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Abstract 

Background Periodontitis, a prevalent chronic inflammatory disease, offers insights into the broader landscape 
of chronic inflammatory conditions. The progression and treatment outcomes of periodontitis are closely related 
to the oral microbiota’s composition. Adjunctive systemic Amoxicillin 500 mg and Metronidazole 400 mg, often pre‑
scribed thrice daily for 7 days to enhance periodontal therapy’s efficacy, have lasting effects on the oral microbiome. 
However, the precise mechanism through which the oral microbiome influences clinical outcomes in periodontitis 
patients remains debated. This investigation explores the pivotal role of the oral microbiome’s composition in mediat‑
ing the outcomes of adjunctive systemic antibiotic treatment.

Methods Subgingival plaque samples from 10 periodontally healthy and 163 periodontitis patients from a rand‑
omized clinical trial on periodontal therapy were analyzed. Patients received either adjunctive amoxicillin/metroni‑
dazole or a placebo after mechanical periodontal treatment. Microbial samples were collected at various intervals 
up to 26 months post‑therapy. Using topic models, we identified microbial communities associated with normobi‑
otic and dysbiotic states, validated with 86 external and 40 internal samples. Logistic regression models evaluated 
the association between these microbial communities and clinical periodontitis parameters. A Directed Acyclic Graph 
(DAG) determined the mediating role of oral microbiota in the causal path of antibiotic treatment effects on clinical 
outcomes.

Results We identified clear distinctions between dysbiotic and normobiotic microbial communities, differentiat‑
ing healthy from periodontitis subjects. Dysbiotic states consistently associated with below median %Pocket Prob‑
ing Depth ≥ 5 mm (OR = 1.26, 95% CI [1.14–1.42]) and %Bleeding on Probing (OR = 1.09, 95% CI [1.00–1.18]). Factors 
like microbial response to treatment, smoking, and age were predictors of clinical attachment loss progression, 
whereas sex and antibiotic treatment were not. Further, we showed that the oral microbial treatment response plays 
a crucial role in the causal effect of antibiotic treatment on clinical treatment outcomes.

Conclusions The shift towards a normobiotic subgingival microbiome, primarily induced by adjunctive antibiot‑
ics, underscores the potential for microbiome‑targeted interventions to enhance therapeutic efficacy in chronic 
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inflammatory conditions. This study reaffirms the importance of understanding the oral microbiome’s role in peri‑
odontal health and paves the way for future research exploring personalized treatment strategies based on individual 
microbiome profiles.

Keywords Periodontitis, Oral microbiota, Dysbiosis, Antibiotic treatment, Clinical outcomes, Subgingival plaque, 
Normobiotic, Directed acyclic graphs, Microbial communities, Clinical attachment loss

Introduction
Bacteria play a crucial role in the maintenance of 
human health as well as the development of a wide 
spectrum of diseases, spanning neurologic, psychiatric, 
respiratory, cardiovascular, gastrointestinal, hepatic, 
autoimmune, metabolic, and oncologic conditions [31]. 
Within the oral biofilm, which encompasses all parts of 
the oral cavity, several genera have been identified as 
components of the core healthy human microbiome, 
including Streptococcus, Fusobacterium, Prevotella, 
Rothia, and Neisseria [11, 47]. However, when peri-
odontitis occurs, there is a significant shift in the sub-
gingival microbiota, leading to dysbiosis [27]. This 
dysbiotic state is characterized by an increase in overall 
bacterial diversity and the dominance of disease-asso-
ciated pathobionts, such as Porphyromonas, Fretibac-
teria, Treponema, and Tanerella [1]. To quantify this 
dysbiosis, novel subgingival dysbiosis indices have been 
developed, utilizing some of those and other discrimi-
nating genera and species [12, 36].

However, it is important to acknowledge that the 
current microbiome indices utilized in periodon-
tal research have certain limitations. These indices 
focus on specific genera or species within the micro-
bial community, providing a limited representation of 
the overall microbiome composition. This approach 
may overlook the complex interactions and synergistic 
effects that occur within the entire subgingival ecosys-
tem. Moreover, microbiome indices may fail to cap-
ture the dynamic nature of the oral microbiome and 
the potential contributions of less abundant taxa that 
could still play significant roles. To overcome these 
limitations, this study will employ topic models, which 
consider the entire microbiome composition and its 
inherent complexity [7, 22, 42]. By utilizing topic mod-
els, we can gain a more comprehensive and holistic 
understanding of the microbial clusters and their rel-
evance to periodontal treatment outcomes.

Our previous study showed that periodontal therapy, 
particularly when combined with adjunctive antibiotic 
use, can induce long-term reductions in dysbiosis in 
both non-smoking and smoking periodontitis patients 
[24]. These reductions are achieved by decreasing the 
abundance of periodontal pathobionts and increas-
ing the prevalence of commensal bacteria within the 

subgingival biofilm. These findings support earlier 
research that demonstrated short-term changes [6, 21, 
37] and long-term dynamics over 1 year [6].

While the effects of mechanical periodontal treat-
ment on clinical parameters of periodontitis have been 
extensively investigated [5, 8, 15, 16, 17, 28, 29, 35], the 
interplay between these clinical effects and the long-
term dynamics of bacterial compositions in the biofilm 
remains unclear. Furthermore, the influence of confound-
ing factors, such as smoking and age, on this relationship 
is not well understood.

The main goal of this manuscript is to investigate the 
role of the oral microbiota in the antibiotic treatment of 
periodontitis patients. This goal is achieved by (1) identi-
fying sub-communities that characterize dysbiotic states 
via topic modeling, (2) identifying differential treatment 
responses in terms of degree dysbiosis, and (3) examin-
ing the implications of oral microbiota in the causal effect 
of antibiotic treatment on periodontitis treatment out-
comes using a causal inference approach. By addressing 
these intermediate goals, we aim to elucidate the pivotal 
role of oral microbiota in mediating the impact of antibi-
otics on periodontitis treatment outcomes.

Material and methods
Study characteristics
This study encompassed samples from subjects with and 
without periodontitis, obtained from the ABPARO pro-
ject (n = 815 samples), an internal validation (n = 40 sam-
ples), and external validation (Griffen study (a) n = 29 
samples, and (b) n = 29 samples, and Pei study n = 28 
samples). The periodontitis patients originated from a 
26-month long-term prospective, randomized, strati-
fied, double‐blind, multi-center (eight university hos-
pital centers) trial with parallel‐group design about the 
impact of adjunctive Amoxicillin and Metronidazole on 
mechanical periodontal therapy (ABPARO study; 163 
patients [24]. The raw reads for ABPARO samples can 
be publicly assessed at the European Nucleotide Archive 
(PRJEB51017). The healthy subjects originated from 
the Department of Periodontology, University Hospital 
Muenster, Germany (internal validation; 10 participants) 
Additionally, sequencing data from individuals with a 
healthy periodontium were obtained from the Sequence 
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Read Archive of the National Center for Biotechnology 
Information [23, 39]. These datasets, utilizing various 
sequenced variable regions and sequencing technolo-
gies, were subjected to the same bioinformatics pipeline 
for consistent analysis. For further details, please refer to 
Table 1, which provides information on the study charac-
teristics and accession numbers of these datasets.

Library preparation and bioinformatics
In the case of the 40 newly acquired samples of the 10 
internal healthy control patients, bacterial genomic DNA 
was isolated and purified using a QiaAmp Mini DNA Iso-
lation Kit (Qiagen, Hilden, Germany). The 16S—libraries 
were prepared, normalized, pooled, and sequenced using 
an Illumina MiSeq system as previously published [24]. 
The bioinformatics analysis utilized Illumina’s MiSeq 
Control Software v.2.6.2.1 and Cutadapt v.4.4 [32] for 
the initial processing of adapter- and primer-free FastQ 
files. The DADA2 package v.1.26.0 [10] in R v.4.2.2 [41] 
was employed for further analysis, including trimming 
of low-quality bases and filtering of low-quality reads as 
previously described [24]. Taxonomic labeling of ribo-
somal sequence variants (RSVs) was performed using a 
Bayesian classifier and the eHOMD v.15.23 [13] train-
ing set. Species assignment was done based on match-
ing sequences with the eHOMD and SILVA v.138.1 [40] 
training sets, as previously described [24]. The healthy 
control samples obtained from [23], which were gen-
erated using 454 sequencing, underwent denoising 
with DADA2 using specific parameters,The maximum 
expected error (maxEE) threshold was adjusted to 0.2 
(default is 2) to account for anticipated higher levels of 
spurious sequencing. No merging or prevalence filter 
was applied during the denoising process. Addition-
ally, for the study conducted by [39], utilizing Illumina 
sequencing, we used the same denoising settings as those 
employed in the ABPARO-study. A minimum abundance 
filter of 100 was applied across all studies, to remove sus-
piciously rare sequence variants.

Statistical analysis
Topic models were fitted using the topicmodels package 
v 0.2 in R to all available samples. Each identified topic 
represents co-occurring microbial taxa indicating com-
munities or patterns of microbes that frequently appear 
together across different samples. Here, the number of 
topics was deliberately fixed at two to ensure easy inter-
pretability of the identified topics as the aim was to clas-
sify topics to represent normobiotic or dysbiotic states 
based on the microbial contributions to each topic. By 
validating our topics on other healthy and untreated 
patients, we aimed to demonstrate that our identi-
fied topics (normobiotic and dysbiotic) are consistent 
reflections of a healthy oral microbiome and not merely 
artifacts of antibiotic targets (Table 1). The relative pro-
portion of the dysbiotic to the normobiotic topic within 
each sample was used as a measure of the degree of dys-
biosis. Logistic regression models were used to assess 
the association of degree of dysbiosis on below or above 
median clinical outcomes measured as a percentage of 
sites with pocket probing depths ≥ 5 mm (%PPD ≥ 5 mm), 
percentage of sites with bleeding on probing (%Bleed-
ing), and percentage of sites with further attachment loss 
more than 1.3 mm compared to baseline (%AL 1.3 mm). 
Also, the proposed clinical endpoint of “ ≤ 4 sites with 
PD ≥ 5  mm” was calculated and used to link microbial 
composition to clinical outcomes [20]. If not stated oth-
erwise, models were adjusted for the confounding fac-
tors age, sex, and smoking. To capture the underlying 
heterogeneity in microbiota response to treatment, we 
employed hierarchical clustering to identify distinct sub-
groups that demonstrated similar patterns of microbial 
treatment response over time. An ordinal logistic regres-
sion model was used to assess how baseline characteris-
tics shape microbial treatment response patterns. Effects 
of treatment response on %AL 1.3  mm were analyzed 
using negative binomial regression models. To account 
for variability in the total number of sites per patient, 
the total number of sites was included as an offset in the 

Table 1 Datasets used for validation of identified topics

CAL Clinical attachment loss, PD pocket depth

*[38]

Reference Year Sample Size Selection criteria Sequencing technology Variable region Accession number

Hagenfeld et al. 2023 815 CAL ≥ 3mm MiSeq (2x250bp) V4 PRJEB51017

Griffen et al. a 2012 29 No PD >4 mm 454 GS FLX Titanium V1‑V2 SRP009299

Griffen et al. b 2012 29 No PD >4 mm 454 GS FLX Titanium V4 SRP009299

Pei et al. 2020 28 No PD >3 mm, no CAL ≥ 1 mm MiSeq (2x250bp) V3‑V4 SRP226726

Internal Validation 2023 40 No PD >3 mm, no periodontitis 
associated CAL*

MiSeq (2x250bp) V4 N.A.
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negative binomial regression models, effectively mod-
eling the proportion of sites with further attachment loss.

To elucidate the role of the microbiome in the causal 
effect of antibiotic treatment on further attachment loss, 
we applied the principles of causal inference and causal 
mediation methodology [46]. We constructed a Directed 
Acyclic Graph (DAG) to illustrate the causal structure 
of these relationships (Fig.  1). The DAG allowed us to 
visually represent the causal structure and to identify 
potential confounders, therefore informing our statistical 
models’ specification by identifying adjustment sets. It is 
important to note that the DAG is specifically tailored to 
represent the average causal treatment effect (that is, the 
total effect) and the controlled direct effect (that is, the 
direct effect, controlled for the microbiome as potential 
mediator and potential confounders of the mediator-out-
come association) of antibiotics on further attachment 
loss and should be interpreted only in this context. Two 
negative binomial models were fitted to estimate the total 
(c) and direct (c’) effect of antibiotic treatment on %AL 
1.3  mm. Using Bayesian models, we obtained posterior 
draws of the difference in coefficients between the total 
and direct effects (c–c’), thereby obtaining a point esti-
mate and a credibility interval for the indirect effect. This 
methodology provided a robust approach to infer the 
magnitude and uncertainty of the indirect effect medi-
ated through changes in oral microbiota post-treatment. 

All Bayesian models were estimated using the package 
brms 2.18.0 [9]. DAGs and their according adjustment 
sets were derived using the package dagitty 0.3 [44].

Results
Microbial composition and dysbiosis
The application of topic models allowed us to deter-
mine the relative abundance of each topic within the oral 
microbiota samples, providing a measure of dysbiosis. 
Our results demonstrated a strong correlation (r = 0.81, 
p < 0.001) with a previously published Subgingival Micro-
bial Dysbiosis Index [12] and exhibited nearly identical 
long-term patterns as in our previous study (Supplemen-
tary Fig. S1, [24]).

We identified two distinct microbial topics that 
effectively captured known pathogenic drivers of peri-
odontitis (dysbiotic topic) and species commonly asso-
ciated with healthy oral microbiota (normobiotic topic) 
(Fig.  2). The normobiotic topic was characterized by 
the presence of three Veillonella species (rogosae, par-
vula, and dispar), as well as commensal species such 
as Rothia dentocariosa, Rothia nigrescens, and the ani-
malis subspecies of Fusobacterium nucleatum. Sam-
ples from healthy periodontal specimens consistently 
exhibited high normobiotic topic loadings, irrespec-
tive of differences in sequencing technology, hyper-
variable region, and study population. All studies with 

Fig. 1 Directed acyclic graphs depicting the model approach for causal inference. Baseline characteristics influence the pattern of microbial 
treatment response (a). The effects of treatment response on %AL 1.3 mm were analyzed using negative binomial regression models (b). To assess 
the mediating effect of the response pattern, the difference method was employed. Two negative binomial models were fitted to estimate the total 
effect (c) and the direct effect (c’) of antibiotic treatment on %AL 1.3 mm
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specimens from a healthy periodontium demonstrated 
significantly higher normobiotic topic loadings com-
pared to the dysbiotic untreated periodontitis sample. 
The main drivers of the dysbiotic topic were the spe-
cies Porphyromonas gingivalis, Porphyromonas endo-
dontalis, Fusobacterium nucleatum subspecies vincentii, 
Treponema denticola, and two unclassified species from 
the genera Fretibacterium and Prevotella (Fig. 2).

Treatment effects on dysbiosis
In untreated periodontitis patients, the baseline micro-
biome was dominated by the dysbiotic community in 
both the antibiotic and placebo treatment groups, with 
a median relative abundance of 86.02% and 87.45%, 
respectively. Two months after treatment, the relative 
abundance of the dysbiotic community significantly 
decreased to 2.52% in the antibiotic treatment group 
and 62.21% in the placebo group. Over time, the dys-
biotic community increased again but remained below 
baseline levels for the antibiotic treatment group, with 
a median topic relative abundance of 48.86% even after 
26 months.

Association with clinical outcomes
The ratio of the dysbiotic community in the oral micro-
biome was consistently associated with worse clinical 
characteristics, i.e., above-median values, at each time 
point. Before treatment, a higher proportion of the nor-
mobaric community was strongly associated with ben-
eficial clinical characteristics that are below the median 
%PPD ≥ 5  mm (OR = 1.26, 95% CI [1.14–1.42]) and 
%Bleeding (OR = 1.09, 95% CI [1.00–1.18]). Two months 
after treatment, this association persisted even after 
adjusting for sex, age, and antibiotic treatment. Although 
the strength of these associations slightly decreased 
over the course of follow-up, they increased again after 
26 months at the end of follow-up for both %PPD ≥ 5 mm 
(OR = 1.14, 95% CI [1.04–1.27]) and %Bleeding 
(OR = 1.08, 95% CI [1.00–1.19]). Dysbiosis was associ-
ated with %CAL ≥ 1.3 mm only at 26 months after treat-
ment (OR = 1.11, 95% CI [1.02–1.22]). Furthermore, we 
calculated the Treat-to-target endpoint as ≤ 4 sites with 
PPD ≥ 5  mm [20]. Normobiosis in the oral microbiome 
was associated with improved treat-to-target endpoint 
at 26 months after treatment (OR = 1.20, 95% CI [1.08–
1.37]), but not earlier.

Fig. 2 Contributions of taxa to dysbiotic (red) and normobiotic (green) topics, and topic loadings of included studies. Left side displays taxa 
with higher contributions to dysbiotic or normobiotic topics. Right side shows topic loadings for each of the 163 periodontitis patients, as well 
as healthy internal and external controls without periodontitis. [23, 39]
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Clustering to detect microbial treatment response pattern
To further elucidate the interplay between the oral 
microbiota, clinical parameters, and treatment response 
at the individual patient level, we performed hierarchical 
clustering. Patients who exhibited microbial dynamics 
without a discernible pattern were classified as “indif-
ferent”. Three additional subgroups with distinct micro-
bial dynamics were identified based on their response to 
periodontal therapy. “Non-responders” had a dysbiotic 
microbiome before treatment, which did not achieve a 
transition to a normobiotic state after treatment. “Short-
term responders” initially changed to a normobiotic 
microbiome after treatment but subsequently reverted to 
a dysbiotic state at the end of the study. Finally, “Respond-
ers” transitioned to a normobiotic microbiome and main-
tained this state until the end of the study (Fig. 3).

Effects of microbial treatment response on clinical 
outcomes
We assume that the responder categories form an 
ordinal scale, premised on the observation that clini-
cal attachment loss incrementally decreases as the 
microbial response category improves (hence, the 

order of the response categories is non-responder (low-
est), indifferent, short-term responder and responder 
(highest)).

The ordinal logistic regression examining the effect 
of treatment and baseline microbiome on the microbial 
response pattern showed a strong association between 
the treatment and the microbial response pattern. Specif-
ically, individuals who received adjunctive antibiotics (the 
treatment) were more likely to fall into a higher response 
category. The odds ratio was 6.42 (95% CI: 3.30–12.89), 
indicating that those in the antibiotic treatment group 
had approximately 6.42 times higher odds of having a 
higher treatment response category than those in the 
placebo group. Likewise, having a baseline normobiotic 
microbiome was associated with 7.8 (95% CI 3.79–16.05) 
higher odds of falling into a higher response category. A 
negative binomial regression model was fitted to estimate 
the effect of the response pattern on further attachment 
loss after treatment, controlling for the effects of antibi-
otic treatment. Here, the rate ratio was found to be 0.72 
(95% CI 0.54–0.95), implying that for each increase in the 
treatment response category, the rate of attachment loss 
was reduced by approximately 28%.

Fig. 3 Heatmap of microbial treatment response from individual patients and line‑graphs of median clinical parameters per response group 
over 26 months of periodontal therapy. Each row represents an individual patient summarized by the microbial treatment response: “0: 
non‑responders” that exhibited a dysbiotic microbiome before treatment, which remained dysbiotic throughout the study. The “1: indifferent” 
group showed no discernible pattern in microbial dynamics. “2: short‑term responders” initially transitioned to a normobiotic state after treatment 
but later reverted to a dysbiotic state. “3: responders” successfully transitioned to a normobiotic microbiome and maintained this state until the end 
of the study. % Bleeding: % Bleeding on probing; %PPD5mm: % of site showing PPD ≥ 5 mm; %AL1.3 mm: Percentage of sites with new attachment 
loss ≥ 1.3 mm
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Impact of microbial treatment response on antibiotic 
treatment efficacy
We constructed a DAG to represent the framework of 
causal relationships and to identify the role of the micro-
bial response categories and potential confounders. As 
antibiotic treatment was subject to randomization, we 
can assume that the effects of treatment are independ-
ent of any confounders, assuming that no selection bias 
is present. However, it is safe to assume that the set of 
confounders, sex, age, and smoking, will affect both, the 
microbial treatment response as well the clinical out-
come %AL 1.3 mm. As the variables have different scales 
(ordinal mediator; count outcome), the most straightfor-
ward and interpretable approach to establish a mediation 
effect is to estimate the total and direct effect separately. 
A negative binomial regression was used to assess the 
total effect of treatment on attachment loss. Note, that 
this model was, as elucidated by the DAG, not adjusted 
for confounders. Here, the rate ratio was 0.73 (95% CI 
0.57–0.93), indicating that antibiotic treatment was 
associated with a 27% reduction in the rate of attach-
ment loss. We further estimated the direct effect of treat-
ment on attachment loss (model c’), by adjusting for the 
response pattern along with age, sex, and smoking. The 
rate ratio for the direct effect of treatment was found to 
be 0.82 (95% CI 0.62–1.07), suggesting that after adjust-
ing for the mediator and confounders of the mediator-
outcome association, there was no more evidence for 
the antibiotic treatment effect on attachment loss. This 
change in the antibiotic treatment effect, when account-
ing for the response pattern, provides evidence for the 
mediating role of the microbial response pattern in the 
relationship between adjunctive antibiotics and attach-
ment loss. However, to further investigate this mediation, 
we used the posterior draws of the estimates of the total 
and direct (c’) effect and calculated the indirect effect 

(c–c’). The indirect effect was 0.89 (95% CI 0.62–1.31), 
indicating high variance in the mediating effect. There-
fore, while there was no evidence for a direct effect after 
adjusting for the mediator, the high variance in the indi-
rect effect implies that we cannot conclusively assert the 
presence of mediation.

Predicted further sites with attachment loss
Using the microbial response categories, we obtained a 
predicted number of sites with further attachment loss, 
considering the influence of antibiotic treatment and pla-
cebo across diverse age groups and smoking statuses. The 
data is presented as model predictions, representing the 
hypothetical absolute number of sites with new attach-
ment loss ≥ 1.3 mm over a 26-month periodontal therapy 
for a patient with 24 teeth who has a total of 126 sites 
measured (Table 2). By comparing these numbers, we can 
assess the relative contributions of each individual effect 
on the absolute numbers of sites with further attachment 
loss ≥ 1.3 mm, while all other effects are constant.

To illustrate this approach, one may consider a hypo-
thetical non-smoker with 8 sites experiencing further 
attachment loss ≥ 1.3  mm. The model estimates a 19% 
reduction in attachment loss with antibiotics, lead-
ing to only 6.5 sites with attachment loss if this patient 
would have been treated with antibiotics. However, note, 
that the effects of the model are multiplicative. Say, the 
same individual is a smoker, the model would assume 
an 85% increase in the number of sites with attachment 
loss, resulting in 14.91 sites. Thus, the 19% decrease 
due to antibiotics now corresponds to a decrease of 2.8 
sites. Importantly, the effect of a better microbial treat-
ment response is stronger than the additional effect of 
the antibiotic treatment, supporting our previous find-
ings of a mediating role of microbial treatment response 
in adjunctive antibiotic use. This comparative analysis 

Table 2 Expected number of sites with further attachment loss of more than 1.3 mm, 26 months after mechanical periodontal 
therapy, based on model predictions. The table presents expected treatment outcomes based on microbial response patterns to 
antibiotic treatment and placebo across distinct age groups and smoking statuses. All values are expected outcomes for a patient with 
the number of sites measured being 146 (~24 teeth, the average number of teeth in this study)

Antibiotic Placebo

Smoking Age Non-
responder

Indifferent Short-term
responder

Long-term
responder

Non-
responder

Indifferent Short-term
responder

Long-term
responder

Non‑smoker  < 45 6.55 6.02 4.72 4.47 8.14 7.46 5.84 5.56

Non‑smoker 45 < 55 7.74 7.11 5.56 5.27 9.60 8.77 6.89 6.54

Non‑smoker  > 55 9.60 8.82 6.93 6.93 11.93 10.96 8.58 8.16

Smoker  < 45 12.06 11.05 8.69 8.69 14.91 13.70 10.77 10.23

Smoker 45 < 55 14.22 13.04 10.23 10.23 17.63 16.13 12.69 12.09

Smoker  > 55 17.67 16.62 12.74 12.74 21.95 20.11 15.78 15.02
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allows for a deeper understanding of how various fac-
tors influence the outcomes of periodontal therapy with 
or without adjunctive antibiotics and emphasizes the 
importance of individualized treatment considerations.

Discussion
In our study, we undertook a robust approach to under-
stand the role of the oral microbiome in the relationship 
between antibiotic treatment and periodontal health, 
adopting methodology from the causal inference frame-
work. Key findings from our analysis reveal the substan-
tial impact of the oral microbiome on periodontal health, 
highlighting the importance of individual microbial pro-
files in treatment outcomes. We further highlight how 
baseline characteristics shape the individual treatment 
response and how substantial parts of the effect of antibi-
otic treatment on periodontal health might be mediated 
through individual responses in the oral microbiome of 
patients.

The identification of two distinct microbial topics, the 
dysbiotic and normobiotic, allowed us to reliably capture 
the health status of the oral microbiota of patients. The 
dysbiotic topic predominantly consisted of well-known 
periodontal pathogens such as Porphyromonas gingivalis, 
Porphyromonas endodontalis, Treponema denticola, 
and Fusobacterium nucleatum [2], while the normobi-
otic topic included species commonly associated with a 
healthy oral microbiota such as Veillonella and Rothia 
species [47]. These findings support the notion that dys-
biosis in the oral microbiota involves a shift towards 
pathogenic microbial communities, accompanied by a 
reduction in beneficial commensal species [26]. A strong 
correlation between our topic model-based dysbiosis 
measure (Supplementary Fig. S1) and a previously estab-
lished Subgingival-Microbial-Dysbiosis-Index [12], fur-
ther indicated the reliability and validity of our approach. 
However, our method provided a comprehensive view 
of dysbiosis by considering the relative contributions of 
multiple microbial topics, rather than focusing on a lim-
ited set of pathogenic bacteria. We further showed the 
stability and generalizability of the topics across different 
study populations and methodologies [23, 39]. Regard-
less of differences in sequencing technology, hypervari-
able regions, and study populations, healthy periodontal 
specimens consistently exhibited high normobiotic topic 
relative abundance. This indicates that the normobi-
otic topic represents a robust indicator of a healthy oral 
microbiota. The identification of a dominant normobiotic 
topic in healthy subjects further emphasizes its potential 
as a useful reference for assessing dysbiosis in periodon-
titis patients.

Assessing the impact of periodontal treatment on 
dysbiosis, we found that both antibiotic and placebo 

treatment groups initially exhibited high relative abun-
dances of the dysbiotic topic (Fig.  2). However, two 
months after treatment, the dysbiotic topic significantly 
decreased in the antibiotic group, indicating the effec-
tiveness of antibiotic intervention in reducing the patho-
genic microbial community [24]. In contrast, the placebo 
group showed a partial reduction in the dysbiotic topic 
but remained at relatively high levels of the dysbiotic 
topic relative abundance. These findings suggest that 
antibiotic treatment had a more profound and sustained 
effect on dysbiosis compared to placebo, highlighting the 
potential therapeutic value of targeted microbial inter-
ventions [34, 43].

However, whether a patient benefits from periodontal 
therapy depends on the change in the microbiome after 
therapy and not on whether the change in the microbi-
ome was achieved by adjunct antibiotics or placebo. In 
addition, smoking status proved to be informative for the 
potential clinical response to treatment. According to our 
model (Table 2), non-smoking patients (< 45 years) with 
the microbiome pattern “long-term responder” will have 
an absolute number of attachment losses at 5.42 sites 
after adjunct antibiotics or at 6.63 sites with placebo. In 
smokers, on the other hand, the number of sites with fur-
ther attachment loss will be 10.03 and 12.25 sites respec-
tively. Our results therefore suggest that it would make 
more sense for patients to stop smoking than to be pre-
scribed antibiotics.

The association between dysbiosis and clinical out-
comes revealed consistent patterns throughout the study 
period. Higher proportions of the dysbiotic topic were 
consistently associated with worse clinical outcomes, 
including increased probing depth and bleeding. Con-
versely, a higher proportion of the normobiotic topic was 
associated with beneficial clinical outcomes, including 
lower %PPD ≥ 5  mm and reduced percentage of bleed-
ing. These associations remained significant even after 
adjusting for potential confounding factors, indicating 
the independent contribution of dysbiosis to the severity 
of periodontal disease. Notably, the association between 
dysbiosis and clinical attachment loss remained signifi-
cant after 26  months, suggesting the long-term impact 
of dysbiotic microbial communities on periodontal tissue 
destruction supporting pathobiont-based models for the 
prediction of periodontal destruction [45].

The classification of the microbial treatment response 
allowed us to group patients into distinct subgroups 
based on their microbial response to treatment. The 
“indifferent” subgroup exhibited microbial fluctuations 
without a clear pattern, indicating the lack of treatment 
influence on their oral microbiota. Conversely, the “non-
responder” subgroup maintained a dysbiotic microbi-
ome throughout the study, suggesting their resistance to 
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treatment-induced changes. The “short-term responder” 
subgroup initially responded to treatment by transition-
ing to a normobiotic state but subsequently reverted to 
a dysbiotic state, indicating a reduced treatment effi-
cacy. Finally, the “responder” subgroup demonstrated 
a sustained transition to a normobiotic microbiome, 
highlighting their favorable treatment response by tran-
sitioning into a microbial state comparable to that of 
healthy patients.

To disentangle the role of the oral microbiota in the 
mechanisms involved in the effect of antibiotic treatment 
on attachment loss we investigate each potential pathway 
separately. The results of the ordinal logistic regression 
analysis revealed that baseline characteristics are pre-
dictive of differential treatment response and highlight 
the role of baseline information in periodontal therapy, 
especially the baseline microbiome, as previously shown 
by the group of Zaura and others [6]. The analysis of the 
second path revealed that better treatment response in 
the oral microbiota is highly associated with less clini-
cal attachment loss. Those results give evidence that the 
effect of antibiotic treatment on clinical attachment loss 
might be mediated through response to treatment in the 
oral microbiota. We borrowed approaches from media-
tion methodology to further investigate the mediating 
role of the oral microbiome and the difference in the 
total and direct causal effect of antibiotic treatment on 
attachment loss further supports this finding. However, 
the estimate of the magnitude of the indirect effect (the 
difference between the total and the direct effect) shows 
high variability and should be interpreted with care, as 
the analysis was designed to establish the presence, not 
the magnitude of the mediating effect. Therefore, the 
analysis did not allow for an unbiased estimation of the 
causal mediation effect, as not all assumptions could be 
met. Specifically, there might be more factors that con-
found the association of the microbiome and the out-
come that could not be controlled for in this study, i.e., 
compliance to oral hygiene, amount of smoking, predia-
betes, or nutrition.

In a previous descriptive exploratory subgroup analy-
sis of the ABPARO trial [16], age and %PPD ≥ 5  mm 
were suggested to influence periodontitis progression. 
Our findings confirm the relevant role of age. However, 
due to the nature of our modeling approach, we can-
not directly control for %PPD ≥ 5 mm, as this variable is 
directly linked to our outcome. Despite this limitation, 
our model-based approach proves to be more robust 
against outliers compared to the exploratory analyses 
conducted in the previous study. Furthermore, the effect 
of the treatment, as well as the association with treat-
ment response might be moderated by other factors (i.e., 
disease progression). This assumption is also supported 

by the recent finding that the clinical benefit of antibiotic 
treatment is dependent on disease progression [15]. We 
can confirm similar findings on the total effect of anti-
biotic treatment in our study (Supplementary Table S1), 
however, we could not investigate this behavior in detail, 
as no information on the periodontitis grade was availa-
ble for 46.6% of the participants. This finding underscores 
the importance of microbial shifts as a key mechanism 
underlying the efficacy of antibiotic treatment in peri-
odontal therapy [14, 21, 34, 37]. Specifically, if antibiotics 
fail to induce the desired alterations in the oral micro-
biome, their impact on attachment loss may be limited. 
This highlights the need to consider individual microbial 
profiles and responses when determining the most effec-
tive treatment strategies [3, 4].

Furthermore, smoking and the categories of short- and 
long-term responses emerged as significant predictors of 
treatment outcomes. The influence of smoking on peri-
odontal health and treatment response has been exten-
sively documented, and our findings align with previous 
research indicating that smoking negatively affects treat-
ment outcomes [18, 19, 25, 30, 33]. The identification of 
short- and long-term response categories as significant 
predictors suggests the existence of distinct subgroups 
with varying treatment responses, which may warrant 
tailored therapeutic approaches.

Our study introduces a novel approach to topic identi-
fication that shares similarities with the results obtained 
through SMDI but offers greater flexibility and generaliz-
ability. Unlike SMDI, which focuses on specific dysbiotic 
patterns, our method considers the entirety of the micro-
biome and enables us to address more complex research 
questions. Furthermore, the inclusion of additional topics 
allows for the identification of sub-topics that are vital for 
examining fine-scale associations and making individual-
ized predictions. To enhance the robustness of our analy-
sis, future studies could consider refining the analytical 
approach by potentially incorporating a structural equa-
tion model. This advanced modeling technique would 
enable a comprehensive evaluation of the interrelation-
ships among baseline factors, treatment response, and 
attachment loss, thereby offering a more comprehensive 
understanding of the underlying dynamics. It is worth 
noting that the taxonomic resolution achieved in our 
study was limited to the genus level due to the utilization 
of short reads. While this level of resolution provided val-
uable insights, future investigations employing long-read 
sequencing technologies could potentially offer a higher 
taxonomic resolution, enabling a more detailed charac-
terization of the oral microbiota.

Our findings strongly endorse the concept that dysbio-
sis, marked by the prevalence of pathogenic microbial 
communities, plays a pivotal role in the degradation of 
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periodontal tissues. The identification of a normobiotic 
topic linked with a healthy oral condition underscores its 
potential as a valuable biomarker and therapeutic target 
in the context of periodontal management. Beyond this, 
our research hints at a broader implication—the poten-
tial use of oral microbial biomarker screening as a read-
ily accessible tool to monitor the course of periodontal 
disease. As we move forward, we must emphasize the 
need for further research exploring the ripple effects of 
dysbiotic oral microbiota on systemic conditions. Such 
investigations have the potential to uncover novel links 
between periodontal and systemic health, offering valu-
able insights into personalized treatment approaches. 
This avenue of research holds promise not only for peri-
odontal care but also for enhancing our understanding of 
systemic health in a broader context.

Conclusion
In conclusion, this study provides important insights into 
the predictability of responder categories based on base-
line information and sheds light on the critical role of the 
oral microbiome in mediating the effects of antibiotics 
on attachment loss. These findings highlight the need for 
personalized treatment approaches that consider indi-
vidual microbial profiles and indicate the significance of 
smoking and the categorization of treatment response 
in influencing treatment outcomes. Further research, 
including refined analytical approaches, can contribute to 
a deeper understanding of the complex interplay between 
baseline factors, treatment response, and clinical peri-
odontal outcomes.
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