
initially matched the m/z values with the KEGG data-
base using the open-source software metaX to obtain 
the primary metabolite identification results. Due to the 
possibility of multiple metabolites having similar mass-
to-charge ratios, the primary identification results may 
have included cases where a single m/z corresponds to 
multiple metabolites. For more reliable metabolite iden-
tification, we utilized an in-house secondary mass spec-
trometry database to match the metabolite data, which 
resulted in a higher confidence of metabolite identifica-
tion. In terms of ion annotation, we converted the raw 
mass spectrometry data into a readable format (mzXML) 
using Proteowizard’s MSConvert software. Subsequently, 
we conducted peak extraction and quality control using 
XCMS, and the substances extracted were subjected to 
ion annotation using CAMERA. Our metabolite iden-
tification process can be summarized as follows: (1) 
Conversion of the raw data to the mzXML format using 
MSConvert. (2) Peak extraction and quality control using 
XCMS, with ion annotation performed using CAMERA. 
(3) Metabolite identification using metaX, which involves 
primary identification through database matching (based 
on the MS1 information) and secondary identification 
through matching with an in-house standard compound 
database (based on the MS2 information). (4) Annotation 
of candidate-identified substances using databases such 
as HMDB and KEGG to explain their physicochemical 
properties and biological functions. (5) Quantification 
of metabolites and screening for differential metabolites 
using metaX. The software versions used for this analy-
sis are as follows: metaX (version 1.4.19); xcms (version 
3.9.3). Metabolite annotation was based on the KEGG 
results for secondary metabolites (MS2Metabolite).

ftp://ftp.ccb.jhu.edu/pub/data/kraken2_dbs/
ftp://ftp.ccb.jhu.edu/pub/data/kraken2_dbs/
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For quality tolerance and feature filtering, we utilized 
XCMS to extract the signal intensity information of each 
feature across different samples, followed by quality 
control using metaX. First, we removed the low-quality 
peaks (those missing in more than 50% of the QC sam-
ples or more than 80% of the actual samples). Subse-
quently, we employed the K-nearest neighbors (KNN) 
method to impute missing values and then performed 
data normalization using probabilistic quotient normali-
zation (PQN) and QC-robust spline batch correction 
(QC-RSC). Following data correction, we applied a fil-
tering step, removing all ions with a coefficient of varia-
tion (CV) greater than 30% in the QC samples (i.e., ions 
with CV > 30% exhibit significant fluctuations during the 
experimental process and are not suitable for differential 
quantification analysis).

RNA‑seq
RNA was extracted using an RNeasy Plus Mini Kit and 
quantified using a NanoDrop ND-1000 spectrophotom-
eter (NanoDrop, Wilmington, DE, USA). The RNA integ-
rity was assessed by a Bioanalyzer 2100 (Agilent, Santa 
Clara, CA, USA) and confirmed by electrophoresis with 
denaturing agarose gel electrophoresis. Poly(A) RNA was 
purified from 1 μg of total RNA using Dynabeads Oligo 
(Thermo Fisher Scientific, Waltham, MA, USA) using 
two rounds of purification. Cleaved RNA fragments 
were copied into double-stranded cDNA using reverse 
transcriptase, random primers, DNA polymerase, and 
RNase H, in sequence. Following ligation of the sequenc-
ing adapter, the cDNA products were purified. Finally, we 
performed the 2 × 150-bp paired-end sequencing (PE150) 
on an  Illumina Novaseq™ 6000 instrument (LC-Bio 
Technology CO., Ltd., Hangzhou, China). After removing 
the low-quality bases and undetermined bases, HISAT2 
software was used to map the reads to the genome. After 
the final transcriptome was generated, StringTie and ball-
gown were used to estimate the expression levels of all 
transcripts and to calculate the fragments per kilobase of 
transcript per million mapped reads.

Sample preparation and WES
The patients in the WES cohort were included for the 
evaluation of the genomic expression pattern related 
to the Fn levels and tumor locations. WES and analysis 
were performed at the Genomics Laboratory of Genom-
icCare Biotechnology (Shanghai, China). For frozen tis-
sue or blood, DNA was extracted from thawed materials 
by using a Maxwell RSC Blood DNA Kit (cat# AS1400, 
Promega, Madison, WI, USA) on a Maxwell RSC sys-
tem (cat# AS4500, Promega). For formalin-fixed, paraf-
fin-embedded (FFPE) tissue, DNA was extracted using 
a MagMAX FFPE DNA/RNA Ultra Kit (cat# A31881, 

Thermo Fisher Scientific) on a KingFisher Flex system 
(Thermo Fisher Scientific). The extracted DNA was 
sheared by using a Covaris L220 sonicator, and then the 
exomic DNA was captured by using a SureSelect Human 
All Exon V7 kit (cat# 5991-9039EN, Agilent), prepared 
to the library by using the SureSelectXT Low Input Tar-
get Enrichment and Library Preparation system (cat# 
G9703-90000, Agilent), and sequenced on an Illumina 
NovaSeq-6000 sequencer (Illumina) to generate 2 × 150-
bp paired-end reads. Image analysis and base calling were 
performed by using RTA3 software (Illumina).

Somatic variant identification
The running environment with default parameters was 
implemented to process the following steps sequentially: 
read alignment to the National Center for Biotechnology 
Information human genome reference assembly hg19 by 
using the Burrows–Wheeler Aligner algorithm, duplica-
tion sorting, realignment and recalibration, and somatic 
mutation calling including single nucleotide variations 
(SNVs) and short insertion/deletions. During the muta-
tion calling stage, the reads from the tumor samples were 
compared with the paired blood from the same patient 
to generate the somatic mutation list. The called somatic 
mutations were then filtered, meaning that only the 
mutations with a variant allele frequency ≥ 0.05 and sup-
ported by at least three reads were retained, and anno-
tated using the Variant Effect Predictor package [23].

The most frequently mutated genes and their distri-
bution across different clinical features, the significantly 
different mutated genes between groups, and the mutu-
ally exclusive or co-occurring mutated genes were calcu-
lated and visualized by the MAFtools package in R [24]. 
Gene set enrichment analysis (GSEA) was performed by 
using GSEA software (http://​softw​are.​broad​insti​tute.​org/​
gsea/​index.​jsp) [25]. The most frequently mutated genes 
and their distribution across different clinical features as 
well as the significantly different mutated genes between 
groups were calculated and visualized by the MAFtools 
package (v2.6.05) in R. The “OncogenicPathways” mod-
ule in MAFtools was used to examine the enrichment 
of ten canonical oncogenic signaling pathways derived 
from The Cancer Genome Atlas cohorts, including the 
cell cycle, Hippo, Myc, Notch, Nrf2, PI3K/Akt, RTK-
RAS, TGFβ, TP53, and Wnt signaling pathways. Next, 
the mutated genes were assigned to oncogenic signaling 
pathways, and the fractions of genes affected were calcu-
lated for each pathway.

As is well known, the intestinal microbial communi-
ties are closely related to human health, which can be 
influenced by many factors, such as lifestyle, host dis-
ease, and host genetics. Two different methods were used 
to test the associations between host genetics and the 

http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
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abundance of gut bacteria as well as metabolites. First, 
Spearman correlation analysis was used to calculate the 
correlation. Correlations resulting from the Spearman 
analysis were further analyzed using a generalized linear 
model (GLM) to adjust for age and sex [26]. The count 
abundance was submitted to logistic regression using 
GLM with a negative binomial distribution using the 
number of SNVs as a predictor, including the covariates 
age and sex. The Manyglm function from the mvabund 
package (v 4.2.1) in R (v4.0.0) was used in this process.

Statistical analysis
Comparison of quantitative data between groups was 
conducted by using the unpaired Student’s t-test, Mann–
Whitney U-test, or Dunnett’s t-test, where appropriate. 
The associations between or among the clinical charac-
teristics were determined by Pearson’s chi-squared test 
or Fisher’s exact test. The linear discriminant analysis 
effect size (LEfSe, https://​hutte​nhower.​sph.​harva​rd.​edu/​
galaxy/) algorithm was used to identify the taxonomic 
features and metabolite features that are differentially 
abundant between groups. DESeq2 [27] (R Package 
v1.30.1) was used to perform the differential gene expres-
sion analysis based on the negative binomial distribution 
with the RNA-seq data. Spearman correlation analy-
sis was performed to analyze the correlation between 
the gut microbiota, metabolites, and RNA-seq data. All 
p-values were two-tailed, and p-values ≤ 0.05 were con-
sidered statistically significant. All data were analyzed by 
using Graph Pad Prism 8.0 software (Graph Pad software 
Inc., San Diego, CA, USA), R version 4.0.0 (R Founda-
tion for Statistical Computing, Vienna, Austria, http://​
www.R-​proje​ct.​org/), and Microsoft Excel (Microsoft 
Corporation, Seattle, WA, USA).

As for the method to identify the taxonomic biomark-
ers that are differentially abundant between groups, the 
linear discriminant analysis effect size (LEfSe, https://​
hutte​nhower.​sph.​harva​rd.​edu/​galaxy/) algorithm was 
performed, and the criteria were as follows: (1) Kruskal–
Wallis p-value < 0.05; (2) LDA (linear discriminant anal-
ysis) > 2. LEfSe analysis was also used to identify the 
metabolomics biomarkers with the criterion: (1) Kruskal–
Wallis p-value < 0.05; (2) LDA (linear discriminant 
analysis) > 1.5. MaAsLin2 (MicrobiomeMultivariableAs-
sociation with Linear Models, https://​hutte​nhower.​sph.​
harva​rd.​edu/​maasl​in/) was used to adjust the effects of 
age and gender in taxonomic and metabolomics analy-
sis with Maaslin2 package(v1.5.1) in R software(v4.0.0). 
Simple Spearman analysis was performed using corr.
test() function from psych packages(v2.3.12) in R soft-
ware, while partial spearman analysis was performed 
using pcor.test() function from ppcor packages(v1.1) in 
R software(v4.0.0). DESeq2 (R Package v1.30.1) was used 

to perform the differential gene expression analysis based 
on the negative binomial distribution with the RNA-seq 
data in R software(v4.0.0), and gene expressions with 
p.fdr of < 0.05 and log2 Fold Change < - 1 or > 1 were con-
sidered significant. The correlations between SNVs and 
taxa/metabolites were assessed using simple Spearman 
correlation analysis and the generalized linear model 
(GLM) analysis, respectively. First, simple Spearman cor-
relation analysis was used to calculate the correlation 
with corr.test() function from psych packages(v2.3.12) in 
R(v4.0.0). Second, the generalized linear model (GLM) 
was used to calculate the correlation. The count abun-
dance was submitted to logistic regression using GLM 
with a negative binomial distribution using the number 
of SNVs as a predictor, including the covariates age and 
sex. The Manyglm() function from the mvabund pack-
age (v 4.2.1) in R (v4.0.0) was used in this process, and 
p < 0.05 was considered significant.

Results
Association of gut microbiota with tumor location in colon 
cancer
To search for differences in the relative abundance of 
fecal gut microbiota among RCC, LCC, and healthy 
controls, we analyzed the gut microbiota profiles of 264 
healthy participants and colon cancer patients in the 
16S-seq cohort (Fig.  2A). The clinical characteristics of 
age, sex, differentiation, serum carcinoembryonic antigen 
(CEA), serum cancer antigen 19–9 (CA 19–9), tumor–
lymph node–metastasis (TNM) stage, lymphatic inva-
sion, nerve invasion, and vascular invasion were similar 
between the RCC and LCC groups (Table S1). Bacterial 
diversity was assessed by the Chao1, Shannon, and Simp-
son indexes, and the Chao1 index in the RCC and LCC 
groups was determined to be significantly reduced com-
pared with the control, while there was no significant dif-
ference between the RCC and LCC groups in terms of the 
alpha diversity (Table  S2). Beta diversity was calculated 
by using unweighted Unifrac measurements, and princi-
pal coordinate analysis was performed. There was a sig-
nificantly separated distribution among the three groups 
as well as between the RCC and LCC groups (PER-
MANOVA, p < 0.05, Fig.  2B). The differentially abun-
dant genus signatures among the RCC, LCC, and control 
groups were assessed by the LEfSe algorithm, and a total 
of 34 genera among the three groups were identified as 
differentially abundant bacterial species with a linear dis-
criminant analysis (LDA) score > 2.0, and p-value < 0.05 
(Fig. 2C, Table S3). An increased abundance of the can-
cer-promoting bacteria Fusobacterium was observed in 
RCC, while the genera Parvimonas and Gemella were 
identified as key microbiota in LCC. Furthermore, the 
genera Faecalibacterium, Eubacterium, and Blautia were 

https://huttenhower.sph.harvard.edu/galaxy/
https://huttenhower.sph.harvard.edu/galaxy/
http://www.R-project.org/
http://www.R-project.org/
https://huttenhower.sph.harvard.edu/galaxy/
https://huttenhower.sph.harvard.edu/galaxy/
https://huttenhower.sph.harvard.edu/maaslin/
https://huttenhower.sph.harvard.edu/maaslin/
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the dominant taxa signature in the control group. Taken 
together, these results indicate significant associations 
between distinct gut microbiota and different tumor 
locations.

To further obtain deeper insights into the identification 
of gut microbiota associated with different tumor loca-
tions and to validate the results from the 16S-seq cohort, 
metagenomic sequencing with species-level taxonomic 

Fig. 2  Association of gut microbiota with tumor location in colon cancer. A Scheme of the clinical study on the 16S-seq cohort. To search 
for differences in the relative abundance of gut microbiota among fecal samples from healthy participants and patients with a primary tumor 
located in the right-sided colon (RCC) vs. left-sided colon (LCC), we globally analyzed the gut microbiota profiles of 264 individuals in the 16S-seq 
cohort, in which 16S rRNA sequencing gene data from 50 RCC, 114 LCC, and 100 control subjects were available. B Beta diversity was calculated 
using unweighted Unifrac measurements by principal coordinate analysis. C Bar plot of linear discriminant analysis coupled with effective size 
measurement based on the 16S rRNA gene sequencing among the RCC, LCC, and control groups. Asterisk “*” indicates the bacterial genera 
with distinct relative abundances between groups as detected by metagenomic sequencing after adjusting for the age and sex using MaAsLin2



Page 8 of 17Liang et al. Microbiome          (2024) 12:274 

resolution was performed with fecal samples from an 
additional 230 healthy participants and CRC patients in 
the Meta/LC–MS cohort (Fig.  3A). The clinical charac-
teristics of age, sex, differentiation, TNM stage, serum 
CEA, serum CA19-9, lymphatic invasion, nerve invasion, 
and vascular invasion in the three groups were similar 
between the RCC and LCC groups (Table S4). Using the 
Chao1, Shannon, and Simpson indexes to assess alpha 
diversity, we found that there was no significant differ-
ence between RCC and LCC, which was consistent with 
the results observed in the 16S-seq cohort (Table  S5). 
Furthermore, we employed the LEfSe algorithm to 
assess the differentially abundant species and genus 
signatures among the RCC, LCC, and control groups 
(Fig. 3B, LDA > 2 and p-value < 0.05, top 12 taxa in each 
group; Tables S6–S7). After correction for age and sex by 
MaAsLin2, the results indicated that the bacterial species 
Bacteroides fragilis, Veillonella parvula, Flavonifractor 
plautii (Fp), and Fusobacterium nucleatum were the key 
microbiota in RCC; whereas the species Bacteroides sp. 
A1C1 (B.A1C1), Bacteroides ovatus, Bacteroides thetaio-
taomicron, Porphyromonas asaccharolytica, and Parvi-
monas micra were considered the dominant microbiota 
in LCC. Moreover, the species Faecalibacterium praus-
nitzii, Eubacterium rectale, Anaerostipes hadrus, and 
Mesoplasma tabanidae were identified as the key micro-
biota in the healthy controls. These findings indicate that 
unique profiles of the gut microbiome are present among 
the distinct tumor locations, which may potentially affect 
the clinicopathological characteristics of the tumor.

Tumor location‑linked fecal metabolomic alterations 
and associations between the microbiota and metabolites
Considering the interplay between the gut microbiome 
and host metabolism, we first performed untargeted 
metabolomics on fecal samples from the Meta/LC–MS 
cohort (RCC, n = 63; LCC, n = 79; and controls, n = 88). 
To explore the associations of each annotated metabo-
lite with the tumor location, with comparisons among 
the RCC, LCC, and control groups, the LEfSe algorithm 
was used when the differentially accumulated metabo-
lites were filtered by LDA score > 1.5, and p-value < 0.05 

(Fig.  3C, Table  S8). After correction for age and sex by 
MaAsLin2, 29 representative metabolites were found 
among the three groups, of which L-phenylalanine, 
N-acetyl-L-phenylalanine, and tryptophan were the key 
metabolites in RCC; whereas L-citrulline, D-ornithine, 
eicosadienoic acid, and L-tyrosine were considered the 
dominant metabolites in LCC. Specifically, lipid metabo-
lites, including phosphoglyceride (PG) 15:0, PG (6:0/9:0), 
phosphatidic acid (PA) 21:0, and PA (2:0/19:0), as well as 
the short-chain fatty acids isonicotinic acid and isobu-
tyric acid were significantly increased in the control 
group. Subsequently, we performed correlation analysis 
to examine the associations between the differentially 
abundant species and metabolites in the multi-omics 
cohort (simple Spearman correlation, p < 0.05; Fig.  3D). 
Also, the partial Spearman method was used to adjust for 
age, sex, tumor location, and whether the subject suffered 
from CRC (Table  S9). In general, we observed strong 
positive associations between taxa and metabolites that 
were both elevated in the LCC and control groups as well 
as negative associations between the RCC- and control-
enriched taxa and LCC-decreased metabolites. Notably, 
L-phenylalanine was positively associated with certain 
species, such as Fp and B. fragilis, which were enriched in 
RCC but decreased in LCC. In addition, the LCC-accu-
mulated metabolites L-citrulline and D-ornithine were 
positively associated with B.A1C1, which was enriched 
in LCC. Altogether, our results suggest that patients with 
RCC vs. LCC have unique microbial metabolic processes.

Associations of host genomics with the tumor location 
in colon cancer
To further explore the potential mechanisms involved 
in RCC and LCC by gut microbiota and their metabo-
lites, we analyzed the exome and transcriptome data 
from CRC tumors with different primary tumor loca-
tions in the WES/RNA-seq cohort (n = 59) (Fig.  4A). 
The 59 tumor samples from the WES/RNA-seq cohort 
were all obtained from the colon cancer patients in the 
Meta/LC–MS cohort. Next, we analyzed the WES data 
to obtain the basic information of the mutated genes 
in LCC and RCC. The results showed that missense 

Fig. 3  Tumor location-linked fecal metabolomic alterations and associations between the microbiota and metabolites. A Scheme of the clinical 
study on the Meta/LC–MS cohort. Metagenomic sequencing with species-level taxonomic resolution was performed with fecal samples 
from patients with right-sided colon cancer (RCC, n = 63), left-sided colon cancer (LCC, n = 79), and healthy controls (control, n = 88) in the Meta/
LC–MS cohort. B Bar plot of linear discriminant analysis coupled with effective size measurement based on the metagenomic sequencing 
among the RCC, LCC, and control groups (top 12 taxa in each group). C Bar plot of linear discriminant analysis coupled with effective 
size measurement based on the differential metabolites among the RCC, LCC, and control groups (filtered by linear discriminant analysis 
(LDA) > 1.5, and p-value < 0.05). Asterisk “*” in panels B and C indicates bacterial species and metabolites with distinct relative abundances 
and levels between groups detected by metagenomic sequencing after adjusting for the age and sex using MaAsLin2. D The heatmap depicts 
the relationships between the taxa and metabolites that changed among groups (simple Spearman analysis, asterisk “*” indicates p-value < 0.05)

(See figure on next page.)
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mutations and single nucleotide polymorphisms (SNPs) 
were the most common variant types in both LCC 
and RCC, and the main base substitution mutation 

frequencies were C > T and C > A (Fig. S1A–C for LCC 
and Fig. S2A–C for RCC). The variants per sample 
and boxplots of variant classification are shown in Fig. 

Fig. 3  (See legend on previous page.)
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S1D–E and Fig. S2D–E. Notably, the TTN and MUC16 
genes were prominent among the top 10 mutated genes 
in colon cancer (Fig. S1F for LCC and Fig. S2F for RCC), 
and the waterfall plot indicates that LCC and RCC have 
differential host genotype mutations (Fig.  4B). Moreo-
ver, somatic interaction analysis among the mutated 
genes showed a strong co-occurrence of mutational 
patterns in LCC and RCC, respectively (Fig.  4C for 
LCC and Fig.  4D for RCC, the pairwise Fisher’s exact 
test was performed to detect mutually exclusive or co-
occurring events, p < 0.05 and p < 0.1 are marked).

To obtain the maximum gene sequence variation, new 
transcript information, and the difference of gene expres-
sion profiles between RCC and LCC, we further analyzed 
the transcriptome sequencing results in the WES/RNA-
seq cohort. Principal coordinate analysis calculated by 
Bray–Curtis measurements was performed to determine 
the sample distance between the gene expression profiles 
of RCC and LCC, and the results showed that there was 
a significantly separated distribution between the two 
groups (PERMANOVA, p = 0.0218, Fig.  5A). According 
to the gene expression analysis, using a cutoff of at least 
a two-fold difference and p < 0.05, 362 genes were found 
to be differentially expressed between RCC and LCC 
(Fig.  5B, Table  S10, p-value was calculated by DESeq2, 
filtered by log2 (foldchange) > 1 or < − 1; FDR < 0.05). The 
genes PHLDA1, VWF, IFITM3, Wbp1, GPR98, KLRC2, 
STAC​, and SLIT2 were found to be enriched in the RCC 
group; while the genes AC079354.1, KRTAP10-2, TCF25, 
and HLA-DRB5 were enriched in the LCC group. To 
identify the key genes involved in the pathogenesis of 
RCC and LCC, we screened for mutations in the WES 
data that showed significant expression differences in 
the transcriptomic data. With SNV changes in more 
than two samples and amino acid metabolic changes as 
screening conditions, we identified 3 and 10 key gene 
mutations in LCC and RCC, respectively (Fig. 5C–D). In 
RCC, the genes GPR98, KLRC2, STAC​, and SLIT2 may 
serve as potential key genes whose expression changed 
together. Meanwhile, the gene AC079354.1 and its tran-
script expression changed together in LCC, which may 
play a key role in LCC pathogenesis and progression. 
Taken together, RCC and LCC have unique host gene and 
expression profiles, and key genes may be involved in the 
regulation of disease development.

Multi‑omics interaction analysis between host genomics 
and metagenomics in RCC and LCC
The interaction between the gut microbiota and host 
genes has always been a frontier in the field of human 
microbiology. To clarify the association of host genes 
with taxa, metabolites, and transcripts, we first used PER-
MANOVA analysis to evaluate the driving effect of SNVs 
on species, metabolites, and transcriptome expression, 
respectively, based on the 59 samples that all underwent 
metagenomic sequencing, metabolomics analysis, WES, 
and transcriptome sequencing (PERMANOVA analysis, 
p < 0.05, Fig.  6A, Fig. S3A–B, Tables S11–S13). Among 
them, the RCC-enriched genes IRS4 and LARP1 and the 
LCC-enriched genes TP53 and PHLDA1 may have had a 
dominant driving effect on the species; while the LCC-
enriched genes ZNF267 and IGHG3 may have had a lead 
driving effect on metabolites. Next, we calculated the 
correlation between SNVs and differential species and 
metabolites, respectively. As for the correlation between 
SNVs and species, simple Spearman’s correlation analy-
sis was firstly performed to analyze the correlations 
(p-value < 0.05), and the correlations were adjusted by 
microsatellite instability (MSI) status using partial Spear-
man analysis (p-value < 0.05, Fig. 6B, Table S14). To bet-
ter assess the correlations, the generalized linear model 
(GLM) with negative binomial distribution was used to 
adjust for age and sex was used secondly (p-value < 0.05, 
Fig. 6B, Table S14). As for the correlation between SNVs 
and metabolites, simple Spearman’s correlation analysis 
(p-value < 0.05) and GLM analysis (p-value < 0.05) were 
also performed respectively (Fig. S3C, Table  S15). The 
results showed that RCC-enriched Clostridium drakei 
and Fp were significantly negatively correlated with the 
genes PHLDA1 and WBP1, respectively. In addition, the 
F. nucleatum species enriched in RCC showed a positive 
correlation with the gene VWF and a negative correlation 
with the gene OR2T2. In LCC, the key species B.A1C1 
showed positive correlations with the genes TCF25, 
HLA-DRB5, and AC079354.1 as well as a negative corre-
lation with the gene KRTAP10-2. In determining the rela-
tionship between SNVs and metabolites, RCC-enriched 
L-phenylalanine and tryptophan were found to be signifi-
cantly negatively correlated with the gene HOXB7.  The 
analysis associated the presence/absence of an allele in a 
certain gene with microbial abundances.

(See figure on next page.)
Fig. 4  Associations of the whole exome with the tumor location in left-sided colon cancer (LCC) and right-sided colon cancer (RCC). A Scheme 
of the clinical study on the WES/RNA-seq cohort. The exome and transcriptome data from CRC tumors with different primary tumor locations 
were analyzed to explore the potential mechanisms involved in LCC and RCC by gut microbiota and their metabolites. The 59 tumor samples 
from the WES/RNA-seq cohort were all obtained from the colon cancer patients in the Meta/LC–MS cohort. B The waterfall plot of host genotype 
mutations in LCC and RCC. C–D Somatic interaction analysis among mutated genes in LCC (C) and RCC (D). (The pairwise Fisher’s exact test 
was performed to detect mutually exclusive or co-occurring events; the symbols * and · indicate p < 0.05 and p < 0.1, respectively)
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Fig. 4  (See legend on previous page.)
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Besides focusing on distinguishing RCC from LCC, 
we hypothesized that a combined analysis of RCC and 
LCC samples compared against controls across omics 
layers would be interesting to provide context. We 
separately included the analysis results for RCC com-
pared to the control and LCC compared to the control. 
These results are now available in Tables S16–S21. (The 
criteria for these results were LDA > 2 and p < 0.05). 
Combining the associations between bacteria and 
metabolites as well as between bacteria and genes, we 
propose that two key signaling axes may represent the 

multi-omics profiles of RCC and LCC, respectively, and 
may play a key role in guiding pathogenesis research 
and disease therapy. In RCC, the enrichment of Fp 
may be related to the accumulation of the metabo-
lite L-phenylalanine, which can potentially affect the 
WBP1 signal. Moreover, LCC-enriched B.A1C1 may 
be associated with the accumulation of the metabo-
lites D-ornithine and L-citrulline and activation of the 
genes TCF25, HLA-DRB5, and AC079354.1, which are 
involved in colorectal carcinogenesis (summarized in 
Fig. 1).

Fig. 5  Associations of transcriptome with tumor location in colon cancer. A Principal coordinate analysis calculated by Bray–Curtis measurements 
was performed to determine the sample distance between the gene expression profiles of left-sided colon cancer (LCC) and right-sided colon 
cancer (RCC) (Bray–Curtis measurements, PERMANOVA, p = 0.0218). B The volcano plot showed the differentially expressed genes between LCC 
and RCC using a cutoff of at least a two-fold difference and p < 0.05 (FDR value was calculated by DESeq2). C–D Genes in whole-exome sequencing 
whose expression profiles in transcriptomic sequencing changed together were screened to identify the key genes involved in the pathogenesis 
of LCC and RCC. With single-nucleotide variant (SNV) changes in more than two samples and amino acid metabolic changes as screening 
conditions, 3 and 10 key changed genes in RCC and LCC were identified, respectively
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Fig. 6  Multi-omics interaction analysis between host genomics and metagenomics in left-sided colon cancer (LCC) and right-sided colon cancer 
(RCC). A PERMANOVA analysis was used to evaluate the driving effect of single-nucleotide variants (SNVs) on species based on the 59 samples 
that all underwent metagenomic sequencing, metabolomics analysis, whole-exome sequencing, and transcriptome sequencing (p < 0.05). B The 
correlation between filtered SNVs and differential species. (Spearman’s correlation analysis was performed to analyze the correlations; p < 0.05)
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Discussion
In the present study, we combined multi-omics sequenc-
ing to profile the gut microbiome, metabolome, and 
host genome in RCC and LCC, revealing new metage-
nome–genome-associated interactions. Our approach 
identified that the RCC-associated species Fp with 
increased L-phenylalanine shaped the gut ecology and 
correlated with the mutation and dysregulation pro-
files of the host gene WBP1. We also identified LCC-
associated features, including the species B.A1C1 and 
B. thetaiotaomicron, the metabolites D-ornithine and 
L-citrulline, and the genes TCF25, HLA, and KRTAP10-
2. Furthermore, we summarized the microbiota–host 
interaction networks as the Fp–phenylalanine–WBP1 
axis in RCC patients and the B.A1C1–D-ornithine/L-cit-
rulline–TCF25/HLA/KRTAP10-2 axis in LCC patients, 
potentially suggesting the distinct clinicopathological 
characteristics of RCC and LCC.

The 16S rRNA and metagenomic sequencing showed 
that the key microbiome of RCC consisted of the genus 
Fusobacterium and the species B. fragilis, V. parvula, 
Fp, and F. nucleatum, while that of LCC consisted of the 
genera Parvimonas and Gemella and the species B. ova-
tus, B. thetaiotaomicron, P. asaccharolytica, and P. micra; 
these findings are partially consistent with the published 
literature [14, 15, 28]. Fusobacterium is a common oral 
bacteria that form biofilms on teeth and epithelial tissues 
[29]. Fusobacteria-dominant polymicrobial biofilms have 
been detected in RCC to contain Bacteroidetes, Lach-
nospiraceae, and Enterobacteriaceae [14, 15]. Moreo-
ver, F. nucleatum is a type of oncogenic bacteria that is 
significantly elevated in tumor tissues, which increases 
the mutation frequency of CRC and affects CRC prolif-
eration, metastasis, and chemoresistance [30–39]. The 
amount of F. nucleatum DNA in CRC tissue has been 
associated with a shorter survival time and an MSI-high 
status [16]. Furthermore, metagenomic and transcrip-
tomic analyses have revealed that intestinal microbes, 
especially F. nucleatum, are involved in CRC develop-
ment, consistent with our results [40]. We also identified 
that F. nucleatum was positively associated with the von 
Willebrand factor (vWF) polymorphism. vWF is reported 
as a plasma protein marker for the early detection of 
CRC, indicating the early alteration of vWF in CRC ini-
tiation [41]. The deposition of vWF and blood coagula-
tion may drive tumor metastasis [42]. Our results suggest 
that the vWF mutation associated with F. nucleatum may 
have an impact on platelet adhesion, potentially contrib-
uting to chronic bleeding in the tumor and dysbiosis of 
the intestinal microenvironment. This finding may point 
to a possible mechanism of carcinogenesis. Neverthe-
less, further research is required to establish a causal 
relationship.

We are the first to report the RCC-associated axis of 
Fp–phenylalanine–WBP1. We have reported previously 
that Fp is a flavonoid-degrading species that is enriched 
in young-onset CRC [43, 44]. WBP1, which encodes a 
ligand of the WW domain of the Yes-associated protein 
(YAP), has been demonstrated to have an antitumor 
role via binding to YAP and reducing the transcriptional 
activity of YAP [45, 46]. WBP1 also has been reported to 
be essential for oligosaccharide transfer and N-glycosyla-
tion in yeast. In addition, depleted WBP1 may reduce the 
intake of oligosaccharides and the level of N-glycosyla-
tion [47]. Our data suggest that enrichment of Fp in RCC 
may be related to the mutation of WBP1. We also found 
Fp to be significantly negatively correlated with PHLDA1, 
a novel identified p53 target acting as a tumor-suppressor 
gene that is essential for repressing Akt involved in the 
PI3K signaling pathway [48]. These findings bridge the 
links among diet-associated flavonoids, microbiota, and 
the host genome.

The LCC-associated metagenome–genome interac-
tion comprised the key species B.A1C1 and various 
SNVs, including in TCF25, HLA-DRB5, and KRTAP10-2. 
TCF25, which acts as a transcriptional repressor in cell 
death control, has been proven to repress the transcrip-
tion of the serum response factor (SRF). Overexpression 
of TCF25 may aggravate intestinal ulceration by deplet-
ing re-epithelialization and regeneration of submucosal 
smooth muscular cells via suppressing SRF [49]. Addi-
tionally, the dysregulation of the circular RNA TCF25 
has been reported in bladder carcinoma [50]. Mean-
while, HLA-DRB5 polymorphisms are associated with 
various diseases such as type 1 diabetes and multiple 
sclerosis [51]. However, the relationship between HLA-
DRB5 polymorphisms and gut microbiota and its role in 
carcinogenesis have not been elucidated. We observed a 
correlation between B.A1C1 and the mutation of the host 
genome in LCC, which may be associated with promot-
ing tumorigenesis. Our multi-omics research provides 
correlational evidence, serving as supportive findings for 
other research results, thus contributing to the consensus 
in the literature. Nevertheless, further basic experiments 
should be conducted to validate these correlation find-
ings in the future and to enhance our understanding of 
the underlying mechanisms.

Conclusion
We performed a comprehensive multi-omics analysis 
of the microbiome, metabolome, and host genome in 
patients with RCC vs. LCC to explain the site-specific 
difference in CRC, revealing many new metagenome–
genome interactions. In this regard, these data contrib-
ute to a growing body of literature to understand the 
differences between different locations of CRC from an 
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integrated multi-omics perspective, which is the key to 
exploring the differences between RCC and LCC in tumor 
initiation and progression. Since metagenome–genome 
association studies are an emerging field to elucidate the 
role of gut microbiota in human physiological processes 
and pathogenesis, the causal relationship between the gut 
microbiota and the host genome requires further investi-
gation [52]. Our findings extend our insights into the rela-
tionship between the gut microbiota at the species level, 
metabolites, and host genomics in RCC and LCC, point-
ing to possible future modalities for CRC intervention tar-
geting the gut microbiota–host interplay.
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