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Abstract 

Background Seawater microbes (bacteria and archaea) play essential roles in coral reefs by facilitating nutri‑
ent cycling, energy transfer, and overall reef ecosystem functioning. However, environmental disturbances such 
as degraded water quality and marine heatwaves, can impact these vital functions as seawater microbial commu‑
nities experience notable shifts in composition and function when exposed to stressors. This sensitivity highlights 
the potential of seawater microbes to be used as indicators of reef health. Microbial indicator analysis has centered 
around measuring the taxonomic composition of seawater microbial communities, but this can obscure heterogene‑
ity of gene content between taxonomically similar microbes, and thus, microbial functional genes have been hypoth‑
esized to have more scope for predictive potential, though empirical validation for this hypothesis is still pending. 
Using a metagenomics study framework, we establish a functional baseline of seawater microbiomes across offshore 
Great Barrier Reef (GBR) sites to compare the diagnostic value between taxonomic and functional information in infer‑
ring continuous physico‑chemical metrics in the surrounding reef.

Results Integrating gene‑centric metagenomics analyses with 17 physico‑chemical variables (temperature, salin‑
ity, and particulate and dissolved nutrients) across 48 reefs revealed that associations between microbial functions 
and environmental parameters were twice as stable compared to taxonomy‑environment associations. Distinct 
seasonal variations in surface water chemistry were observed, with nutrient concentrations up to threefold higher 
during austral summer, explained by enhanced production of particulate organic matter (POM) by photoautotrophic 
picocyanobacteria, primarily Synechococcus. In contrast, nutrient levels were lower in winter, and POM production 
was also attributed to Prochlorococcus. Additionally, heterotrophic microbes (e.g., Rhodospirillaceae, Burkholderiaceae, 
Flavobacteriaceae, and Rhodobacteraceae) were enriched in reefs with elevated dissolved organic carbon (DOC) 
and phytoplankton‑derived POM, encoding functional genes related to membrane transport, sugar utilization, 
and energy metabolism. These microbes likely contribute to the coral reef microbial loop by capturing and recycling 
nutrients derived from Synechococcus and Prochlorococcus, ultimately transferring nutrients from picocyanobacterial 
primary producers to higher trophic levels.

Conclusion This study reveals that functional information in reef‑associated seawater microbes more robustly associ‑
ates with physico‑chemical variables than taxonomic data, highlighting the importance of incorporating microbial 
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function in reef monitoring initiatives. Our integrative approach to mine for stable seawater microbial biomarkers can 
be expanded to include additional continuous metrics of reef health (e.g., benthic cover of corals and macroalgae, fish 
counts/biomass) and may be applicable to other large‑scale reef metagenomics datasets beyond the GBR.

Keywords Coral reefs, Seawater microbiome, Synechococcus, Prochlorococcus, Microbial loop, Metagenomics, 
Environmental monitoring, Microbial indicators, Great Barrier Reef

Background
Coral reefs globally are increasingly subjected to the 
impacts of climate change and anthropogenic activ-
ity [1–3], driving declines in the health of these critical 
ecosystems [4, 5]. Early identification of adverse environ-
mental conditions and declining reef health is important 
for the development of management strategies that can 
effectively mitigate the effects of environmental pressures 
[6–10]. Free-living seawater microorganisms are the first 
responders to environmental change on reefs owing to 
their rapid turnover rates measured in hours or days [11–
13]. The utility of microbes for reef monitoring has been 
previously proposed (reviewed in [8, 9, 14, 15]), with 
many studies documenting rapid changes in the structure 
of seawater microbial communities on reefs subjected 
to environmental stress [16–21]. Seawater microbiomes 
have been shown to be up to fivefold more accurate com-
pared to sediment and host-associated (coral, sponge, 
and macroalgae) microbiomes in predicting temperature 
and nutrient concentrations on reefs [11]. This was attrib-
uted to planktonic communities being more uniform in 
their spatial and temporal distribution across reef waters 
in contrast to sediment microbes, which were highly site 
specific (i.e., influenced by sediment grain size and chem-
ical composition), and host microbiomes strongly influ-
enced by host genotype [11, 22]. Moreover, seawater can 
be easily and non-destructively collected alongside in situ 
reef health surveys; hence, there is realistic scope to com-
plement ongoing reef monitoring programs with seawa-
ter microbial observations [10, 15].

Microbial communities in seawater are influenced by 
various oceanographic processes such as transport, mix-
ing, resuspension, and shelf upwelling, in addition to 
niches associated with water chemistry and/or interac-
tions with surrounding benthic and pelagic communi-
ties. As such, the challenge with using seawater microbial 
communities as indicators of reef health is in assessing 
their associations to different environmental factors (e.g., 
temperature, salinity, nutrient concentrations, and local 
biodiversity) and whether the identified microbial indi-
cators associate with the same environmental factors 
consistently across broad spatial and temporal scales. 
Further, associations between pelagic microbes and the 
environment are often documented as stochastic, which 
is partly explained by “functional redundancy” within the 

microbiome [23–25], whereby genes for many metabolic 
functions are present across broad classes of microorgan-
isms [26–30] and microbial communities therefore likely 
have many compositional alternatives for carrying out 
the same process in any given environment. This phe-
nomenon raises the possibility that microbial metabolic 
function could more reliably reflect environmental met-
rics than taxonomic identity, and this has been reported 
across plant [31, 32], soil [33], human gut [34, 35], and 
marine microbiomes in pelagic waters [23–25, 30, 36]. 
Genes for metabolic cellular functions like photosynthe-
sis, nitrification, ammonia oxidation, sulfate reduction, 
and virulence have also been proposed as having higher 
utility in predicting environmentally induced changes 
that translate to shifts in reef health [10, 15, 19]. How-
ever, it is important to note that recent findings indicate 
that in Florida reef waters, the taxonomic microbiome 
(16S rRNA gene) was a stronger predictor of both phys-
ico-chemical and benthic reef properties compared to the 
functional microbiome (metagenome) and metabolome 
of the reef water [37]. This highlights the need for further 
research to fully understand the potential contributions 
of functional genes in different reef ecosystems.

Previous studies documenting community composi-
tion of reef bacterioplankton (seawater bacteria and 
archaea) across the Great Barrier Reef (GBR) have indi-
cated a large influence of geography and season [19] with 
different explanatory drivers identified across the GBR. 
Using 16S rRNA gene amplicon sequencing, reef bac-
terioplankton of inshore GBR reefs of the Wet Tropics 
region were shown to predominantly respond to riverine 
inputs characterised by declining salinity and elevated 
organic and inorganic nutrients [38]. In comparison, the 
main drivers on inshore reefs in the central GBR were 
temperature, total suspended solids, particulate organic 
carbon, and macroalgae [11, 39]. Due to these differences 
in geographical sites and/or different times of sampling, 
potentially in addition to methodological variations in 
field sample collection and laboratory processing, these 
independent meta-omics studies have also identified 
somewhat inconsistent seawater microbial indicators for 
the same environmental metric. For example, Rhodobac-
teraceae and Flavobacteriaceae were identified as indica-
tive of elevated nutrients in degraded inshore reefs of the 
central GBR [11, 39]; however, they were not identified as 
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indicators of nutrient enrichment and poor water quality 
in the Tully River region of the northern GBR [38]. While 
there have been attempts to consolidate microbial com-
munity composition and environmental data sets span-
ning the GBR (i.e., meta-analysis by [19]), associations 
between reef bacterioplankton composition and nutri-
ents were largely partitioned by cross-shelf spatial vari-
ation, with heterotrophic microbes and reduced bacterial 
diversity documented in inshore reefs, in contrast to 
more diverse and autotrophic bacterioplankton commu-
nities in oligotrophic mid- and outer-shelf GBR surface 
waters [19]. These findings suggest that putative indicator 
taxa were unique to their respective region, and may not 
serve as a general indicator of a specific continuous envi-
ronmental metric stably across the GBR. Importantly, it 
remains unknown how microbial functional potential 
changes across the broad spatiotemporal scales of the 
GBR as previous studies predominantly focused on taxo-
nomically profiling reef bacterioplankton communities 
through 16S rRNA gene sequencing (notable exception: 
[39]), which may mask variation hidden by functional 
redundancy. Therefore, here we measure microbial func-
tional genes directly to assess their reliability as indica-
tors of metrics relevant to reef health.

In this study, we perform a gene-centric analysis on 
surface seawater metagenomes collected from 48 off-
shore reefs (at ~ 5-m depth) across the length of the GBR, 
integrating microbial metagenomic and physico-chemi-
cal data to (1) identify stable microbial indicators—both 
taxonomic and functional genes—which consistently 
respond to specific physico-chemical variables (e.g., 
nutrient loads, temperature, salinity) across broad spati-
otemporal scales in the GBR, and (2) to assess whether 
microbial taxa or functional genes exhibit greater stabil-
ity in their associations with these environmental factors. 
To achieve objective (1), we extended a Sparse Partial 
Least Squares analysis (sPLS, see [40, 41]), widely used in 
microbial oceanography to correlate microbial data with 
continuous environmental metrics (see, e.g., [42–44]), 
with a Multivariate INTegrative method (MINT, see 
[45]) to integrate data from four independent sampling 
trips. This omics integration approach aimed to uncover 
microbial indicators that are stable/shared across trips, 
hence persistently correlating to the same physico-chem-
ical variables across space and time in offshore GBR reefs. 
To achieve objective (2), we applied data perturbation 
with cross-validation (CV) to first quantify indicator sta-
tistical stability, measured as the reoccurrence of micro-
bial indicator taxa or GO terms across independent CV 
runs, and subsequently evaluate the diagnostic potential 
(i.e., higher stability scores = higher diagnostic value) of 
microbial functional information in surpassing taxonomy 
for reef health assessments, which we hypothesized based 

on the principles of functional redundancy. Our results 
demonstrate the potential of reef seawater microbes to 
accurately inform nutrient concentrations, contributing 
to the potential to link seawater microbes and reef health.

Methods
Seawater collection and field processing
Surface seawater (at 5-m depth, approximately 5–15  m 
from the reef benthos) was collected for water chemistry 
analysis and microbial community profiling at 48 reefs 
spanning the GBR, with each sample being collected 
once in time (Fig. 1). Sampling was performed from the 
RV Solander and RV Cape Ferguson alongside AIMS 
Long-Term Monitoring Program in  situ reef health sur-
veys across four trips between November 2019 and July 
2020 (Fig.  1). The first three sampling trips occurred 
during the austral (i.e., in the Southern Hemisphere) 
summer (wet season) in the far northern GBR (Trip 1: 
November–December 2019, Cape Grenville and Prin-
cess Charlotte Bay sectors, see Fig. S1), the southern GBR 
(Trip 2: January 2020, Swains and Capricorn Bunker sec-
tors, see Fig. S2), and in the central GBR (Trip 3: Febru-
ary 2020, Cairns and Innisfail sectors, see Fig. S3), while 
the last trip was performed during the austral winter (dry 
season) and also in the central GBR (Trip 4: July 2020, 
Townsville sector, see Fig. S4) (Fig. 1). The coordinates of 
the 48 surveyed reefs were visualized as maps in R Stu-
dio (R version 4.3.2) [46] as per the following: https:// 
open- aims. github. io/ gisai msr/ artic les/ examp les. html, 
which used the following R packages as dependencies: 
raster (version 3.6.26) [47], tidyverse (version 2.0.0) [48], 
ggspatial (version 1.1.9)  [49], sf  (version 1.0.15) [50, 51], 
dataaimsr  (version 1.1.0) [52], gisaimsr  (version 0.0.1) 
(https:// github. com/ open- AIMS/ gisai msr), and ggrepel 
(version 0.9.5) [53].

Triplicate 5-L seawater samples were collected using 
Niskin bottles or by divers for analysis of water chem-
istry variables. A total of 14 water chemistry variables 
were measured using established methods [54], includ-
ing ammonia  (NH4

+), nitrite  (NO2
+), nitrate  (NO3

+), 
total dissolved nitrogen (TDN), phosphate  (PO4

3−), total 
dissolved phosphorus (TDP), dissolved organic car-
bon (DOC), silicate (Si), total suspended solids (TSS), 
chlorophyll a (Chl-a), phaeophytin a (Phaeo), particu-
late organic carbon (POC), particulate nitrogen (PN), 
and particulate phosphorus (PP). Samples for dissolved 
nutrient  (NH4

+,  NO2
+,  NO3

+,  PO4
3− — hereinafter 

written without specifying the electron charge for clar-
ity, as well as Si, TDN, TDP, and DOC) analysis were 
immediately filtered through a 0.45-µm syringe filter 
(Sartorius Minisart N) into 10-mL acid-washed vials, 
which were pre-rinsed three times with filtered site sea-
water. Dissolved inorganic  (NH4,  NO2,  NO3,  PO4) and 

https://open-aims.github.io/gisaimsr/articles/examples.html
https://open-aims.github.io/gisaimsr/articles/examples.html
https://github.com/open-AIMS/gisaimsr
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total dissolved (TDN, TDP) samples were stored frozen 
(− 18  °C) until analysis. Samples for DOC analysis were 
acidified with 100 µL of AR-grade hydrochloric acid; 
DOC and Si samples were stored refrigerated (4 °C) until 

analysis. Samples for particulate nutrient (POC, PN, 
PP) and Chl-a analysis were manifold filtered through 
pre-combusted (450  °C for 4  h) 25-mm diameter filters 
(Whatman GF/F, nominal pore size 0.7  µm), folded, 

Fig. 1 Field sampling design for the GBR‑MGD (Great Barrier Reef Microbial Genomics Database) dataset by Australia’s Integrated Marine 
Observing System (IMOS). Seawater was collected from 48 offshore GBR reef sites for microbial community metagenomic sequencing and analysis 
of 17 physico‑chemical variables over 4 trips between November 2019 and July 2020. Reef sites are colored in red or blue tones to denote trips 
that occurred during the austral summer (wet season) or austral winter (dry season), respectively
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placed in pre-combusted aluminum foil envelopes, and 
stored frozen (− 18  °C) until analysis. Samples for TSS 
analysis were manifold filtered onto pre-weighed 47-mm 
diameter polycarbonate filters (GE Water & Process 
Technologies, pore size 0.4 µm), which were then triple 
rinsed with ultrapure water to remove residual salt from 
the filter. TSS filters were stored at room temperature 
while onboard the vessel and were immediately placed 
in a drying oven (60 °C) overnight upon return to AIMS 
(Townsville, Queensland).

In addition to the water chemistry variables listed 
above, temperature, salinity, and Chl-a fluorescence 
measurements were also retrieved from the underway 
sampling systems on the RV Solander and RV Cape Fer-
guson, which are part of Australia’s Integrated Marine 
Observing System (IMOS) Ships of Opportunity Sen-
sors on Tropical Research Vessels sub-facility [55]. Tem-
perature and salinity data were measured at 10-s intervals 
using a SBE 38 digital oceanographic thermometer and 
SBE 21 SeaCAT Thermosalinograph (Sea-Bird Scientific), 
while fluorescence was measured using an ECO-FLNTU-
RT (WET Labs). Intake depths for underway systems 
were 1.9 m (RV Cape Ferguson) and 2.5 m (RV Solander). 
For temperature, salinity, and Chl-a fluorescence, a single 
value that was closest to the sampling time was recorded 
at each site. Hereinafter, we use the term “physico-chem-
ical variables” to encompass the 17 variables measured in 
this study, which include 14 water chemistry variables, as 
well as temperature, salinity, and Chl-a fluorescence.

Seawater for metagenomic sequencing was collected 
concurrently with water chemistry samples in four 5-L 
replicates. Collected seawater was immediately passed 
through a 5-µm Minisart® NML syringe prefilter (Sarto-
rius, Goettingen, Germany) to remove large debris and 
eukaryotic cells and subsequently through a 0.22-µm 
Millipore® Sterivex-GP™ Pressure Filter (Merck Milli-
pore, Darmstadt, Germany) using a peristaltic pump on 
board the research vessel. The Sterivex filters were snap-
frozen in liquid nitrogen and stored at − 75 °C until pro-
cessed in the laboratory.

Laboratory processing for water chemistry 
and metagenomic sequencing
Laboratory analyses of water chemistry samples were 
conducted at the AIMS Analytical Technology and Water 
Quality Laboratories within one  month (Chl-a, DOC, 
and TSS) or three months (all other variables) of collec-
tion. Inorganic dissolved nutrient concentrations  (NH4, 
 NO2,  NO3,  PO4, Si) were determined using standard wet 
chemical methods [56–58] on a Seal AA3 segmented 
flow analyzer. Total dissolved samples (TDN, TDP) were 
persulfate digested [59] and analyzed for inorganic con-
centrations as above. Concentrations of DOC, POC, and 

PN were determined via high temperature catalytic com-
bustion using a Shimadzu TOC-L carbon analyzer with 
a solid sample module (SSM-5000A) for POC filters and 
a nitrogen module (TNM-L) for PN filters. Concentra-
tion of PP was determined spectrophotometrically [57] 
following digestion in hot acid persulfate [60]. Concen-
tration of Chl-a was determined by grinding filters in 
90% acetone (with a 2-h incubation period in the dark) 
and reading the supernatant on a fluorometer (Turner 
Designs 10AU); samples were then acidified and reread 
to determine the concentration of Phaeo and correct 
Chl-a measurements for its interference [61]. Concentra-
tions of TSS were determined gravimetrically based on 
pre- and post-sampling filter weights.

DNA was extracted from 0.22-µm Sterivex filters using 
a phenol:chloroform:isoamyl alcohol extraction with 
ethanol precipitation (as in [62], with the addition of 
18 µL (100 mg   mL−1) lysozyme to the lysis buffer. DNA 
was quality-checked with a NanoDrop 2000 spectro-
photometer (Thermo Fisher Scientific, Australia) and 
quantified using a Qubit 3 fluorometer (Thermo Fisher 
Scientific, Australia) before submission for Illumina Nex-
tera Flex sequencing using the NovaSeq at Microba Life 
Sciences Ltd. (Brisbane, QLD, Australia). An average of 
17,464,769 ± 4,075,366 of 150-bp reads was sequenced 
from each of the 191 samples (47 sites × four repli-
cates at each site and three replicates at Hedley Reef ) 
(Table S1). The three negative controls had a low number 
of sequenced reads (173,749 ± 49,755; Table S1).

Metagenomic data processing
A read-based metagenomics analysis was applied to 
separate taxonomic and functional profiling of seawater 
microbiomes in offshore GBR reefs and elucidate the role 
of environmental filtering and functional redundancy in 
shaping reef bacterioplankton communities separately 
at taxonomic and functional levels (see [23, 25]). Demul-
tiplexed raw reads were first quality-checked in FastQC 
(version 0.11.3) [63] and quality-filtered in Trimmomatic 
(version 0.38) [64] to trim barcodes/adapters and remove 
low-quality bases (Phred < 20). In total, 78.84% of reads 
were retained after quality filtering in Trimmomatic 
(an average of 13,853,993 ± 3,324,976 reads per sam-
ple) (Table  S1). Quality-filtered reads were then aligned 
against the NCBI nr database using the DIAMOND (ver-
sion 2.0.9) alignment tool [65]. For each read, the top 
match reported by Diamond with e-value of <  10−5 was 
retained to exclude poor annotations. Resulting Diamond 
files (in daa format) were then imported into MEGAN 
(version 6.23.0) [66] for community profiling. Raw micro-
bial abundance counts were exported from MEGAN 
for genus-level taxonomic and functional (GO terms) 
composition and subsequently imported into R Studio 
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(version 4.3.2) [46] using the phyloseq (version 1.46.0) R 
package [67]. Using R, further filtering steps included the 
removal of (1) non-annotated reads, taxa annotated as (2) 
eukaryotic (774 hits) or (3) viral (35 hits), and removal of 
(4) prokaryotic reads annotated to the domain level only 
(Bacteria or Archaea), leaving 48% of the total data set. 
The last filtering step included the removal of (5) rare/
spurious reads (relative abundance < 0.0001%), result-
ing in a total of 621 of the initial 1257 prokaryotic taxa 
(collapsed at genus level or above) for the final dataset 
on microbial taxonomy, while for gene annotation data-
set, this filtering resulted in 4287 GO terms. This gave a 
final range of sequences of 3,752,207 ± 1,402,666 per sam-
ple (Table S2). Microbial abundance data was then center 
log ratio (CLR) normalized in the microbiome  (version 
1.24.0) R package [68] to account for sparsity and com-
positional nature of microbial metagenomic sequencing 
data. Pseudo counts were introduced prior to CLR nor-
malization as log 0 is undefined. These CLR-transformed 
counts or relative abundance data were used in down-
stream statistical analysis and visualisation in R Studio. 
Final composite plots were made in Inkscape 0.92.5.

Summarizing water chemistry data and microbial 
community data
Principal Components Analysis (PCA) was applied in the 
R package mixOmics (version 6.26.0) [69] as an unsuper-
vised approach to visualize the main clustering patterns 
between reef sites based on physico-chemical variables. 
The number of optimal PCA components was deter-
mined using the mixOmics tune.pca() function. The PCA 
biplot was complemented with a heatmap to visualize 
the level of change in physico-chemical variables in more 
detail, across each reef site, by centering (median = 0) and 
scaling (standard deviation (SD) = 1) each of the 17 phys-
ico-chemical variables across sites.

PCA was used to visualize the main clustering patterns 
of reef sites based on seawater microbial communities 
(both for microbial taxonomy and GO terms, using CLR-
normalized counts to account for compositionality and 
sparsity of metagenomics sequencing data), following 
the same approach as detailed in the previous paragraph. 
Pairwise permutational multivariate analysis of variance 
(PERMANOVA), implemented in the pairwise.adonis() 
R wrapper function [70], was applied to test if distances 
between PCA (computed for microbial taxonomy) group 
centroids (i.e., between the four trips) were statistically 
significant. Stacked bar charts were used to visualize 
microbial taxonomy profiles collapsed at (1) genus level 
(by showing the top 20 most abundant microbial gen-
era), (2) at phylum level, and (3) at genus level but only 
within phylum Bacteroidetes which increased in relative 
abundances during summer. Microbial diversity was also 

compared between the four trips by computing a Shan-
non index (1) for the overall community profiles and (2) 
only within phylum Bacteroidetes. Shannon diversity 
results were visualized as boxplots, and the variation in 
alpha-diversity scores across trips was compared with 
pairwise Wilcoxon Rank-sum tests in R, which were inte-
grated within microbial diversity boxplots.

Integrating microbial and physico‑chemical data
Partial (geographic distance-corrected) Mantel tests with 
10,000 permutations and Bonferroni correction were 
applied to identify physico-chemical variables that sig-
nificantly correlated with seawater microbial communi-
ties (see [25, 71]). In the partial Mantel tests, Bray–Curtis 
dissimilarities were computed within partial Mantel tests 
from relative abundances of microbial data with Euclid-
ean distances of physico-chemical variables, while con-
trolling for the effect of geography by including a third 
distance matrix of spatial distances between reef sites, 
expressed in km. A total of 34 partial Mantel tests were 
computed for both the taxonomy and functional genes 
datasets with each of the 17 physico-chemical variables.

Indicator microbes and GO terms were identified for 
each of the 17 physico-chemical variables using MINT 
sPLS — Multivariate INTegration Sparse Partial Least 
Squares [40, 41, 45, 69]. sPLS [40, 41] fits a linear rela-
tionship between multiple predictors (physico-chemical 
variables) with multiple continuous responses (microbial 
taxa or GO terms), while MINT  [45] is based on mul-
tigroup PLS that includes information about samples 
belonging to independent subsets of samples (i.e.,  sam-
pling trips). In this context, MINT sPLS integrated sam-
ples from independent subsets to remove unwanted 
sources of variation due to trips (i.e., confounding effects 
between season and geography), identifying microbial 
indicator taxa and GO terms that are shared/universal 
across the sampling trips. Prior to correlating metagen-
omic and physico-chemical data in MINT sPLS, median 
values per reef site were computed for each of the 17 
physico-chemical variables as the number of Niskin 
deployments differed for molecular (4 replicates) and 
water chemistry (3 replicates) sampling. MINT sPLS 
selected 100 key features (i.e., seawater microbial taxa 
and GO terms, spanned across the first two MINT sPLS 
dimensions, with 50 features per dimension) that show 
the highest covariance with the 17 physico-chemical vari-
ables. MINT sPLS partial correlations were visualized as 
heatmaps for indicator taxa and GO terms using mix-
Omics [69].

A  Leave-one-group-out cross-validation (LOGOCV) 
[45] was applied to investigate the stability of micro-
bial indicator taxa/GO terms identified in MINT sPLS 
dimension 1 across sampling trips. LOGOCV performed 
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cross-validation (CV) where one CV fold equals one 
study (sampling trip), hence four times until each of the 
four sampling trips was left out once. Indicator taxa/
GO terms shared across different sampling trips were 
assigned stability scores of either 1 (selected in each of 
the four LOGOCV iterations), 0.75 (selected in 3/4 of the 
LOGOCV iterations), or 0.5 (selected in 2/4 of the LOG-
OCV iterations). A stability score of 0.25 indicates trip-
specific microbiome/environment associations being 
identified in 1/4 LOGOCV iterations; hence, these indi-
cators were considered unstable (i.e., not shared across 
sampling trips). These stability scores were integrated 
with MINT sPLS heatmaps as barplots, visualized in the 
ggplot2 (version 3.5.1) R package [72].

Comparing the potential of microbial indicator taxa 
and genes to infer reef physico‑chemical metrics
The Bray–Curtis similarity index (expressed as 1 — 
Bray–Curtis dissimilarity, computed with the vegdist() 
function in vegan (version 2.6.4) R package, see [73]) was 
used to compare within-site similarity (0 = dissimilar, 
1 = identical) of reef bacterioplankton communities at 
functional and taxonomic levels. Bray–Curtis similarity 
scores were computed within each of the 48 reefs and at 
various hierarchical levels, both for microbial taxonomy 
(genus, family, order, class, and  phylum) and functions 
(GO terms collapsed at levels 5, 4, and 3). For each of 
these levels, Bray–Curtis similarity scores (0 — low simi-
larity; 1 — high similarity) were visualized as boxplots, 
with the higher similarity scores being indicative of the 
lower community variability in the microbiome composi-
tion within one reef site.

To identify if microbial indicator taxa or GO terms 
associate more robustly with physico-chemical vari-
ables in the surrounding reef, we used the same princi-
ples presented for MINT sPLS (i.e., inferring indicator 
stability using LOGOCV), but instead of removing one 
group during LOGOCV iterations (samples belonging 
to one trip), within each CV iteration, a random subset 
of samples from each trip was removed as a single subset 
of data. In more detail, sPLS was applied within each of 
the trips to account for confounding effects of geography 
and time, with microbial taxa and GO terms selected as 
predictor datasets and physico-chemical variables as the 
response dataset. This resulted in a total of eight sPLS 
models (four trips × two datasets, for microbial taxa and 
GO terms). For each of the eight sPLS models, a fourfold 
CV with 50 repeats was applied to assess reproducibil-
ity of the microbiome/environment signatures when the 
training set was subsampled via cross-validation, and 
each of the 50 indicator taxa/GO terms selected by sPLS 
on component 1 were assigned a stability score averaged 
across the 200 CV runs (fourfold CV × 50 iterations), 

ranging from 0 (i.e., low stability) to 1 (i.e., high stability). 
These stability scores were visualized as boxplots, and the 
variation between stability scores from indicator taxa and 
GO terms (within each of the four sampling trips) was 
tested with a Wilcoxon rank-sum test in R, which were 
integrated within stability boxplots.

Results
Higher nutrients in GBR surface waters during summer
To identify drivers of microbial community variation 
for reef bacterioplankton (Fig.  2, Table  1), a total of 17 
physico-chemical variables were derived from seawater 
samples from 48 offshore reefs across the length of the 
GBR (Fig.  1), including temperature, salinity, fluores-
cence, and particulate and dissolved nutrients. The larg-
est source of variation in reef water chemistry was the 
timing of sampling trips across the austral summer or 
winter periods (41% of explained variance, PCA dimen-
sion 1), with samples collected in the peak of summer 
(Trip 3 — February 2020; SST = 30.16 ± 0.39  °C) addi-
tionally separating from early summer sampling trips 
(Trip 1 — Nov-Dec 2019, SST = 27.78 ± 0.43 °C and Trip 
2 — January 2020, SST = 27.16 ± 0.61 °C; 18% of explained 
variance, PCA dimension 2) (Fig.  2a, Table  1, Fig. S5). 
Overlaying physico-chemical data in a PCA visualiza-
tion showed that summer trips 1–3 were characterized 
by elevated temperature (median of 28.30 ± 1.51 °C across 
summer Trips 1–3 vs 24.4 ± 0.95 °C in winter trip 4), and 
higher concentrations of particulate nutrients which 
were on average threefold higher in comparison to the 
winter trip (PP = 0.06 ± 0.01  µM for summer Trips 1–3 
vs 0.02 ± 0.01 µM in winter Trip 4, ~ 3.4-fold increase in 
summer; PN = 1.27 ± 0.05  µM vs 0.50 ± 0.10  µM, ~ 2.5-
fold increase in summer; POC = 8.54 ± 1.25  µM vs 
3.67 ± 1.00  µM, ~ 2.3-fold increase in summer) (Fig.  2a, 
b, Table  1, Fig. S5). Chlorophyll fluorescence, Chl-a, 
and Phaeo were highest at sites collected in the central 
GBR in February 2020 (fluorescence = 0.32 ± 0.05 µg  L−1, 
Chl-a = 0.23 ± 0.18  µg  L−1, and Phaeo = 0.36 ± 0.15  µg 
 L−1; Fig.  2a, b, Table  1, Fig. S5). In contrast, reefs sam-
pled in the austral winter had a twofold increase in 
dissolved phosphorus  (PO4 = 0.09 ± 0.02  µM and 
TDP = 0.26 ± 0.02 µM) in comparison to the summer trips 
1–3  (PO4 = 0.04 ± 0.01  µM and TDP = 0.20 ± 0.03  µM) 
(Fig. 2a, b, Table 1, Fig. S5). Notably, chemistry profiles of 
samples collected in the early austral summer were com-
parable despite being > 1500  km apart in the far north 
(Cape Grenville and Princess Charlotte Bay sectors) and 
far south (Swains and Capricorn Bunker sectors) of the 
GBR, whereas samples collected during the peaks of aus-
tral summer and winter were the most distinct, although 
they were geographically close in the central GBR 
(~ 200  km apart, Cairns and Innisfail sectors for austral 
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summer samples and Townsville sector for austral winter 
samples). This highlights that water chemistry measure-
ments in offshore GBR surface waters are predominantly 
driven by seasonality and less influenced by geography.

Microbial community composition and functional gene 
profiles differ by season
A total of 29 bacterial and archaeal phyla were identified 
in the seawater communities of the 48 surveyed offshore 
GBR reefs, of which three dominant phyla, Cyanobacteria 
(average 68% relative abundance), Proteobacteria (26%), 
and Bacteroidetes (2.6%), together comprised an aver-
age of 96.6% relative abundance of retrieved sequences 

(Fig.  3d). At the genus level, three genera dominated 
the seawater communities: Synechococcus with 54.99% 
average relative abundance, Pelagibacter (also known as 
SAR11) at 15.89% relative abundance, and Prochlorococ-
cus at 11.93% (Fig. 3c).

PCA showed that seawater microbial communities dif-
fered between seasons, with samples primarily clustered 
by collections during the austral summer (Trips 1–3) vs 
winter (Trip 4) with around 26% of total variance attribut-
able to the first two principal components (Fig. 3a). PCA 
clustering was supported by pairwise PERMANOVA 
indicating that seawater community composition sig-
nificantly differed when comparing summer vs winter 

Fig. 2 Summarizing water chemistry data and identifying drivers of seawater microbial communities. A Principal Components Analysis (PCA) 
shows the main clustering patterns of reef sites based on physico‑chemical variables. Reef sites use specific shapes and are colored in red or blue 
tones to denote trips that occurred during the austral summer (wet season) or austral winter (dry season), respectively. B The heatmap shows 
changes in physico‑chemical variables (y‑axis) across the reef sites (x‑axis). Physico‑chemical variables were centered (median = 0) and scaled 
(standard deviation (SD) = 1) across reef sites, and values that deviate from the median (0) were shown in red (> median) and blue (< median). Two 
instances of missing water chemistry measurements were indicated by grey rectangles. C A total of 34 partial Mantel tests (corrected for geographic 
distance) were conducted for each of the 17 physico‑chemical variables and for both microbial datasets on taxonomy and GO terms. Nonsignificant 
results (p‑value > 0.05, Bonferroni correction) are shown as white cells, while colored cells denote statistically significant trends (p‑value < 0.05, 
Bonferroni correction), indicating positive (red) or negative (blue) associations (Spearman’s rank correlation coefficients ρ shown as the numeric 
value) between microbial and environmental distance matrices, while corrected for geographic distance between reefs (expressed in km)
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trips (p < 0.05, Bonferroni correction) but not between 
summer trips (Table 2). These differences in community 
composition were primarily driven by increased relative 
abundances of Prochlorococcus during the winter trip 
(average 32.93% vs 3.23% relative abundance in sum-
mer trips) and decreased Synechococcus (average 37.02% 
in winter vs 62.38% in summer trips) (Fig.  3c). Several 
members within the Bacteroidetes phylum were also 
more dominant in the three summer trips (mean rela-
tive abundances for summer trips: Trip 1 = 2.13%, Trip 
2 = 1.80%, Trip 3 = 5.31% and the winter Trip 4 = 1.14%, 
see Fig.  3d, e), particularly the family Flavobacteriaceae 
which were the most discriminatory taxa in samples 
collected during the peak of summer in February 2020 
(Fig. 3e, Fig. S7). Apart from increasing in relative abun-
dance, members of the Bacteroidetes phylum were also 
more diverse during the summer trips (median Shan-
non index for Trip 1 = 2.67 ± 0.41, Trip 2 = 2.64 ± 0.36, 
and Trip 3 = 2.58 ± 0.63) compared to the winter (Trip 
4: median Shannon index 2.24 ± 0.25) (Fig.  3e, f ), with 
pairwise Wilcoxon rank-sum tests only being significant 
(p adjusted < 0.05) for summer/winter trip comparisons 
(Fig. 3f ). When comparing the Shannon index computed 
for overall microbial communities, we identified no sig-
nificant difference (p adjusted > 0.05, Wilcoxon rank sum 
test) in median Shannon diversity between trips (Fig. S6, 
Table S3, Table S4).

Microbial functional profiles (GO terms) were also pri-
marily clustered by sampling during the austral summer 
(Trips 1–3) vs winter (Trip 4), although with stronger 

separation compared with taxonomic composition (54% 
of variance attributable to the first two PCA dimensions 
vs. 26%) (Fig.  3b). Seawater microbial communities col-
lected during summer Trips 1–3 were characterized 
by elevated transporters (i.e., ABC transporters, TRAP 
transporter permease proteins, and UAA transporters, as 
well as various ion transporters) and GO terms encoding 
for oxidative phosphorylation (NADH:ubiquinone oxi-
doreductase, complex 1 of the respiratory chain), which 
were comparatively underrepresented in samples col-
lected in the winter Trip 4 (Fig. S8).

Particulate and dissolved nutrients drive seawater 
microbial community composition
Partial Mantel tests identified nine and 11 physico-chem-
ical variables which were associated with taxonomic 
composition and gene-based microbial profiles respec-
tively, while accounting for geographic distance between 
reefs (p < 0.05, Bonferroni correction; Fig. 2c). The high-
est Spearman’s rank correlation coefficients (ρ, ranging 
from − 1 to 1, with negative values indicating an inverse 
relationship and positive values denoting the same tra-
jectory), and therefore the strongest physico-chemi-
cal variables influencing both taxonomic composition 
and functional profiles, were computed for phosphate 
(ρ = 0.36 for microbial taxonomy and ρ = 0.26 for micro-
bial functional genes), seawater temperature (ρ = 0.3 and 
0.3), and particulate nutrients (POC: ρ = 0.23 and 0.28; 
PN: ρ = 0.26 and 0.26; PP: ρ = 0.13 and 0.12) (Fig.  2c). 
Physico-chemical variables that were significantly 

Table 1 Physico‑chemical data. Median ± SD values of 17 physico‑chemical variables (rows) collected across 48 offshore GBR reefs. The 
values are collapsed across four sampling trips (columns)

Physico‑chemical variables Trip 1 (median ± SD) Trip 2 (median ± SD) Trip 3 (median ± SD) Trip 4 (median ± SD)

Chlorophyll a (µg  L−1) — Chl‑a 0.18 ± 0.06 0.16 ± 0.08 0.32 ± 0.18 0.11 ± 0.03

Phaeophytin (µg  L−1) — Phaeo 0.18 ± 0.04 0.20 ± 0.08 0.36 ± 0.15 0.10 ± 0.02

Particulate nitrogen (µM) — PN 1.23 ± 0.35 1.27 ± 0.46 1.32 ± 0.22 0.50 ± 0.10

Particulate organic carbon (µM) — POC 8.06 ± 2.86 7.60 ± 1.89 9.95 ± 2.29 3.66 ± 1.00

Particulate phosphorus (µM) — PP 0.05 ± 0.02 0.05 ± 0.02 0.07 ± 0.03 0.02 ± 0.01

Dissolved organic carbon (µM) — DOC 84.51 ± 5.99 81.92 ± 9.89 67.22 ± 4.60 69.30 ± 4.67

Phosphate (µM) — PO₄ 0.05 ± 0.03 0.04 ± 0.02 0.02 ± 0.02 0.09 ± 0.02

Ammonium (µM) — NH₄ 0.39 ± 0.16 0.58 ± 0.27 0.74 ± 0.44 0.12 ± 0.06

Nitrite (µM) — NO₂ 0.03 ± 0.02 0.04 ± 0.01 0.04 ± 0.02 0.01 ± 0.01

Nitrate (µM) — NO₃ 0.30 ± 0.25 0.33 ± 0.15 0.35 ± 0.31 0.23 ± 0.16

Silica (µM) — Si 1.41 ± 0.30 1.30 ± 0.44 2.10 ± 0.55 1.78 ± 0.65

Total dissolved nitrogen (µM) — TDN 5.47 ± 0.83 6.62 ± 0.82 5.64 ± 0.72 5.18 ± 0.75

Total dissolved phosphorus (µM) — TDP 0.20 ± 0.03 0.23 ± 0.04 0.16 ± 0.03 0.26 ± 0.02

Total suspended solids (mg  L−1) — TSS 0.48 ± 0.41 0.15 ± 0.15 0.36 ± 0.52 0.11 ± 0.10

Temperature (°C) 27.78 ± 0.43 27.13 ± 0.61 30.01 ± 0.39 24.22 ± 0.95

Salinity (psu) 35.35 ± 0.21 35.52 ± 0.17 34.71 ± 0.05 35.16 ± 0.04

Chl‑a fluorescence (µg  L−1) 0.10 ± 0.01 0.10 ± 0.02 0.34 ± 0.05 0.13 ± 0.12
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associated only to microbial genes but not microbial tax-
onomy included Chl-a (ρ = 0.11), Phaeo (ρ = 0.09), fluo-
rescence (ρ = 0.05), and DOC (ρ = 0.12). In contrast,  NH4 
(ρ = 0.11) and  NO2 (ρ = 0.11) positively associated only 
to microbial taxonomy, but not functional gene profiles 
(Fig.  2c). Only positive Spearman correlations were cal-
culated for the physico-chemical variables significantly 
associated with reef bacterioplankton, indicating that 
both taxonomic and functional composition of seawater 

microbes become increasingly dissimilar as associated 
physico-chemical variables change. This suggests that 
seawater microbes exhibit a deterministic response to 
their surrounding environment, with microbial popula-
tion dynamics or community structure being directly 
influenced by specific nutrient conditions and changing 
in proportion to variations in measured nutrients.

Using Multivariate INTegration Sparse Partial Least 
Squares (MINT sPLS) to identify which indicator 

Fig. 3 Main clustering patterns of seawater microbial communities. Principal Components Analysis (PCA) plots show the main clustering patterns 
of reef sites based on microbial community composition, both for microbial taxonomy (A) and microbial GO terms (B). Reef sites are colored 
in red or blue tones to denote trips that occurred during the austral summer (wet season) or austral winter (dry season), respectively. Stacked 
barplots illustrate microbial relative abundances (y‑axis) for each sample (x‑axis), with reef sites grouped by their corresponding sampling trip. 
These barplots represent the following: C the top 20 most abundant microbial genera, D all 29 identified microbial phyla, and E all microbial 
genera within the phylum Bacteroidetes. The top three most abundant genera (C) and phyla (D) are highlighted in bold, and the legend for genera 
within Bacteroidetes (E) was excluded due to the large number of taxa. F Boxplots illustrate microbial diversity (Shannon index) for genera 
within phylum Bacteroidetes, across sampling trips. The symbols *, **, ***, and **** denote levels of statistical significance in pairwise Wilcoxon 
rank‑sum tests when testing variation of Bacteroidetes Shannon diversity scores across the four sampling trips: * for p < 0.05, ** for p < 0.01, *** 
for p < 0.001, and **** for p < 0.0001, indicating increasing levels of significance. “ns” indicates nonsignificant results, where p ≥ 0.05
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microbial taxa and GO terms consistently associated 
with the same physico-chemical variables in more 
than one sampling trip, we selected 100 key indica-
tor seawater microbial taxa and GO terms (spanned 
across the first two MINT sPLS dimensions, with 50 
features per dimension) that show the highest associa-
tions with 17 physico-chemical variables stably across 
trips. Since low MINT sPLS correlation scores (i.e., 
below the absolute value of 0.22) were observed for the 
50 indicator microbial taxa and genes selected on the 
second MINT sPLS dimension, a leave-one-group-out 
cross-validation (LOGOCV) was applied to mine for 
stable indicators selected  only on MINT sPLS dimen-
sion 1, ultimately identifying 33 microbes and 34 GO 
terms that are shared across two, three, or four trips 
(i.e., indicators assigned LOGOCV stability scores of 
0.5, 0.75, and 1, respectively). All 100 indicator features 
(microbes in Fig. 4 and GO terms in Fig. 5) were then 
grouped into three “community-type” clusters based 
on Euclidean distance clustering (marked with dashed 
lines), and the clusters containing the 33 microbes 
and 34 GO terms as stable indicators were termed 
“Cluster 1” to highlight their importance and were the 
main focus in results interpretation and discussion. 

Microbial indicators in MINT sPLS clusters 2 (34 indi-
cator taxa in Fig. 4, Cl. 2, and 37 indicator GO terms in 
Fig. 5, Cl. 2) and 3 (13 indicator taxa in Fig. 4, Cl. 3, and 
12 indicator GO terms in Fig. 5, Cl. 3) were not consid-
ered in downstream discussion.

The 33 stable taxonomic indicators from cluster 1 
collectively showed positive associations with par-
ticulate nutrients (median ± SD of MINT sPLS posi-
tive partial correlation scores for POC: 0.44 ± 0.04; PN: 
0.41 ± 0.03; and PP: 0.34 ± 0.02), Chl-a (0.39 ± 0.03), and 
DOC (0.35 ± 0.02) and negative associations with dis-
solved inorganic nutrients (median ± SD of MINT sPLS 
negative partial correlation scores for  NO3: − 0.50 ± 0.03; 
 NO2: − 0.34 ± 0.04;  NH4: − 0.26 ± 0.03;  PO4: − 0.46 ± 0.03; 
and TDP: − 0.27 ± 0.04) (Fig.  4A, Cl. 1). These micro-
bial indicators were consistent across either three trips 
(LOGOCV stability score = 0.75) for 17 taxa, including 
members of Synechococcales, two Rhodobacteraceae, 
and Rhodospirillaceae, or two trips (LOGOCV stabil-
ity score = 0.5) for 16 taxa, including two Oceanospiril-
laceae, two Rhodospirillaceae, and two Burkholderiaceae 
(Fig.  4b, Cl. 1). The second cluster contained 34 taxa, 
and while also largely composed of Alphaproteobac-
teria (four Rhodospirillaceae), Gammaproteobacteria 

Table 2 The pairwise permutational multivariate analysis of variance (PERMANOVA) test for microbial communities (taxonomic level). 
Significant results (p‑value < 0.05, Bonferroni correction) are highlighted in bold

Pairwise comparison SumSqrs MeanSqrs F R2 p‑value p‑value 
(Bonferroni 
corrected)

Trip 1 Trip 2 0.111 0.111 3.168 0.037 0.057 0.344

Trip 1 Trip 3 0.203 0.203 5.765 0.066 0.009 0.055

Trip 1 Trip 4 1.856 1.856 28.370 0.248 0.000 0.001
Trip 2 Trip 3 0.091 0.091 2.688 0.028 0.076 0.453

Trip 2 Trip 4 2.933 2.933 48.630 0.332 0.000 0.001
Trip 3 Trip 4 3.210 3.210 52.889 0.353 0.000 0.001

Fig. 4 MINT sPLS — associations between microbial taxa and physico‑chemical variables. A The heatmap shows similarity values (partial 
correlations) between 17 continuous physico‑chemical variables (predictor dataset) and 100 microbial taxa (response dataset) selected 
across the first two MINT sPLS dimensions. Heatmap cells are colored to indicate either positive (red) or negative (blue) correlation. Heatmap 
rows and columns were clustered with a complete Euclidean distance method, with three clusters highlighted with a dashed line and numbered 
as they were discussed in the text. B Indicator stability barplots as determined by leave‑one‑group‑out cross‑validation — LOGOCV. Microbial 
indicator taxa are colored in green if they are shared across sampling trips or in gray if they are trip‑specific. C Taxonomic breakdown of indicator 
microbes, with indicator taxa shared across different sampling trips (as inferred by LOGOCV) further highlighted in bold. D Explanation of LOGOCV 
stability scores through 15 possible scenarios. Indicator microbes are assigned colors if indicative in a particular trip (with colouring scheme for trips 
corresponding to Fig. 1), while non‑indicator taxa are colored in gray (D, left). The lowest LOGOCV stability score of 0.25 indicates trip‑specific 
microbial indicators (selected in 1/4 LOGOCV iterations, with four possible scenarios), which were therefore considered unstable as these indicators 
are not reproducible across sampling trips (D, middle). Stable microbial indicators (shared across trips) were assigned LOGOCV stability scores 
of either 0.5 (selected in 2/4 of the LOGOCV iterations, with six possible scenarios), 0.75 (selected in 3/4 of the LOGOCV iterations, with four possible 
scenarios), or 1, which indicated the highest indicator stability score (selected in each of the four LOGOCV iterations) (D, right). Only shared 
microbial indicator taxa (with LOGOCV stability scores of 0.5, 0.75, and 1) were considered in downstream interpretation and discussion of results

(See figure on next page.)
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(five  Cellvibrionales), and Deltaproteobacteria similar 
to the first cluster, these microbes were up to a fivefold 
less strongly associated with particulate nutrients (POC: 

0.09 ± 0.06, PN: 0.10 ± 0.06, and PP: 0.09 ± 0.05) and phos-
phorus  (PO4: − 0.11 ± 0.07) compared with indicators 
from the first cluster, but still show positive associations 

Fig. 4 (See legend on previous page.)
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with DOC (0.21 ± 0.07) (Fig.  4a, Cl. 2). The third clus-
ter (13 taxa), predominantly composed of Flavobacte-
riaceae (12 taxa), showed two distinct subgroups. Both 
were positively associated with dissolved nitrogen  (NH4: 
0.12 ± 0.04,  NO2: 0.19 ± 0.06, and  NO3: 0.14 ± 0.09), but 
one cluster (Fig.  4a, Cl. 3a) positively associated with 
particulate nutrients (POC: 0.17 ± 0.07, PN: 0.14 ± 0.06, 
and PP: 0.10 ± 0.05) and negatively associated with dis-
solved phosphorus  (PO4: − 0.15 ± 0.07), and the other 
cluster (Fig.  4a, Cl. 3b) negatively associated with par-
ticulate nutrients (POC: − 0.08 ± 0.04, PN: − 0.08 ± 0.0,; 
and PP: − 0.06 ± 0.06) and positively associated with dis-
solved phosphorus  (PO4: 0.10 ± 0.04). Overall, these pat-
terns indicate that particulate nutrients, dissolved N 
and P, were the main physico-chemical variables driving 
partitioning of seawater microbial communities in the 
surveyed offshore reefs. Most of the indicator taxa were 
positively associated with particulate nutrients and nega-
tively associated with dissolved N and P, with the excep-
tion of several genera in the Flavobacteriaceae family that 
were positively associated with both particulate nutrients 
and dissolved N and P (Fig. 4).

The 34 microbial GO terms identified in MINT sPLS 
as stable (i.e., reproducible across sampling trips) indi-
cators  collectively showed positive associations with 
particulate nutrients (median ± SD of MINT sPLS-pos-
itive partial correlation scores for POC: 0.42 ± 0.05, PN: 
0.35 ± 0.05, and PP: 0.24 ± 0.07), Chl-a (0.29 ± 0.05), DOC 
(0.30 ± 0.06), and salinity (0.34 ± 0.08) and were negatively 
associated with dissolved nutrients  (NH4: − 0.18 ± 0.05, 
 NO2: − 0.27 ± 0.05,  NO3: − 0.29 ± 0.06, TDP: − 0.24 ± 0.06, 
and  PO4: − 0.33 ± 0.06, see Fig.  5a, Cl. 1). These stable 
indicator GO terms were involved in (1) transmembrane 
nutrient uptake, including permease proteins PstB — 
phosphate transport system permease protein (LOG-
OCV stability = 0.5) and PstC (LOGOCV stability = 0.5) 
as subunits of a Pst system for phosphate transport; ion 

transmembrane transport —  Na+/H+ antiporter subu-
nit G (LOGOCV stability = 0.75); and assimilation of 
external ammonium — alanine dehydrogenase (LOG-
OCV stability = 1); (2) utilization of N-acetylglucosamine 
(N-acetylglucosamine-6-phosphate deacetylase, LOG-
OCV stability = 1); (3) oxidative phosphorylation, such 
as chain 1 of the NADH-quinone oxidoreductase (LOG-
OCV stability = 1), as well as synthesis of (4) fatty acids 
— enoyl-acyl carrier protein reductase (NADH) (LOG-
OCV stability = 1); and (5) vitamins — pyridoxal kinase 
for biosynthesis of pyridoxal phosphate, an active form of 
vitamin B6 (LOGOCV stability = 0.5) (Fig. 5, Cl. 1). The 
second cluster (Fig. 5a, Cl. 2) consisted of 37 GO terms 
positively associated with Phaeo, salinity, PP, and dis-
solved nitrogen variables and negatively associated with 
dissolved phosphorus and DOC (Fig. 5), while the third 
cluster (Fig.  5a, Cl. 3) consisted of 12 GO terms only 
positively associated with dissolved phosphorus (TDP) 
(Fig. 5). Collectively, the 34 GO terms identified as stable 
indicators were implicated in processes including nutri-
ent uptake, ion transport, ammonium assimilation, oxi-
dative phosphorylation, and synthesis of fatty acids and 
vitamins.

Microbial functional genes correlate more stably 
to physico‑chemical variables than taxonomy
To test our hypothesis that reef-associated bacterio-
plankton, due to functional redundancy, would exhibit 
higher community similarity at the functional rather 
than taxonomic level within a single reef site (i.e., 
under similar environmental conditions), we computed 
the Bray–Curtis similarity index (as a metric of overall 
compositional similarity: 0 = dissimilar, 1 = identical) 
between four replicates within each of the 48 surveyed 
reefs. This resulted in a total of 288 reef-specific Bray–
Curtis similarity values (six pairwise comparisons 
per reef × 48 reefs) for each hierarchical level tested: 

(See figure on next page.)
Fig. 5 MINT sPLS — associations between microbial genes/functions (GO terms) and physico‑chemical variables. A The heatmap shows similarity 
values (partial correlations) between 17 continuous physico‑chemical variables (predictor dataset) and 100 microbial GO terms (response dataset) 
selected across the first two MINT sPLS dimensions. Heatmap cells are colored to indicate either positive (red) or negative (blue) correlation. 
Heatmap rows and columns were clustered with a complete Euclidean distance method, with three clusters highlighted with a dashed line 
and numbered as they were discussed in the text. B Indicator stability barplots as determined by leave‑one‑group‑out cross‑validation — LOGOCV. 
Microbial indicator genes are colored in green if they are shared across sampling trips or in gray if they are trip‑specific. C GO functional annotation 
of indicator genes/functions, with indicator GO terms shared across different sampling trips (as inferred by LOGOCV) further highlighted in bold. 
D Explanation of LOGOCV stability scores through 15 possible scenarios. Indicator genes are assigned colors if indicative in a particular trip (with 
coloring scheme for trips corresponding to Fig. 1), while non‑indicator genes are colored in gray (D, left). The lowest LOGOCV stability score of 0.25 
indicates trip‑specific microbial indicators (selected in 1/4 LOGOCV iterations, with four possible scenarios), which were therefore considered 
unstable as these indicators are not reproducible across sampling trips (D, middle). Stable microbial indicators (shared across trips) were assigned 
LOGOCV stability scores of either 0.5 (selected in 2/4 of the LOGOCV iterations, with six possible scenarios), 0.75 (selected in 3/4 of the LOGOCV 
iterations, with four possible scenarios), or 1, which indicated the highest indicator stability score (selected in each of the four LOGOCV iterations) 
(D, right). Only shared microbial indicator genes (with LOGOCV stability scores of 0.5, 0.75, and 1) were considered in downstream interpretation 
and discussion of results
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for microbial taxonomy (genus, family, order, class, 
and phylum) and genes (GO terms at ranks 5, 4, and 
3). The Bray–Curtis similarity scores for taxonomic 

communities showed consistent and high median val-
ues across different hierarchical levels. Specifically, 
the median ± SD Bray–Curtis similarity scores were 

Fig. 5 (See legend on previous page.)
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as follows: 0.9 ± 0.15 at the genus level, 0.9 ± 0.14 at 
the family level, 0.92 ± 0.09 at the order level (Fig.  6a, 
microbial taxonomy), 0.93 ± 0.09 at the class level, 
and 0.93 ± 0.08 at the phylum level (Fig. S9). These 
results indicate high within-site taxonomic similar-
ity for most of the surveyed offshore reefs. The low-
est observed similarity scores were 0.37 (genus level) 
and 0.38 (family level) indicating that replicates within 
some reefs can be dissimilar at the lower taxonomic 
levels, although minimum similarity remains higher at 
higher taxonomic levels (0.56 at order-level and 0.57 at 
class- and phylum-level communities) (Fig. 6a, micro-
bial taxonomy; Fig. S9). Gene profiles for reef bacte-
rioplankton communities showed comparable median 
similarity scores to taxonomic communities, although 
with lower SD (median ± SD Bray–Curtis similarity 
for GO terms at rank 5: 0.90 ± 0.08, rank 4: 0.95 ± 0.04, 
and rank 3: 0.97 ± 0.02) and higher minimum similarity 
scores (0.57, 0.76, and 0.86 for GO terms collapsed at 
ranks 5, 4, and 3, respectively) (Fig. 6a, microbial func-
tion). Overall, replicates within a single reef site are 
similar both at taxonomic and functional gene levels, 
though this similarity is increased for functional traits.

To compare whether seawater indicator GO terms or 
indicator microbes have a higher stability to infer con-
tinuous physico-chemical variables in the outer GBR 
reefs, we generated eight sPLS models (computed for 
four trips × two datasets, for microbial taxa and GO 
terms) and perturbed them with a fourfold cross-vali-
dation repeated 50 times, resulting in 200 independent 
CV runs for each sPLS model. In this, we introduced 
a measure of statistical stability [45, 74, 75] calculated 
as the averaged reoccurrence of microbial indica-
tors (taxa and GO terms, selected on sPLS dimension 
1) across 200 sPLS CV runs, and the stability scores 
ranged from 0 (low indicator stability) to 1 (high stabil-
ity). In each of the four trips, the same microbial genes/
functions were more frequently reselected as indi-
cators of physico-chemical variables compared with 
microbial taxa, with stability scores for indicator GO 
terms consistently higher (median ± SD stability for 
the 50 indicator GO terms on sPLS dimension 1: Trip 
1 = 0.74 ± 0.18, Trip 2 = 0.66 ± 0.30, Trip 3 = 0.47 ± 0.14, 
and Trip 4 = 0.71 ± 0.18) compared with indicator 
microbes (median ± SD stability for the 50 indicator 
microbes on sPLS dimension 1: Trip 1 = 0.66 ± 0.18, 
Trip 2 = 0.53 ± 0.24, Trip 3 = 0.10 ± 0.08, and Trip 
4 = 0.63 ± 0.03) (Fig. 6b, Trips 1–4). Pairwise Wilcoxon 
rank-sum tests confirm these trends were significant 
(p adjusted < 0.05) for Trips 1, 3, and 4, but the results 
were not significant in Trip 2 (p adjusted > 0.05, Wil-
coxon rank-sum test) (Fig.  6b, Trips 1–4). Overall, 
these results suggest that microbial genes/function is 

more robustly associated with physico-chemical vari-
ables compared to microbial taxonomy.

Discussion
The composition of reef-associated bacterioplankton 
undergoes significant shifts in response to environmen-
tal stressors and poor reef health conditions (reviewed 
in [8, 9, 14, 15]). Numerous opportunistic seawater 
microbes, such as Flavobacteriaceae, Rhodobacteraceae 
and Vibrionaceae,  which increase in abundance dur-
ing disturbances, along with their functions (e.g., viru-
lence factors, toxin production, antibiotic resistance), 
have been proposed as candidate indicators of poor reef 
health [16, 17, 19, 37]. However, analysis efforts are lack-
ing to evaluate if reef-associated seawater microbial taxa 
or genes/functions have a higher diagnostic potential in 
microbial monitoring and to determine whether seawa-
ter biomarkers will consistently be indicative of a specific 
physico-chemical metric across broad spatiotemporal 
scales. By employing integrative omics approaches, spe-
cifically P-integration (sensu [45, 69, 75]), and introduc-
ing the measure of statistical stability (i.e., reoccurrence 
of microbial indicators across independent cross-valida-
tion runs) into microbiome-environment associations, 
here we identify microbial markers stably associated with 
nutrient concentration across reefs and season in off-
shore GBR surface waters. We also show that a greater 
proportion of variance in gene content was attributable 
to physico-chemical variables compared to taxonomic 
composition, with functional  genes/environment asso-
ciations being more than twice as stable.

Deriving seawater microbial indicators for GBR reef health 
monitoring
Functional redundancy proposes that environmental 
filtering primarily selects for functional traits in pelagic 
microbes [24, 25, 28, 76]. Computing reef-specific Bray–
Curtis similarity scores (at various levels for microbial 
taxonomy and GO terms) as a metric of overall commu-
nity similarity, we show that across the surveyed reefs, 
reef-associated bacterioplankton exhibit higher commu-
nity similarity at the functional rather than taxonomic 
level within a single reef site, where similar environ-
mental conditions prevail. As the observed patterns may 
include core genes encoding for essential functions that 
are critical to life and thus shared across diverse taxa [77], 
we further explored the robustness of these findings by 
focusing only on the stability of indicator microbial taxa 
and GO terms associated with specific physico-chemical 
variables in the reef environment, using sPLS analysis 
complemented with cross-validation. The sPLS stabil-
ity scores for indicator microbial genes/functions were 
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Fig. 6 Differing diagnostic potential of microbial taxonomy and function to inform changes in continuous physico‑chemical variables 
in the surrounding reef. Data points on the boxplots are color‑coded according to the sampling trips, as indicated by the legend on the map. 
A Bray–Curtis similarity index shows within‑site community similarity (0 = dissimilar; 1 = identical) for microbial taxonomy (at genus, family, 
and order‑level classifications) and microbial functions (GO terms collapsed at ranks 5, 4, and 3). B Comparison of how frequently indicator microbes 
and indicator genes (left and right boxplots, respectively) are reselected across 200 independent sPLS cross‑validation runs (fourfold CV × 50 
repeats), across all four sampling trips (Trips 1–4). Higher stability scores are a proxy of robustness of the indicator signal for a corresponding 
microbe/gene (i.e., the stability score of 1 would mean that the indicator microbe/gene was reselected in sPLS on component 1 in each of the 200 
CV runs). The symbols *, **, ***, and **** denote levels of statistical significance in pairwise Wilcoxon rank‑sum tests when testing variation 
between stability scores from indicator taxa and GO terms within each of the four sampling trips: * for p < 0.05, ** for p < 0.01, *** for p < 0.001, 
and **** for p < 0.0001, indicating increasing levels of significance. “ns” indicates nonsignificant results, where p ≥ 0.05
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approximately twice as high as those for microbial taxa 
consistently across different regions and seasons on the 
GBR, further highlighting that indicator gene targets 
offer greater precision in monitoring environmental met-
rics within reef ecosystems.

These observations are consistent with the concept of 
functional redundancy in pelagic microbial communi-
ties where multiple members of the community possess 
overlapping metabolic capabilities and are able to func-
tionally replace one another [23, 24, 28, 36]. For example, 
an analysis of N cycling seawater microbial communities 
using data from the Tara Oceans expedition reported 
30.1% of variance in the composition of functional traits 
statistically attributed to environmental measures com-
pared with 16.3% of variance in taxonomic composition. 
Further, stochastic (i.e., random) processes had ~ 1.4-fold 
increase in relative importance of shaping the taxonomic 
compared to functional compositional variance, suggest-
ing N-cycling microbial functions are more influenced 
by deterministic processes (i.e., environmental filtering) 
compared to taxonomy [25]. This explains why genes 
encoding for the same N-cycling pathways were con-
sistently enriched in the epipelagic  (N2 fixation, organic 
decomposition, and assimilatory nitrite reduction to 
ammonia) and mesopelagic (nitrification, dissimilatory 
nitrate reduction to nitrite, and annamox) zones, whereas 
the taxonomic composition of N-cycling microbes 
between depth layers varied substantially, even at phy-
lum level [25]. Taken together, the findings indicate that 
functional traits in seawater microbial communities are 
tightly linked to environmental measures and thus more 
likely to reflect the environment than taxonomy does. 
Functional redundancy may broadly contribute to eco-
system resilience against perturbations [23, 76, 78–80]. 
Since resilience is a key measure in ecosystem monitor-
ing and management [81], we posit that gene content 
could conceivably serve as an indicator of ecosystem 
resilience, and changes in gene content coupled with con-
textual metadata could better reveal insight into the state 
of reef ecosystems compared with taxonomic indicators.

Synechococcus and Prochlorococcus are central 
to the production of particulate nutrients
The chemistry of GBR surface waters is characterized 
by a cluster of five collinear physico-chemical variables 
(Chl-a, Phaeo, POC, PN, and PP) and a weak collinear-
ity of dissolved nutrients (DOC,  NH4,  NO2,  NO3,  PO4, 
and Si) consistently elevated by 10–50% during summer 
and with the lowest nutrient concentrations typically 
observed during winter and early spring in August–Sep-
tember [38, 82, 83]. Largely consistent with published 
data, we observed that temperature and nutrient concen-
trations were consistently higher in austral summer than 

in winter, apart from TDP and  PO4 which were higher in 
austral winter potentially due to seasonal upwelling of 
nutrient-rich water from the Coral Sea into reefs on the 
outer continental shelf, via intrusive upwelling events 
that are documented to occur in the central GBR [84, 
85]. We also observed collinearity between particulate 
nutrients (POC, PN, and PP) and Chl-a (proxy of phy-
toplankton biomass), indicating that particulate nutri-
ents (≥ 0.7 µm in diameter) in the studied microbial size 
fraction (0.2–5 µm) may originate from the picoplankton 
biomass (Fig.  7a), most likely from picocyanobacteria 
Synechococcus (~ 1  µm) and Prochlorococcus (~ 0.5  µm) 
which cumulatively comprised 66.92% of annotated 
sequences in our data. Synechococcus and Prochlorococ-
cus usually dominate phytoplankton biomass in GBR 
waters [19, 84, 86, 87], benefiting from favorable light 
conditions in offshore GBR reefs that facilitate photo-
synthesis. Therefore, particulate organic matter (POM) 
in the outer GBR predominantly originates from marine 
phytoplankton [88], contrasting with the terrestrial ori-
gin of POM found in riverine zones, inner estuarine 
mixing zones, and inshore reefs, with minimal amounts 
reaching the outer GBR [88]. Our results further suggest 
that POM in the outer GBR is predominantly produced 
by Synechococcus during summer (average 62.38% and 
3.23% relative abundance in summer trips for Synecho-
coccus and Prochlorococcus, respectively), whereas dur-
ing winter, we also observe considerable contribution of 
Prochlorococcus to POM production (average 37.02% and 
32.93% relative abundance in the winter trip for Synecho-
coccus and Prochlorococcus, respectively) (Fig. 7a). These 
picocyanobacteria have relevance to prospective moni-
toring since an increasing Synechococcus-Prochlorococcus 
abundance ratio was proposed as an index for elevated 
cross-shelf nutrient loads in reef waters [19], and we posit 
extending this index to a wider swath of offshore reefs, 
with Synechococcus indicative of high particulate nutri-
ent loads broadly across the GBR. To further validate our 
proposed model, it would be beneficial to incorporate 
cell count data for Synechococcus and Prochlorococcus in 
future sampling efforts, as well as consider benthic cover 
organisms since emerging evidence suggests that corals 
exhibit preferential feeding on Synechococcus, potentially 
affecting their abundances [89, 90]. Such approaches will 
enhance our understanding of picocyanobacterial con-
tributions to POM dynamics and nutrient cycling in reef 
ecosystems.

Negative correlations were observed between particu-
late nutrients (POC, PN, PP) and Chl-a with dissolved 
inorganic nutrients  (NH4,  NO2,  NO3,  PO4, and TDP) 
(Fig.  4a), likely because this production of phytoplank-
ton-derived POM from newly fixed carbon requires the 
uptake and assimilation of dissolved nutrients such as N, 
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P, and trace metals [86]. Dissolved inorganic nutrients 
in shelf waters are rapidly taken up by growing phyto-
plankton (i.e., ~ 8–24 h for dissolved nitrogen and ~ 24 h 
for dissolved phosphorus, see e.g. [86, 91, 92]) includ-
ing Synechococcus and Prochlorococcus, which are 

highly efficient at using dissolved nutrients and exhibit 
a capacity for near-maximal growth down to avail-
able DIN levels of ≤ 0.02  µM, concentrations similar to 
the minimum detection levels [86]. Based on our find-
ings and existing literature, we propose a mechanistic 

Fig. 7 Conceptual overview summarizing the roles of seawater microbiomes in nutrient cycling in offshore GBR surface waters. The planktonic 
picocyanobacteria Synechococcus and Prochlorococcus play key roles in nutrient cycling: they uptake dissolved inorganic nutrients (DIN) such 
as nitrogen (ammonium —  NH4, nitrite —  NO2, and nitrate —  NO3) and phosphorus (phosphate —  PO4), reducing DIN concentrations (1A). In 
the presence of light and carbon dioxide  (CO2), the uptaken DIN will be used during photosynthesis to produce particulate organic matter (POM) 
including organic carbon (POC), nitrogen (PN), and phosphorus (PP), overall resulting in elevated POM concentrations and higher biomass of these 
picocyanobacteria, indicated via elevated chlorophyll a (Chl‑a) (1A). During summer, elevated photosynthesis rates primarily by Synechococcus 
result in up to a threefold increase in POM production, whereas during winter, nutrient concentrations are lower, and we also observe 
notable contributions of Prochlorococcus to POM production (1A). A fraction of POM deriving from Synechococcus and Prochlorococcus will be 
remineralised (2A) by (B) entering the microbial loop. Here, a diverse consortium of seawater heterotrophic microbes, notably Rhodobacteraceae, 
Rhodospirillaceae, Oceanospirillaceae, Burkholderiaceae and Flavobacteriaceae, will benefit from nutrient‑rich conditions by encoding genes for (1B) 
nutrient uptake and (2B) cellular respiration to generate energy, which can be directed towards (3B) synthesis of complex compounds and (4B) 
microbial growth. As a result of microbial activity on phytoplankton‑derived POM, organic molecules originally present in particulate form are 
remineralized into DIN (NH₄,  NO2, NO₃, PO₄) and dissolved organic carbon (DOC). These dissolved nutrients are then available for uptake by other 
organisms, including Synechococcus and Prochlorococcus which can photosynthesize again (1A), ultimately recycling POM in offshore GBR 
waters and making it available to higher trophic levels (C). POM from these picocyanobacteria may enter marine food webs via two pathways: 1C 
an indirect pathway, where heterotrophic seawater microbes that successfully integrated phytoplankton‑derived POM into their biomass will be 
grazed by flagellates and microzooplankton, which in turn will support larger macroorganisms; or 2C through direct uptake of POM that escapes 
immediate metabolism by heterotrophic seawater microbes, thus bypassing the microbial loop
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explanation, whereby picocyanobacteria Synechococcus 
and Prochlorococcus initially uptake dissolved nitrogen 
and phosphorus (resulting in decreased DIN concentra-
tions), subsequently producing POM (POC, PN, and PP) 
during photosynthesis (Fig.  7, 1a). This process leads to 
increased phytoplankton biomass, as indicated by ele-
vated Chl-a, and ultimately results in the observed col-
linear relationship between Chl-a and POM, negatively 
correlating with the uptake of dissolved inorganic nutri-
ents (Fig. 4, Fig. 5, Fig. 7).

Several GO terms identified in our analysis are poten-
tially involved in the uptake of dissolved nitrogen and 
phosphorus. For instance, alanine dehydrogenase, indica-
tive of low ammonium concentrations across all sampling 
trips, likely plays a role in ammonium assimilation by 
catalyzing the synthesis of L-alanine from pyruvate and 
external ammonium [93]. Additionally, two subunits of 
the phosphate transport system (Pts), PstB (the catalytic 
subunit) and PstC (the transmembrane portion), were 
consistently enriched in low phosphate environments 
across sampling trips, suggesting an adaptive response 
to increase the uptake of limited inorganic phosphate 
[94]. While these GO terms positively correlated to Chl-
a (proxy for phytoplankton biomass), further research is 
necessary to attribute these genes/functions to Synecho-
coccus and Prochlorococcus, lineages well-documented 
for their genomic heterogeneity, making genomic recon-
structions from environmental metagenomics problem-
atic [95–99]. Lastly, we also observe strong collinearity 
between phytoplankton-derived POM with DOC, and 
while DOC can be a product of extracellular release from 
actively photosynthesizing phytoplankton [100–102], 
alternative microbial processes may also produce DOC 
[103], including (1) senescing and dead phytoplankton 
[104, 105], (2) sloppy feeding during zooplankton graz-
ing [101, 102, 106, 107], (3) POM dissolution by hetero-
trophic microbes [108–110], and (4) viral lysis [42]. Both 
DOC (regardless of its origin) and phytoplankton-derived 
POM can then enter the microbial loop [111–113] where 
a diverse consortium of seawater heterotrophic bacteria 
will benefit from nutrient-rich conditions (Fig. 7, 2b).

Phytoplankton‑derived nutrients fuel the microbial loop 
and support higher trophic levels
Free-living pelagic microorganisms surrounding coral 
reefs enable the capture, retention, and recycling of 
nutrients and trace elements, essential to maintaining 
reef ecosystems in oligotrophic environments often lik-
ened to “nutrient deserts” [12, 114, 115]. Heterotrophic 
seawater microbes positively associated with elevated 
POM and DOC in the surveyed offshore reefs included 
members of Gammaproteobacteria (two Oceanospiril-
laceae), Alphaproteobacteria (three Rhodospirillaceae, 

three Rhodobacteraceae), and two Burkholderiaceae 
(Fig.  7b). These microbes are frequently documented as 
enriched under elevated nutrients within coral reefs [11, 
19, 21, 38, 39]. For example, Rhodobacteraceae are noted 
for their association with dissolved nutrients in inshore 
GBR reefs dominated by macroalgae (as observed by 
[11, 19, 39]). Our findings show Rhodobacteraceae 
to be consistently enriched with elevated particulate 
nutrients in offshore  GBR reefs, indicating their role as 
versatile heterotrophic marine bacteria [116] poten-
tially capable of utilizing both dissolved and particulate 
nutrients in the GBR. Various members of Rhodospiril-
laceae also indicated high levels of particulate nutrients, 
although previous studies have reported their associa-
tion with decreasing nutrient levels [19]. This discrep-
ancy likely stems from their broad metabolic potential, 
which includes diazotrophic capabilities, opportunis-
tic pathogenesis, and adaptation to various aerobic and 
anaerobic conditions [19, 117], ultimately allowing Rho-
dospirillaceae to adapt to various niches across reef envi-
ronments. Lastly, Flavobacteriaceae, known for their 
capacity to degrade complex polysaccharides and utilize 
diverse carbon sources [118], were the only group in our 
data enriched when both particulate and dissolved nutri-
ent concentrations were elevated. Interestingly though, 
the MINT sPLS LOGOCV stability scores suggest that 
the signal of Flavobacteriaceae as indicators was not 
consistent across trips. This instability, coupled with 
low MINT sPLS correlation scores, suggests that Flavo-
bacteriaceae are summer-specific indicators of elevated 
nutrients in the offshore GBR as Flavobacteriaceae were 
the most discriminatory of summer trips in our data, 
increasing both in relative abundance and diversity. This 
is in addition to the relevance of Flavobacteriaceae as 
indicators of labile polysaccharides released from mac-
roalgae in inshore GBR reefs (as proposed by [11, 19, 39]) 
where macroalgae cover is comparatively higher than in 
the offshore GBR.

Numerous genes encoding for nutrient uptake sys-
tems were enriched in the GBR samples when DOC and 
phytoplankton-derived POM are available (Fig.  7, 1b), 
including ABC (ATP-binding cassette) transporters, 
TRAP (tripartite ATP-independent periplasmic) trans-
porter permease proteins, UAA (uncharacterized amino 
acid) transporters, and various ion transporters. Concur-
rently, we found an enrichment of microbial Gene Ontol-
ogy (GO) terms related to energy metabolism and cellular 
respiration (Fig. 7, 2b), such as NADH-quinone oxidore-
ductase (IPR010226, complex I of the respiratory chain) 
and cytochrome c oxidase subunit III (IPR024791, subu-
nit of the terminal complex IV in the respiratory chain). 
These gene pathways drive electron transport and are 
coupled to proton transmembrane transport, generating 
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a proton motive force for ATP synthesis, ultimately con-
tributing to increased energy metabolism [119–122]. The 
energy generated from nutrient uptake and cellular respi-
ration can then be directed towards anabolic metabolism 
and synthesis of various complex compounds [123–125], 
and we observed high representation of gene pathways 
involved in biosynthesis of vitamins, fatty acids, amino 
acids, and proteins (Fig. 7, 3b). For example, vitamin B6 
biosynthesis appears widespread in GBR bacterioplank-
ton, facilitated by the 4-hydroxythreonine-4-phosphate 
dehydrogenase PdxA (IPR005255) [126] and pyridoxal 
kinase enzymes (IPR004625) [127–129], which were 
consistently enriched in samples from at least two trips 
(LOGOCV stability = 0.5), indicating that elevated par-
ticulate nutrients promote this biosynthesis, as also 
observed in pelagic microbes [125]. Further, the con-
sistent presence of genes associated with fatty acid and 
amino acid biosynthesis indicates that elevated DOC 
and phytoplankton-derived POM in the GBR supports 
increased synthesis of these compounds. Specifically for 
fatty acid biosynthesis, NADH-dependent enoyl-acyl car-
rier protein reductase (IPR014358) was stably indicative 
of elevated nutrients in each sampling trip (LOGOCV 
stability score = 1), facilitating fatty acid biosynthesis by 
reducing the enoyl-acyl carrier protein (ACP) intermedi-
ate to produce saturated acyl-ACP [130, 131]. For amino-
acid biosynthesis, chorismate synthase (IPR000453), 
catalyzing the final step of the shikimate pathway used 
by prokaryotes to synthesize aromatic amino acids [132], 
was stably (i.e., in three sampling trips, LOGOCV sta-
bility = 0.75) enriched with elevated DOC and phyto-
plankton-derived POM, suggesting enhanced amino acid 
biosynthesis in reef bacterioplankton under nutrient-rich 
conditions. As building blocks of proteins, these amino-
acids are likely used in subsequent protein synthesis 
since various ribosomal proteins as essential components 
of protein-translation organelles ribosomes [133] were 
indicative of elevated POM and DOC. The indicator ribo-
somal proteins were as follows: S6 (IPR000529) and L16 
(IPR000114) identified as stable indicators across three 
and two sampling trips (respectively), the trip-specific L5 
(IPR002132, IPR020930), and S5 (IPR000851, IPR005712) 
(Fig. 5, Fig. 7, 3b).

Enhanced biosynthesis of complex compounds 
in nutrient-rich conditions can support the cellular 
growth and proliferation of reef-associated hetero-
trophic seawater microbes (Fig.  7, 4b). Crucial to the 
bacterial cell cycle (elongation and division) is the 
synthesis of bacterial cell walls which consist of pepti-
doglycans, composed of alternating units of N-acetyl-
glucosamine (NAG) and N-acetylmuramic acid (NAM) 
connected via the β-(1,4)-glycosidic bond [134, 135]. 
The NagA gene (N-acetylglucosamine-6-phosphate 

deacetylase — IPR003764) was persistently indicative 
of elevated DOC and phytoplankton-derived POM 
in the offshore GBR (i.e., in each of the four sampling 
trips), potentially facilitating the NAG breakdown to 
produce glucosamine-6-phosphate for synthesis of bac-
terial cell walls via the peptidoglycan recycling path-
way [136]. NAG are among the largest pools of amino 
sugars in the ocean [137], and NAG utilization is con-
sistent with a previous metagenomic study in inshore 
reefs of the central GBR, where NAG transporters were 
identified in reef water microbes, though absent from 
sponge and macroalgae microbiomes [39]. Further, 
anhydro-N-acetylmuramic acid kinase (IPR005338) was 
also enriched under elevated POM and DOC, another 
enzyme crucial for peptidoglycan recycling through 
phosphorylation of the anhydro-N-acetylmuramic 
acid (anhMurNAc) to produce MurNAc-6-phosphate, 
an intermediate in peptidoglycan metabolism during 
cell wall remodelling and turnover [138, 139]. Consist-
ent enrichment of these two enzymes across the GBR 
highlights that both bacterial cell wall biosynthesis and 
maintenance (indicative of microbial growth and pro-
liferation) are widespread in heterotrophic seawater 
microbes when DOC and phytoplankton-derived POM 
are available (Fig. 7, 4b). Further investigation into the 
metabolic activities of these indicator microbes and 
genes, using techniques such as metatranscriptomic 
and metaproteomic analyses, as well as stable isotopes, 
could provide richer insights into how nutrient avail-
ability influences the composition and metabolism of 
GBR seawater microbial communities.

Five physico-chemical variables, including salinity, 
total suspended solids (TSS), total dissolved nitrogen 
(TDN), silica (Si), and nitrate  (NO3), did not signifi-
cantly influence the overall community composition or 
functional potential (Fig.  2c). This is likely due to our 
sampling design where all sites are offshore reefs, and 
therefore, some metrics have a low explanatory value as 
they are highly consistent across this longitudinal gradi-
ent. Salinity, for example, has been well-documented as 
one of primary factors shaping community composition 
in aquatic microbes [71] and was reported to explain 
4.2% of community variation (according to variation 
partitioning analysis) in the GBR seawater microbiomes 
[19]. However, inshore sites influenced by freshwater 
input and therefore a stronger salinity gradient were 
investigated in [19], while our data captured a low degree 
of variation in salinity (34.6 to 35.8 practical salinity units 
— PSU, Table 1), which is likely why salinity was not sig-
nificant in our study (Fig. 2c). Moving forward, reevalu-
ation of these specific physico-chemical variables should 
occur in the future if additional sampling introduces a 
broader range of sites, particularly areas of inshore reefs, 
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where proximity to land and human activities contrib-
utes to a wider range of environmental variation.

Conclusions
Our study provides a functional baseline for reef-
associated bacterioplankton across  offshore regions 
of the  GBR, demonstrating that microbial functional 
genes have a higher stability than taxonomy in inferring 
physico-chemical variables across broad spatiotemporal 
scales. When dissolved organic carbon (DOC) and phy-
toplankton-derived particulate organic matter (POM) are 
elevated in offshore GBR reefs, microbial genes and func-
tions we found as consistently enriched in heterotrophic 
seawater microbes collectively point towards enhanced 
microbial nutrient uptake (Fig.  7, 1b) and energy gen-
eration through cellular respiration (Fig.  7, 2b), sup-
porting anabolic metabolism and synthesis of complex 
compounds (Fig.  7, 3b) to ultimately increase growth 
and biomass of heterotrophic seawater microbes (Fig. 7, 
4b). Members of reef bacterioplankton that increased in 
relative abundances with elevated POM and DOC con-
sistently across seasons/sectors in the offshore GBR 
included Rhodospirillaceae, Rhodobacteraceae, and Bur-
kholderiaceae, whereas Flavobacteriaceae were enriched 
when both dissolved and particulate nutrients were ele-
vated, although predominantly during summer (Fig. 7b). 
These heterotrophic marine microorganisms can then be 
grazed by flagellates and microzooplankton which in turn 
support larger macroorganisms, ultimately transferring 
nutrients derived from Synechococcus and Prochlorococ-
cus to higher trophic levels in offshore GBR reefs (Fig. 7, 
1c). Phytoplankton-derived POM (i.e., retained on a filter 
with a pore size of approximately 0.7  μm) not immedi-
ately metabolized by heterotrophic seawater microbes 
will escape the microbial loop, also becoming available 
to benthic and pelagic organisms at higher trophic levels 
through direct uptake (Fig. 7, 2c). In summary, Synecho-
coccus and Prochlorococcus are crucial components of 
the marine food web in offshore regions of the GBR, sup-
porting various levels of the ecosystem through their role 
as primary producers and their contributions to nutrient 
cycling and carbon sequestration.

Since microbial genes had higher indicator stability 
scores and functional redundancy is a well-established 
phenomenon for pelagic microbes [23–25, 30], we assert 
that microbial functions have a higher utility than micro-
bial taxa for rapid assessment of reef ecosystem health. It 
is worth noting, however, that this study was conducted 
using taxonomic annotations derived from metagenomic 
reads, which may provide less resolution than 16S-based 
taxonomic annotations. Microbial transcriptomic profil-
ing assays and biosensors, already used in environmen-
tal toxicity testing [140] to detect heavy metal pollution 

[141] and track hydrocarbon degradation from oil spills 
[142], would benefit from improved collaboration 
between researchers and reef managers to identify the 
most suitable microbial markers (taxa or genes/func-
tions) for developing targeted microbial-based assays 
for rapid reef health assessment. Lastly, as reef metage-
nomes become more widely available [14, 37, 143], it 
will be possible to cross-examine datasets across global 
scales and integrate microbial responses to generate spa-
tiotemporally coherent baselines of microbes indicating 
reef health; however, care will be needed to distinguish 
microbial biomarkers from confounding factors such as 
geography and season. To complement these emerging 
large-scale surveys of reef seawater microbes, it will be 
crucial to capture the state of reef bacterioplankton over 
time as is being recorded for pelagic microbes [144, 145], 
for example, at (1) long-term ocean time-series stations 
(which are yet to be established, unlike the 72 microbial 
observatories catalogued so far for pelagic microbes, 
see [146]), at (2) day-to-day resolution [147, 148] and 
across (3) mesoscale processes [149]. Such baselines of 
reef-associated (bacterio)plankton will be invaluable in 
facilitating identification of deviations that could signal 
impending disturbance events [19, 150] and link how 
microbial community shifts contribute to ecosystem sta-
bility and transition to alternative stable states.
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NO3  Nitrate
NovaSeq  Sequencing System
PCA  Principal Component Analysis
PERMANOVA  Permutational multivariate analysis of variance
Phaeo:  Phaeophytin
PLS  Partial least squares
PO4  Phosphate
POC  Particulate organic carbon
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PN  Particulate nitrogen
PP  Particulate phosphorus
Qubit  Fluorometer for DNA quantification
R  Programming language
RV  Research vessel
Sartorius  Filter manufacturer
Sartorius Minisart N  Syringe filter
SBE  Sea‑Bird Electronics
Shimadzu TOC‑L  Carbon analyzer
Si  Silicate
sPLS  Sparse partial least squares
SST  Sea surface temperature
TARA   Tara Oceans Foundation
TDN  Total dissolved nitrogen
TDP  Total dissolved phosphorus
TRAP  Tripartite ATP‑independent periplasmic
Trimmomatic  Quality‑filtering software
TSS  Total suspended solids
UAA   Uncharacterized amino acid
VEGAN  R package for diversity analysis
µg  Microgram,
µm  Micrometer
mm  Millimeter
cm  Centimeter
h  Hour
L  Liter
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