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Metabolic modelling uncovers the complex 
interplay between fungal probiotics, poultry 
microbiomes, and diet
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Abstract 

Background The search for alternatives to antibiotic growth promoters in poultry production has increased interest 
in probiotics. However, the complexity of the interactions between probiotics, gut microbiome, and the host hinders 
the development of effective probiotic interventions. This study explores metabolic modelling to examine the pos‑
sibility of designing informed probiotic interventions within poultry production.

Results Genomic metabolic models of fungi were generated and simulated in the context of poultry gut microbial 
communities. The modelling approach correlated with short‑chain fatty acid production, particularly in the caecum. 
Introducing fungi to poultry microbiomes resulted in strain‑specific and diet‑dependent effects on the gut microbi‑
ome. The impact of fungal probiotics on microbiome diversity and pathogen inhibition varied depending on the spe‑
cific strain, resident microbiome composition, and host diet. This context‑dependency highlights the need for tailored 
probiotic interventions that consider the unique characteristics of each poultry production environment.

Conclusions This study demonstrates the potential of metabolic modelling to elucidate the complex interactions 
between probiotics, the gut microbiome, and diet in poultry. While the effects of specific fungal strains were found 
to be context‑dependent, the approach itself provides a valuable tool for designing targeted probiotic interventions. 
By considering the specific characteristics of the host microbiome and dietary factors, this methodology could guide 
the deployment of effective probiotics in poultry production. However, the current work relies on computational 
predictions, and further in vivo validation studies are needed to confirm the efficacy of the identified probiotic can‑
didates. Nonetheless, this study represents a significant step in using metabolic models to inform probiotic interven‑
tions in the poultry industry.

Introduction
Since an EU ban in 2006, antibiotic growth promoters 
(AGPs) [1], once hailed as agriculture’s miracle boost-
ers, have faced increasing scrutiny. However, rapidly 
escalating misuse fuelled concerns, including illegal 
antibiotic additions to improve productivity and pre-
vent food spoilage [2]. Decades of antibiotic overuse 
in both humans and animals have resulted in the rise 
of antimicrobial resistance, resulting in the death of 
75,000 people annually. This figure will likely only grow 
[3], forcing us to look for alternatives and consider a 
‘one health strategy’. Yet, despite the EU ban in 2006 
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globally and voluntary reductions in use in the USA, 
65% of antibiotics in the USA are still used in food ani-
mals [4], increasing legislative pressure to deliver ever-
tightening restrictions such as bans on antimicrobials 
like zinc oxide and routine therapeutic antibiotic use in 
the EU [5, 6], creating a pressing need for alternatives.

Probiotics have emerged as a promising solution to 
this challenge. In-feed probiotics improve health mark-
ers and feed intake (FI), feed conversion ratio, and 
reduced mortality [7–10]. Additionally, they positively 
impact meat quality through increased protein content 
and a more favourable amino acid profile [10, 11]. These 
beneficial effects are believed to be mediated through 
the modulation of the gut microbiome, immune sys-
tem, intestinal pH, inhibition and enzymatic activity, 
and various other methods of action [12].

Ilya Ilyich Mechnikov first coined the term ‘probi-
otic’ after observing improved health and longevity in 
individuals who regularly consumed yoghurt [13]. This 
discovery marked the beginning of our understanding 
of the practice dating back millennia [14], where the 
use of beneficial microorganisms for health had been 
inherently present in fermented milk products [15]. 
Historically, probiotics such as Bifidobacterial and 
Lactobacilli have been integral in human and animal 
health, a testament to the long-standing relationship 
between humans and these organisms. Despite this rich 
history, the sourcing and selection of probiotics have 
relied on traditional methods, such as fermented foods 
or isolating strains from hosts [16].

In the standard approaches, isolated strains undergo 
basic in  vitro assessments for survivability, adherence, 
antimicrobial capacity, and lack of toxicity [17, 18]. 
However, a significant drawback persists: these meth-
ods offer limited insight into the probiotic’s potential 
effect within the complex ecosystem of the host’s gut 
microbiome. This lack of predictive power can lead to 
inconsistent or suboptimal outcomes. For instance, De 
Waard et al. [19] demonstrated that the composition of 
indigenous Lactobacillus populations in rats and mice 
was influenced more by environmental factors, such 
as the animal facility, than host genetics. Furthermore, 
Zmora et  al. (2018) [20] found person-, strain-, and 
region-specific colonisation resistance to probiotics in 
humans, displaying the complexity of probiotic-host 
interactions. The authors suggest that this marked and 
person-specific mucosal colonisation resistance may 
explain the high variability in probiotic effects noted in 
previous works. This variability in the gut microbiome 
across different environments highlights the limitations 
of traditional probiotic sourcing methods in predicting 
the efficacy of probiotics in various hosts and contexts.

To address this knowledge gap, we propose using com-
munity metabolic modelling, which represents a trans-
formational approach to overcome these limitations. 
Genome-scale metabolic models and classical FBA (flux 
balance analysis) have shown increasing popularity in 
industrial applications where metabolic models inform 
on how to improve productivity and elucidate key meta-
bolic differences between species [21].

Metabolic models are mathematical representations 
of an organism’s metabolic pathways, constructed from 
annotated genomes and known enzymatic reactions. 
Flux balance analysis (FBA) is the most used method 
to study these models. FBA represents the metabolic 
model as a stoichiometric matrix. The matrix is con-
strained by enzymatic capacity and nutrient availability. 
FBA assumes a steady state (the sum of fluxes producing 
a metabolite must equal the sum of all fluxes consuming 
that metabolite). Given an objective function (e.g. growth 
rate), FBA optimises the flux distribution through the 
network to maximise or minimise the objective while 
satisfying the constraints [22, 23]. Community modelling 
tools extend this further to optimise the growth objective 
within complex microbiomes. MiCOM takes an input of 
genome-scale models for individual species and a diet 
representation. It then uses a two-step ‘cooperative trade-
off’ approach to simulate the growth and metabolic inter-
actions. First, the community growth rate is maximised 
using FBA, then a trade-off is set between 0 and 1 to con-
strain the community growth rate while minimising the 
regularisation term (sum of squared growth rates, which 
distributes growth across all species) distributing growth 
across all individuals in the community. This results in a 
solution where the individual growth rate is maximised 
without diminishing the growth of the other species 
within the community. The output of this is the relative 
growth rate and metabolic fluxes of each species in the 
community [24]. This approach allows for perturbations, 
such as introducing a probiotic to the community to be 
tested and how this would impact the microbiome. These 
models can predict critical outcomes such as probiotic 
growth within the community and outputs and inputs by 
predicting growth, metabolite production, consumption 
rates, and overall metabolic capacity.

This offers a novel, systems-level perspective that 
goes beyond the traditional probiotic application meth-
ods by providing a comprehensive understanding of 
the complex interactions between probiotics and the 
host microbiome. It enables a data-driven assessment 
of microbe-microbe interactions within the complex 
gut environment, predicting probiotic performance 
and, significantly, revealing less obvious probiotic can-
didates. Furthermore, leveraging resources such as the 
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CarveFungi dataset of fungal metabolic models, this 
approach highlights the potential of underutilised pro-
biotic fungi [25]. Although the success of metabolic 
modelling in analysing the human gut microbiome high-
lights its potential [26], there are currently few applica-
tions of metabolic models used in agriculture. Among 
the most promising studies so far are those in aquacul-
ture, where researchers have applied similar approaches 
to investigate the effects of novel feed ingredients on the 
gut microbiota of Atlantic salmon. These studies used 
metagenomic data and genome-scale metabolic models 
to show that different yeast species [27] and black soldier 
fly larvae meals [28] can differentially modulate the com-
position and predict the metabolic capacity of the salmon 
gut microbiota. For livestock, the poultry industry offers 
an even more significant potential advantage of using 
metabolic modelling with controlled diets and man-
agement practices, leading to more defined modelling 
parameters. This combination of control and metabolic 
modelling could allow for precise-strain-level probiotic 
prescriptions.

While yeast-based probiotics have been used since the 
1990s to improve growth and feed efficiency [27–30], 
only a few species, like Saccharomyces, have been thor-
oughly studied for their probiotic potential [31]. Novel 
probiotic species, such as Meyerozyma guilliermondii 
[32] Chrysonilia crassa [33, 34] and Metschnikowia pul-
cherrima [35] have recently shown promise but require 
further investigation. A deeper understanding of how 
fungi can modulate the poultry gut microbiome and the 
ability to explore the full biodiversity of the fungi king-
dom is required to develop tailored probiotic and prebi-
otic formulations.

We hypothesise that metabolic modelling provides a 
valuable tool, beyond traditional species-level classifi-
cation, for understanding probiotic interactions in the 
poultry gut. While limited by current poultry metagen-
omic datasets, our study paves the way for future devel-
opments leading to customised probiotic interventions. 
By leveraging metabolic modelling to identify promis-
ing underutilised fungi and focusing on their impact on 
health outcomes, we aim to contribute to developing 
effective alternatives to AGPs and improve animal health 
in the poultry industry.

Materials and methods
CarveFungi
We employed community metabolic interaction mod-
elling to investigate the interactions between microbes 
within the complex gut microbiome. This data-driven 
approach enables a detailed analysis of how different 

microorganisms metabolically influence each other 
within a set environment. CarveFungi [25], a special-
ised tool for fungi, streamlines this process by creating 
genome-scale metabolic models (GEMs). CarveFungi 
utilises deep learning, drawing upon extensive meta-
bolic databases to construct compartmentalised, 
fungi-specific metabolic models. This offers a dis-
tinct advantage to manual model creation, which can 
be more time-consuming and less tailored to fungal 
characteristics.

To demonstrate this, we produced a metabolic model 
for the Metschnikowia pulcherrima strain ICS1, selected 
for its probiotic properties [35] to initiate CarveFungi. 
We provided the following inputs:

• Annotated genome of M. pulcherrimaICS1: includes 
genome sequencing data and functional annotations 
obtained using WebAugustus [36]

• Universal fungal template: provided by CarveFungi, 
this integrates a comprehensive database of core fun-
gal metabolism.

CarveFungi’s primary output for this study was a 
detailed GEM for M. pulcherrima, which was used for 
subsequent simulations and community analyses (Fig. 1).

Methods Toolbox: CarveFungi input preparation:

• Gene prediction: Web Augustus (reference model 
Candida Albicans for M. pulcherrima) (version 
3.3.3).

• Functional characterisation: EggNog-Mapper (Ver-
sion 5) (against diamond database) [37, 38].

• Secondary protein production: PSIPRED (Version 4) 
[39].

AutoPACMEN for enzymatic constraint integration 
in genome‑scale models
We integrated enzyme constraints into the SBML 
metabolic models generated by CarveFungi [25], uti-
lising AutoPACMEN [40] to enhance metabolic simu-
lation accuracy by accounting for enzyme capacity. 
AutoPACMEN leverages comprehensive databases, 
such as Braunschweig Enzyme Database (BRENDA) 
[41], Biochemically, Genetically and Genomically struc-
tured genome-scale metabolic network reconstruc-
tion database (BIGG) [42] and System for the Analysis 
of Biochemical Pathways-Reaction Kinetics database 
(Sabio-RK) [43] to establish gene-enzyme-reaction asso-
ciations. Protein molecular weights were primarily from 
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the Uniprot Database [44], with Uniparc [44] as the alter-
native source where UniProt data was unavailable. Due 
to limited fungi-specific experimental data, AutoPAC-
MEN’s default protein concentration (0.095 g/dcw) was 
employed, enabling robust enzymatically constrained 
models.

MiCOM
MiCOM [24] was selected as our modelling platform due 
to its established strengths in traceability, reproducibility, 
and comprehensive documentation [45]. Its success in 
simulating human gut microbiomes [46–48], including 
SFCA prediction and disease model analysis, further sup-
port its suitability for this study. We employed MiCOM 
to investigate metabolic interactions within the broiler 
gut microbiome, specifically focusing on fungal influ-
ence. Leveraging the AGORA (assembly of gut organisms 
through reconstruction and analysis) database [49], a 
comprehensive resource of gut bacteria metabolic mod-
els readily applicable to monogastric communities, we 
analysed the metabolic influence of fungi on microbial 

communities. Specifically, we examined their impact on 
how fungi can modulate a microbiome and the potential 
inhibition of problematic pathogens like Salmonella, Shi-
gella, and Clostridium [49–52].

To ensure a comprehensive bacterial community rep-
resentation, a relative abundance of 0.0001 was applied. 
Our simulations utilised a cooperative trade-off value 
of 0.7 (unless otherwise stated), as this setting optimally 
balanced individual species growth within the overall 
community structure.

Simulation of disease models
To investigate the impact of fungi on pathogenic bacteria, 
we conducted simulations for each metagenomic sample. 
Within each simulation, we introduced a target pathogen 
(Salmonella, Shigella or Clostridium) at an inclusion of 
0.1. Simultaneously, a single probiotic fungus candidate 
was added at an inclusion level of 0.05. Simulations were 
based on metagenomic samples from Liao et  al. [53]. 
Our study from this point focused on 90 fungal strains 
selected based on the available literature, which showed 

Fig. 1 CarveFungi workflow for Metschnikowiapulcherrima ICS1 model generation. Input preparation includes gene prediction (WebAugustus), 
functional characterisation (EggNOG‑mapper), and secondary protein prediction (PSIPRED)—details presented in CarveFungi toolbox
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non-toxicity (see Supplementary Table S1 for a complete 
list) [35, 54–135].

Construction of the diets
Two diets were used, one of which was a corn/soybean 
meal diet representative of a finisher diet [136] and the 
other was obtained from Liao et  al. [53] as an average 
between starter and finisher diets. Ileal digestibility 
was estimated based on available digestibility literature 
[137, 138]. Both were used to determine diet sensitivity 
during the simulations and to validate SFCA produc-
tion. A detailed breakdown of digestibility calculations 
can be found in the supplementary (Supplementary 
Table S2) [137, 139–141].

Estimation of nutrient flux available to gut micro-
biota post-ileal digestion reaching the gut microbiota 
after digestion. Factoring in ileal digestibility, compo-
nent mass, molecular weight (MW), diet composition 
and consumption.

(1)
Flux mMg−1h−1

component
=

1− Ileal digestibiltyComponent × relative abundance (g−1)component × grams eaten g−h
× 1000

MWcomponent

Bile acids were added according to literature values 
[140]. Finally, gap-filling was performed against a mani-
fest of broiler-associated microbes [142]. This mani-
fest was limited to microbes found within AGORA to 
ensure compatibility with the AGORA database (Fig. 2).

Data extraction and analytical tools
For data extraction, WebPlotDigitizer (version 4.7) [143] 
was employed to digitize data from the study by Liao 
et al. [53].

Subsequent data analysis and visualization were per-
formed using Python (version 3.8) [144]. The pandas 
library (version 1.5.3) facilitated data manipulation [145], 
while Maplotlib (version 3.7.3) [146] and Seaborn (ver-
sion 0.12.2) [147] were used for creating graphs.

Additionally, OpenAI’s GPT-4 was instrumental in 
code generation and debugging [148]. All code used to 
run modeling and do the analysis is available on: Monta 
zar12 34/ Poult ryPro bioti cMode ls (github. com).

Fig. 2 Computational workflow. Metabolic models generated by CarveFungi and enhanced with enzyme constraints (AutoPACMEN) are used 
for community simulations within MiCOM. This workflow enables the analysis of microbial interactions and metabolic output within the gut 
environment. Created in BioRender. Al‑nijir, M. (2024) https:// BioRe nder. com/ d32b1 99 

https://github.com/Montazar1234/PoultryProbioticModels
https://github.com/Montazar1234/PoultryProbioticModels
https://BioRender.com/d32b199
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Weighted Mtype Score calculation, where the score for 
each genus is multiplied by its abundance and growth 
rate (μ) to assess the cumulative impact of fungi on the 
bacterial community

(2)
Weighted Mtype Score = Abundancegenus × µ×Mtype Scoregenus

Shannon diversity index was used to quantify the diver-
sity of organisms within the simulated microbial com-
munities (Eq.  3). Microbiomes with high diversity are 
considered more robust and resilient, offering protection 
against colonization by novel organisms.

Shannon index, where H is the Shannon diversity 
index, a measure of a community’s diversity, Pi is the 

Fig. 3 Comparative analysis of experimental SCFA concentrations and predicted weighted fluxes in gut sections over time
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proportion of individuals that belong to that species, 
and S is the total number of species. This index measures 
richness (the number of distinct species) and evenness 
(the relative abundance of each species).

To infer potential shifts in community diversity, the 
Shannon index was recalculated to include alterations in 
abundance as a function of change in growth rate due to 
the introduction of fungi. Growth rates were normalised 
to proportions using Eq. 4.

Equation for normalising, growth rates to proportions: 
Gi represents the growth rate of the ith microbe, and n is 

(3)H = −

s
∑

i=1

piln(pi)

the total number of microbes within the sample. Gj is the 
sum of the growth rate of all microbes within a sample.

Results
Validation Of SFCAs
To validate our metabolic modelling approach, we com-
pared predicted SCFA production fluxes with measured 
SCFA concentrations from the study by Liao et  al. [53], 
which reported metagenomic profiles, diets, and SCFA 
concentrations over time in different gut sections of 

(4)pi =
Gi

∑n
j=1Gj

Fig. 4 Temporal and gut section distribution of fungal impact on microbial communities. Each point represents an average impact of a fungal 
family on the microbial community over 35 days. Each panel is a different gut section. Error bars (standard error of the mean) indicate variability 
within each family across the sampled population
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broilers. Simulations were performed using an approxi-
mation of the reported diet (Diet 2) and using two trade-
off values, 0.7 (A) and 0.8 (B).

Pearson correlation coefficients between simulated 
and measured SCFA levels varied across gut sections and 
simulation parameters (Table  2). Several SCFAs showed 

Fig. 5 Heatmap depicting the impact of the most positive fungal genera on microbial communities across different gut sections (A Caecum, B 
Duodenum, C Faeces) and time points (days 1, 7, 21, and 35) in broiler chickens. The colour scale represents the average weighted Mtype score, 
with positive values (blue) indicating beneficial, negative values (red) indicating a detrimental effect, and white representing a neutral effect. Fungal 
genera are sorted based on their overall average Mtype score, with the most positively influencing genera at the top of each panel
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statistically significant positive correlations, particularly in 
the caecum. Diet 2 and a 0.7 trade-off, propionate, isobu-
tyrate, butyrate in the caecum, and acetate in the duode-
num, all had Pearson values > 0.95 (p < 0.05). Propionate 
in the caecum was consistently predicted across all tested 
perturbations, with significant correlations in all cases.

To visualise the agreement between simulated and 
measured SCFA production, we compared temporal con-
centrations of all measured and predicted flux SCFAs 
across different gut sections (Fig.  3). Despite each time 
point being simulated independently, the predicted fluxes 
followed similar patterns as the observed concentration.

Introduction of fungi to microbial communities
Fungal strains were introduced at a relative abundance of 
0.05 into simulated microbial communities derived from 
a metagenomic dataset [142]. That included duodenal, 
caecal, and faecal microbiota at 1, 7, 21, and 35 days of 

age. Simulators were run for fungal genomic metabolic 
models that matched the AGORA database at above 50% 
abundance and were reported to be in broilers [195].

Positive and negative interactions
As described previously, the introduced fungi were 
observed to be able to influence the microbiota (Eq.  2). 
A general trend of positive effect on faecal microbiota 
developed, with efficacy depending on the sample (Fig. 4).

The genus-level heatmap (Fig.  5) reveals distinct pat-
terns of fungal impact on microbial communities across 
different gut sections and time points. In the caecum 
(Fig. 5A), fungal genera such as Eremothecium, Malasse-
zia, and Cyberlindera consistently demonstrate a positive 
influence on the microbiota (blue), while genera such 
as Mucor show a determinantal effect. However, this 
is reversed in the Duodenum (Fig.  5B) on day 7, where 
Mucor is one of the most positive genera.

Fig. 6 Averaged weighted Mtype score for the top 10 fungi, rated on their potential probiotic impact on poultry microbiota. Higher positive 
values suggest a more beneficial effect in promoting probiotic bacteria and suppressing pathogenic strains. Error bars represent standard error 
of the mean
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The faecal section (Fig.  5C) displays a shift in fungal 
impact over time, where fungal genera have a more posi-
tive influence with time, with Metschnikowia and Exidia 
having the most positive impact.

The top 10 fungal strains with the most positive influ-
ence on the poultry microbiome included recurring 
strains from genera such as Clavispora, Aspergillus, and 
Saccharomyces (Fig. 6).

Clavispora lusitaniae (P2 GCA 00948075), one of the 
top-performing strains, demonstrated context-depend-
ent interactions with bacterial genera (Fig. 7). Inhibiting 
Alistipes in the faecal microbiome at age 21 but promot-
ing Alistipes at age 35, under the same diet relative to the 
control.

The impact of diet on the ability of fungi to modulate 
the microbiome was investigated by comparing mean 

Fig. 7 The impact of Clavispora lusitaniae (P2 GCA 009498075) on the growth rate of bacterial genera of each microbiome across gut sections 
and age. Blue indicates growth promotion; red indicates inhibition due to the addition of C. lusitaniae. Intensity corresponds to the effect 
of magnitude. Differential effects can be seen for the same genera across different microbiomes
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Mtype scores of introduced fungi under two similar diets 
(Table  1). The specific strain and dietary context led to 
notable variations in the impact of these strains on the 
microbial community.

Clavispora_P2_GCA_009498075.1, a top-performing 
strain, exhibited a lower Mtype score under Diet 2 com-
pared to Diet 1, falling below the score of Aureobasidium_
EXF, a strain with a previously demonstrated negative 
Mtype effect. While showing variation within the range 
of most positive and most negative performing strains, 
the three Saccharomyces cerevisiae strains (Saccha-
roymces_yjm1078, Saccharomyces_yjm1242, and Saccha-
romyces_yjm451) also displayed inconsistent responses to 
even marginal dietary changes, with each strain showing 
markedly divergent responses in mean Mtype score when 
exposed to Diet 1 or Diet 2 (Fig. 8).

Microbial diversity
The Shannon diversity index was used to quantify the 
diversity of organisms within the simulated microbial 

communities. Microbiomes with high diversity are con-
sidered more robust and resilient, offering protection 
against colonisation by opportunistic microbes.

Introducing a probiotic into a highly connected micro-
bial network can cause fluctuations in diversity. A domi-
nating inhibitory effect on select microbes may decrease 
diversity, while a probiotic that evenly increases the 
growth of many microbes may enhance diversity.

Artificially introduced fungi showed reduced growth 
rates in more diverse microbiomes, suggesting that intro-
ducing a probiotic within an already diverse environment 
is challenging due to niche occupancy and increased 
competition (Fig.  8). The scatterplot illustrates the 
growth rates of various fungi when introduced to poultry 
gut microbiota of differing diversity levels, as quantified 
by the Shannon index (Eq. 3). The linear regression line 
(y = 17 − 0.03x) indicates a moderate inverse relationship 
(R = − 0.6) that is highly significant (p < 0.05).

Fungi capable of sustaining high growth rates within 
highly diverse environments (Shannon index > 2.7) 
could be interesting for probiotic development. The 
top-performing fungi exhibited notable uniformity in 
their growth rates (Fig.  9), which could be due to an 
artefact of the carving process in CarveFungi, which 
may yield conservative estimations by constraining the 
metabolic capabilities of the modelling organisms due 
to limitations in the pan-genomic metabolic model. 
Furthermore, the bottom five Fungi had less uniform 

Table 1 Composition of diets used in simulations. Diet 1 
represents a standard corn/soy finisher diet [137]. Diet 2 was 
derived from Liao et al. [53]

Ingredients Diet 1 (100  g−1) Diet 2 (100  g−1)

Corn 70 56.7

Soybean meal 26 34.8

Fig. 8 Comparison of the mean Mtype scores for various fungal strains under two diets. This bar chart illustrates the influence of Diet 1 (grey) 
and Diet 2 (white) on the Mtype scores



Page 12 of 23Al‑Nijir et al. Microbiome          (2024) 12:267 

growth rates; however, in the most diverse environ-
ments, none of the fungi had a growth rate of 0, as seen 
in Fig. 10.

Post-normalisation, the Shannon index was calculated 
using the previously described method (Eq.  3). Fungi 
that elevate the Shannon index may be considered prime 
candidates for probiotics, as they promote a more stable 
microbial community. Conversely, fungi that diminish 
diversity may dominate the microbiome.

Different Saccharomyces cerevisiae strains exhibited 
contrasting effects on Diversity (Fig. 10). Stains YJM1574 
and YJM1355 (Fig. 11A), isolated from wine and molas-
ses, respectively, occupied the top spots among strains 
that increased the Shannon index. Conversely, strain 
YJM1526 (Fig. 11B), a clinical isolate from a throat sam-
ple, was among the strains with the most significant 
decrease in the Shannon index.

Disease models
The growth of commercially relevant poultry pathogens, 
including Salmonella, Clostridium, and Shigella, was 
assessed in the presence of potentially probiotic fungi. 

Pathogens were added at an inclusion of 0.1 to metagen-
omic samples from the ileum, duodenum, and caecum, 
alongside potentially probiotic fungi at an inclusion of 
0.05. The growth rate of each pathogen was compared to 
a control without any fungi, and the mean growth rate of 
each pathogen in each gut section and day was calculated 
(Fig. 12).

A statistically significant correlation was observed 
between the gram-negative, rod-shaped Shigella and Sal-
monella in the presence of various fungal species (Pear-
son r = 0.35, p = 0.0015), indicating a broadly consistent 
response to fungal interaction. In contrast, no significant 
correlations were found when comparing Shigella and 
Clostridium (Pearson r = − 0.08, p = 0.5032) or Salmo-
nella and Clostridium (Pearson r = − 0.016, p = 0.1526) 
(Fig. 13). Specific fungal interactions of different strains, 
particularly Saccharomyces, did not appear to cluster and 
were widely spread, suggesting that pathogen-fungi inter-
actions are likely to be strain-specific in the context of 
these models. However, if a strain could inhibit Shigella, 
it could also inhibit Salmonella.

Fig. 9 Negative correlation between fungal growth rates and community diversity in poultry gut microbiota. The scatterplot illustrates the growth 
rates of various fungi when introduced to poultry gut microbiota of differing diversity levels, as quantified by the Shannon index. The linear 
regression line (y = 0.17 − 0.03x) indicates a moderate inverse relationship (R = − 0.6) that is highly significant (P = 3.21e − 179), suggesting that higher 
microbial diversity may inhibit fungal growth
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The top 5 fungi were identified, which resulted in the 
most considerable mean growth rate difference for each 
pathogen (Fig. 14).

Discussion
One of the key findings of our study is the highly con-
text-dependent impact of fungi on the gut microbiome, 
varying substantially with factors such as the existing 
microbiome composition and diet (Figs.  7 and 8). This 
context-dependency presents a significant challenge in 
identifying universally effective probiotics. The effects 
of probiotics can differ markedly across different envi-
ronments. Our results align with previous findings on 
the individualised responses to probiotics [196] and the 
influence of diet on probiotic efficacy [197, 198]. This 
underscores the need for personalised approaches in 
using metabolic models for probiotic applications tai-
lored to each poultry information, considering the 

unique characteristics of each host’s microbiome and 
dietary context [46]. Depending on the commercial poul-
try operations, if the litter is carried over from one flock 
to the next, this can serve as an inoculum for the incom-
ing flock [199, 200]. Contrastingly, fresh litter chicks 
have developed a significantly different microbiome 
than chicks where litter is reused [201–204]. Therefore, 
the microbiome’s stability would need to be established 
within each environment.

We validated our metabolic modelling approach by 
predicting short-chain fatty acid prediction (SCFA) pro-
duction in the poultry gut (Table 2, Fig. 3). The accuracy 
of SCFA predictions varied across metabolites and gut 
sections, with the most robust agreement in the caecum, 
the primary site of microbial fermentation [205]. Notably, 
the closest agreement was found when using a more rep-
resentative diet and a trade-off value of 0.7, highlighting 
the importance of setting the appropriate parameters to 

Fig. 10 Comparative growth rates of fungi in high‑diversity microbiota environments (Shannon index > 2.7). A depicts the top five fungal species 
with the highest growth rates, indicating a potential to thrive in already established complex microbial ecosystems. B conversely shows species 
with the lowest growth rates, showing the range of potential between the fungi examined
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resemble in vivo conditions closely. This could be further 
improved by having metabolomic data of each gut sec-
tion at different time points to determine nutrient availa-
bility. These findings are consistent with previous studies 
demonstrating the influence of dietary inputs on SCFA 
production [206, 207] and the successful prediction of 
propionate and butyrate in vitro and ex vivo systems [48]. 
The lower predictive accuracy for acetate may be attrib-
uted to the multiple optimal states of overflow metabo-
lism [208, 209], a complex phenomenon that warrants 
further investigation.

Building upon the validation of our metabolic mod-
elling approach, we next examined the strain-specific 
effects of fungal probiotics on the gut microbiome using 
Mtype score analysis. Mtype score analysis (Fig.  6) 
revealed strain-specific and diet-dependant effects of 
fungal probiotics on the gut microbiome (Fig.  8). The 
highly variable impact of Clavispora lusitaniae, for exam-
ple, highlights the importance of considering the specific 

microbiome context when evaluating probiotic candi-
dates (Fig. 5). In one instance, C. lusitaniae, suppressed 
Alistipes in the duodenum while promoting it in the fae-
ces of the same age bird (Fig. 7), further illustrating the 
context-dependent impact of fungi on the microbiome.

Moreover, the observed influence of diet on the direc-
tion and magnitude of the probiotic effects illustrates the 
need for dietary factors in probiotic design and testing. 
These findings contribute to the growing recognition of 
the complex interplay between probiotics, the resident 
microbiome, and host factors such as diet [196–198].

Our analysis of the Shannon diversity index (Figs.  9, 
10, and 11) provided insights into the differential effects 
of fungal strains on microbiome diversity. The intro-
duction of probiotics generally had limited impact in 
highly diverse, mature microbiomes, consistent with 
the known challenges of establishing probiotics, and so 
in ovo techniques were established [210–213]. In poul-
try, microbiome diversity increases from birth, peaks 

Fig. 11 Differential impact of fungal strains on microbial community diversity as a function of growth rates. A displays the top five fungal strains 
with the largest mean positive effect on the Shannon Diversity index, potentially indicating their role in promoting balanced microbial growth. 
B lists the bottom five fungi, showing that some fungi can potentially reduce the Shannon index by competitively excluding/promoting certain 
microbial species
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Fig. 12 Impact of all fungi presence on growth rate of Clostridium, Salmonella, Shigella in different metagenomic environment Caecum (A), 
Ileum (B), Jejunum (C), and Duodenum (D) of birds that are different ages (7, 14,21, and 42), data points represent the mean growth rate difference 
between control and probiotic treatments of pathogens within each gut section or age
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within 14–28 days, and stabilises [214–216], which may 
contribute to the limited impact of probiotics in mature 
microbiomes. However, some fungal strains were able 
to enhance diversity (as determined by our methods), a 
desirable trait given the association between high diver-
sity and microbiome stability and resilience [217, 218]. 
Furthermore, introduced probiotic species have been 
shown to have differential effects on driving diversity 
changes [219]. These results suggest the development of 
diversity-promoting probiotics may require careful strain 
selection and targeting application in less mature or dis-
rupted microbiomes and would be an avenue for further 
exploration.

Diets 1 and 2 represent very modest changes in com-
position compared to the differences encountered in 
commercial practice. For example, in the USA and 
Latin America, corn and soybean meal are the primary 

ingredients, while in Europe, wheat is the dominant 
cereal, and alternative protein sources such as rape-
seed meal are more common [220]. If the minor differ-
ences between diets 1 and 2 can evoke such a divergent 
response to a probiotic, the expected response under 
commercial conditions would be even more divergent. 
This may explain a great deal of variation noted in the 
response to probiotics in the literature. The fact that this 
approach can predict such divergence suggests that met-
abolic modelling may contribute to probiotics that func-
tion consistently across many dietary regimens.

The pathogen inhibition data (Figs.  12 and 13) dem-
onstrated the potential for fungal probiotics to suppress 
pathogenic bacteria (Fig. 14) selectively and the effect of 
such to vary depending on strains. However, the incon-
sistent effects across strains and the specificity of inhibi-
tion to specific pathogens further underline the need for 

Fig. 13 Correlation of mean growth rate differences between Shigella and Salmonella (A), Shigella and Clostridium (B), Salmonella and Clostridium 
(C). The colour‑coded points represent yeast strains that belong to the same genera. Pearson correlation and respective p value indicate the extent 
of significance and correlation between mean growth rate differences
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targeted probiotic interventions when the need is to tar-
get pathogens. The observed correlation does show some 
generality; however, in responses of Salmonella and Shi-
gella, in contrast to Clostridium, it highlights the impor-
tance of considering the specific mechanisms of pathogen 
inhibition [221], showcasing the need for particular inter-
ventions. These findings suggest that probiotic strategies 
for pathogen control may need to be tailored to the path-
ogen of interest and validated in the context of the spe-
cific microbiome and host environment.

In addition to our study’s focus on using metabolic 
modelling to identify targeted probiotics, the work 
of Marinos et  al. [222] demonstrates the potential of 

metabolic modelling to guide the development of preci-
sion prebiotics as a complementary approach. Precision 
prebiotics are compounds that specifically boost the 
abundance of beneficial microbes already in the micro-
biome—the work by Marinos et  al. [222] shows how 
metabolic models can produce accurate predictions on 
effective microbiome modulation.

It is essential to acknowledge its limitations despite the 
valuable insights it provides into the complex interactions 
between fungal probiotics, the gut microbiome, and diet. 
Our approach relies on computational modelling, which, 
while becoming increasingly powerful, is inherently lim-
ited to assumptions and simplifications of the infinitely 

Fig. 14 Comparative analysis of fungi inhibition on pathogen growth rates. The addition of fungi shows the most inhibitory average growth rate 
difference between A Salmonella, B Shigella, and C Clostridium
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complex underlying systems. The scope of our study was 
also necessarily limited to a subset of fungal strains and 
pathogens, and further work will be needed to assess the 
practicality of our findings. Moreover, our results must 
ultimately be validated through in  vivo experiments to 
confirm their biological relevance and applicability.

Despite these limitations, our findings have impor-
tant implications for developing and applying probiotic 
interventions in poultry. To our knowledge, this is the 
first study to apply metabolic modelling for use in poul-
try and outlines a few potential routes to characterise this 
approach. Our results highlight the need for more indi-
vidualised approaches considering specific characteris-
tics of the host microbiome, diet, and disease challenges. 
The strain-specific effects we observed suggest that pro-
biotic selection may need to move beyond species-level 
considerations to focus on the unique properties of indi-
vidual strains. Our work also demonstrates the potential 
of metabolic modelling to guide the selection of probiotic 
candidates and to predict the effects on the gut microbi-
ome, opening new avenues for the rational design of tar-
geted interventions.

Conclusion
In conclusion, our study demonstrates the power of 
metabolic modelling to elucidate the complex and 
context-dependent interactions between probiotics 
and poultry gut-specific microbiomes. We have shown 
the impact of introduced fungi is highly dependent 

on the specific strain, resident microbiome composi-
tion, and host diet, illustrating the need for targeted, 
context-specific probiotic approaches. While our work 
focused on fungal probiotics, the principles and meth-
odologies are broadly applicable. Realising the full 
potential of this approach will require expanding and 
refining metabolic species specific to poultry, with 
genome-scale metabolic models enhanced by integrat-
ing transcriptomic data. Furthermore, metabolomic 
and metagenomic time-series data would not only ena-
ble the validation of predicted temporal dynamics and 
provide insights into the stability and resilience of pro-
biotic interventions but also serve as tools to improve 
those predictions. Integrating multi-omics data in 
such a manner provides a systems-level understand-
ing of the complex interactions between probiotics, 
the gut microbiome, and the host. As the world seeks 
sustainable alternatives to antibiotic growth promoters, 
harnessing the power of the gut microbiome through 
metabolic modelling will be essential. This work repre-
sents a significant step towards a new era of precision 
microbiome management in agriculture, providing a 
foundation for developing targeted, effective, and sus-
tainable microbiome-based solutions to promote poul-
try health and productivity. While this work focuses 
on the poultry industry, the principles and methodolo-
gies presented here could also be adapted to other live-
stock, opening new avenues for farm-specific probiotic 
interventions.

Table 2 Pearson coefficient and associated p values under different diets and trade‑off values, simulations compared to experimental 
values for Isovalerate, Acetate, Butyrate, Isobutyrate, and Propionate in the Caecum, Duodenum, Ileum, and Jejenum, where Pearson/p 
values (A) and (B) correspond to 0.7 and 0.8, respectively

Simulation Section Metabolite Pearson A p value A Pearson B p value B

Diet 1 Caecum Acetate  − 0.348 0.65 0.93 0.02

Diet 1 Jejunum Acetate  − 0.894 0.3  − 0.89 0.3

Diet 1 Ileum Acetate  − 0.588 0.41  − 0.58 0.41

Diet 1 Duodenum Acetate 0.72 0.27 0.72 0.28

Diet 1 Caecum Butyrate  − 0.06 0.93  − 0.06 0.94

Diet 1 Caecum Propionate 0.99 0.008 0.99 0.01

Diet 1 Caecum Isobutyrate 0.85 0.1534 0.84 0.15

Diet 1 Caecum Isovalerate 0.96 0.04 0.96 0.04

Diet 2 Caecum Acetate 0.93 0.061 0.35 0.65

Diet 2 Jejunum Acetate  − 0.95 0.18  − 0.12 0.92

Diet 2 Ileum Acetate  − 0.09 0.91  − 0.3 0.695

Diet 2 Duodenum Acetate 0.98 0.01 0.48 0.52

Diet 2 Caecum Butyrate 0.95 0.04 0.75 0.25

Diet 2 Caecum Propionate 0.97 0.02 0.99 0.011

Diet 2 Caecum Isobutyrate 0.97 0.03 0.92 0.078

Diet 2 Caecum Isovalerate 0.82 0.18 0.95 0.05
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