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Akkermansia muciniphila improve cognitive 
dysfunction by regulating BDNF and serotonin 
pathway in gut-liver-brain axis
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Abstract 

Backrground Akkermansia muciniphila, a next-generation probiotic, is known as a cornerstone regulating the gut-
organ axis in various diseases, but the underlying mechanism remains poorly understood. Here, we revealed the neu-
ronal and antifibrotic effects of A. muciniphila on the gut-liver-brain axis in liver injury.

Results To investigate neurologic dysfunction and characteristic gut microbiotas, we performed a cirrhosis cohort 
(154 patients with or without hepatic encephalopathy) and a community cognition cohort (80 participants in one 
region for three years) and validated the existence of cognitive impairment in a 3,5-diethoxycarbonyl-1,4-dihydr-
ocollidine-induced hepatic injury mouse model. The effects of the candidate strain on cognition were evaluated 
in animal models of liver injury. The expression of brain-derived neurotrophic factor (BDNF) and serotonin receptors 
was accessed in patients with fibrosis (100 patients) according to the fibrosis grade and hepatic venous pressure 
gradient. The proportion of A. muciniphila decreased in populations with hepatic encephalopathy and cognitive 
dysfunction. Tissue staining techniques confirmed gut-liver-brain damage in liver injury, with drastic expression 
of BDNF and serotonin in the gut and brain. The administration of A. muciniphila significantly reduced tissue damage 
and improved cognitive dysfunction and the expression of BDNF and serotonin. Isolated vagus nerve staining showed 
a recovery of serotonin expression without affecting the dopamine pathway. Conversely, in liver tissue, the inhibition 
of injury through the suppression of serotonin receptor (5-hydroxytryptamine 2A and 2B) expression was confirmed. 
The severity of liver injury was correlated with the abundance of serotonin, BDNF, and A. muciniphila.

Conclusions A. muciniphila, a next-generation probiotic, is a therapeutic candidate for alleviating the symptoms 
of liver fibrosis and cognitive impairment.
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Graphical Abstract

Background
Hepatic encephalopathy (HE) is a neuropsychiatric syn-
drome that occurs in patients with acute or chronic liver 
disease and involves a wide range of cognitive and psy-
chiatric impairments [1–3]. HE is a serious complication 
of decompensated liver cirrhosis and is associated with 
dysbiosis or an altered gut microbiota that contributes to 
a systemic inflammatory environment [4, 5]. Patients with 
liver cirrhosis exhibit atrophic changes in the frontal lobe 
and a neuronal loss in the cerebral cortex, hypothalamus, 
and hippocampus, which are responsible for impaired cog-
nitive function [6]. The strong link between brain-related 
cirrhosis complications and the gut microbiome indicated 
by the ability of rifaximin, a nonabsorbable antibacterial 
agent, to maintain remission in HE patients [3, 7].

However, the role and relationship between the gut 
microbiota and neuropsychiatric factors in liver cirrho-
sis are still unclear, and the mechanisms involved in the 
gut-liver-brain axis flow remain to be elucidated. Investi-
gating which neurotransmitter molecules are connected 
through the gut-organ axis is necessary to understand the 
neuropsychiatric abnormalities commonly found in cir-
rhotic patients and to find cures.

Akkermansia muciniphila is an anaerobic commen-
sal bacterium that utilizes mucins as a source of carbon 
and nitrogen [8, 9]. Numerous studies have shown that 
the abundance of this commensal bacterium is associated 
with multiple diseases [10, 11]. A. muciniphila enhances 
intestinal barrier function and mucus layer thickness 
while reducing systemic endotoxin concentrations in 
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a high-fat diet-fed mouse model [10]. The administra-
tion of A. muciniphila to an animal model of alcoholic 
liver disease prevented liver injury, steatosis, and neu-
trophil infiltration, preserved the mucus thickness, and 
protected against ethanol-induced gut leakage [12]. The 
effects of this bacterium on enhancing intestinal barrier 
immune function and improving metabolic diseases in 
animal models have been investigated in various stud-
ies, and the effects have also been verified through recent 
proof-of-concept clinical trials [13]. Recently, A. mucin-
iphila was shown to modulate serotonin secretion and 
metabolism in the gut [14, 15].

Both serotonin and brain-derived neurotrophic factor 
(BDNF) are important molecules that play significant 
roles in the pathophysiology of various neuropsychiat-
ric disorders, including dementia and cirrhosis. BDNF 
is a neurotrophic factor that supports the survival and 
growth of neurons, and it is critical for neuroplasti-
city, learning, and memory. Moreover, BDNF is highly 
expressed in gut enteric neurons and glia and is involved 
in regulating various gastrointestinal functions, including 
motility and secretion [16]. Previous studies have shown 
that BDNF levels are decreased in patients with Alzhei-
mer’s disease and Parkinson’s disease, and this decrease 
is associated with cognitive impairment and motor dys-
function [17, 18]. In addition, studies have also shown a 
reduction in BDNF levels in patients with cirrhosis, and 
this decrease is associated with HE, a condition that is 
characterized by cognitive dysfunction [19].

Similarly, serotonin is expressed in enteric neurons 
and acts as a neurotransmitter and a hormone in the gas-
trointestinal tract. Serotonin is a neurotransmitter that 
is involved in various physiological processes, including 

mood regulation, cognition, and memory. Previous studies 
have shown that serotonin levels are altered in patients with 
dementia and cirrhosis. Specifically, reduced serotonin lev-
els have been observed in patients with Alzheimer’s dis-
ease, which are associated with cognitive impairment [20]. 
In patients with cirrhosis, alterations in serotonin signaling 
have been implicated in the development of HE [21, 22].

Although previous scientific experiments have con-
firmed that BDNF and serotonin are important mol-
ecules involved in cognitive impairment and hepatitis, 
the exact molecular mechanisms involved have not been 
identified to date. Therefore, we used various animal 
models of liver injury to analyze the correlation between 
advanced liver injury and cognitive impairment and to 
identify novel molecular mechanisms involving BDNF/
serotonin and the microbiome. We also evaluated the 
therapeutic effects of the next generation of beneficial 
microbes, specifically A. muciniphila, on liver injury and 
cognitive impairment.

Materials and methods
Human study
A hospital-based cohort study was conducted at uni-
versity hospitals to evaluate the microbial charac-
teristics of patients with cirrhosis (trial registration: 
NCT05786755, NCT04339725, and IRB No. 2016–134). 
A total of 154 patients (aged > 40 years and with alcohol-
related liver cirrhosis) were included in this study. The 
clinical data are presented in Table 1. HE was diagnosed 
when overt symptoms of West Haven criteria 1–2 were 
present. Patients without overt symptoms (West Haven 
criteria 0) were classified as having no HE.

Table 1 Comparison of clinical parameters among healthy control, cirrhosis without encephalopathy and cirrhosis with 
encephalopathy

Data are represented as mean ± SEM. Different superscript letters indicates significant difference by the nonparametric Kruskal–Wallis test with Dunn’s multiple 
comparison test. * P < 0.05, ** P < 0.01, n.s., not significant

HE Hepatic encephalopathy, ALT Alanine transaminase, AST Aspartate transaminase, GGT  Gamma-glutamyl trans-ferase, HDL High-Density Lipoprotein Cholesterol

Characteristics Healthy control
(n = 57)

Cirrhosis without HE 
(n = 58)

Cirrhosis with HE
(n = 39)

P-value

Age, y 61.7 ± 1.0 58.5 ± 1.6 63.2 ± 2.2 0.23 n.s

Sex (male [%]) 30 (53) 45 (78) 23 (59)

BMI, kg/m2 23.9 ± 0.6 23.5 ± 0.6 23.7 ± 0.5 0.87 n.s

ALT, U/L 22.8 ± 1.2a 72.3 ± 30.0b 21.2 ± 2.1a 0.0009 **

AST, U/L 25.0 ± 0.8a 103.5 ± 21.8b 51.7 ± 5.2bc  < 0.0001 **

GGT, U/L 39.9 ± 5.5a 390.5 ± 94.5b 76.1 ± 21.4a  < 0.0001 **

Total cholesterol, mg/dL 190.4 ± 5.1a 133.5 ± 6.4b 106.8 ± 6.2c  < 0.0001 **

Creatine, mg/dL 0.9 ± 0.1 0.8 ± 0.0 1.0 ± 0.1 0.23 n.s

Triglyceride, mg/dL 154.4 ± 17.4a 134.6 ± 16.6a 74.9 ± 9.0b  < 0.0001 **

HDL, mg/dL 54.6 ± 2.8a 46.4 ± 3.9b 32.1 ± 2.9b  < 0.0001 **
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We performed brain CT scan and tests of neuropsy-
chological function, including attention, language, visu-
ospatial, verbal memory, visual memory, and frontal/
executive function [Seoul Neuropsychological Screen-
ing Battery (SNSB)]. Patients with HE showed atrophic 
changes in the frontal lobe, the main region for cognitive 
function, and cognitive dysfunction in the neuropsycho-
logical function tests.

In the community cognition cohort study, 80 patients 
were enrolled to evaluate cognitive function between 
January 2020 and December 2022 (trial registration: 
cris KCT0008315 and IRB No. 2020–09-005). Cognitive 
function was measured in patients with memory loss in 
a certain area for three years (Supplementary Table  1). 
We conducted this cohort study on participants (age > 65 
years) who did not have any psychoneurological diseases. 
Participants had no problems in daily life and cogni-
tive dysfunction was diagnosed through the CERAD-K 
(Korean version of the Consortium to Establish a Reg-
istry for Alzheimer’s Disease Assessment Packet, Neu-
ropsychological Assessment Collection).

Patients were classified through liver biopsy and hepatic 
venous pressure gradient (HVPG) using data from a pre-
vious study. Liver biopsy specimens were sent to 1 center 
and analyzed by 2 hepatopathologists. The fibrosis stage 
was determined using the METAVIR staging system: 0, 
no fibrosis; 1, enlarged fibrotic portal tracts; 2, enlarge-
ment of portal tracts with rare periportal or portal-portal 
septa; 3, numerous septa without cirrhosis; and 4, cirrho-
sis. Advanced fibrosis is defined by METAVIR score 3–4. 
HVPG was measured by one hepatologist. A 6 French 
balloon catheter was placed in the right hepatic vein 
through a right jugular vein puncture for measurement 
of the free hepatic venous pressure. The wedged hepatic 
venous pressure was measured by inflating the balloon 
catheter in the right hepatic vein. Then, the HVPG was 
determined by subtracting the free hepatic venous pres-
sure from the wedged hepatic venous pressure [23]. An 
HVPG ≥ 5 mmHg indicates portal hypertension, and a 
value exceeding 10 mmHg indicating clinically signifi-
cant portal hypertension. At values greater than 12 mm 
Hg, variceal hemorrhage may occur [24]. We divided 
patients into three groups: stage 1, HVPG ≤ 5; stage 2, 
5 < HVPG ≤ 15; stage 3, HVPG > 15.

The study protocols conformed to the ethical guide-
lines of the 1975 Declaration of Helsinki as reflected in 
the a priori approval by the institutional review board for 
human research of all participating hospitals. Informed 
consent for participation in the study was obtained from 
each patient.

Baseline evaluations were conducted, which included 
the family history and history of alcohol consumption, 
abdominal ultrasound or contrast-enhanced computed 

tomography, X-ray, electrocardiography, complete 
blood count, electrolytes, liver function test, viral mark-
ers, and endoscopy. Blood was analyzed using standard 
methodologies. Serum biochemical parameters included 
bilirubin, aspartate aminotransferase (AST), alanine ami-
notransferase (ALT), gamma glutamyl transpeptidase, 
alkaline phosphatase, albumin, sodium, total bilirubin, 
prothrombin time, total protein, blood glucose, interna-
tional normalized ratio and total cholesterol levels. The 
levels of HAV (anti-HAV IgG and IgM), HBV (anti-HBc 
IgM, HBsAg, and anti-HBs), anti-HEV IgG and IgM, 
HIV, and HCV (anti-HCV with/without HCV-RNA) 
were tested in all patients. CMV, EBV, HSV, anti-nuclear 
antibody, anti-mitochondrial antibody, and anti-smooth 
muscle antibody tests were also performed. All experi-
ments using human blood samples complied with rel-
evant ethical regulations.

Animal study
Five-week-old pathogen-free male C57BL/6 J mice were 
obtained from Doo Yeol Biotech (Seoul, Republic of 
Korea). All mice were housed in individual cages main-
tained at 24 °C ± 2 °C on a 12 h light/dark cycle. Through-
out the experiment, water and food were provided 
ad  libitum, and the animals were monitored daily. The 
experimental design included an adaptation period for all 
groups, during which the mice were fed a normal diet for 
one week.

Mice were fed normal chow (Doo Yeol Biotech, Seoul, 
Republic of Korea) or a diet containing 3,5-diethoxycar-
bonyl-1,4-dihydrocollidine (DDC, 2018S, Doo Yeol Bio-
tech, Seoul, Republic of Korea). The antibiotic cocktail 
combinations [ampicillin (100 mg/kg, Sigma-Aldrich, 
Germany), vancomycin (50 mg/kg, Sigma-Aldrich, Ger-
many), metronidazole (100 mg/kg, Sigma-Aldrich, Ger-
many), neomycin (100 mg/kg, Sigma-Aldrich, Germany), 
and amphotericin B (1 mg/kg, Supelco, Germany)] were 
used according to a previously reported method [25]. 
Sarpogrelate hydrochloride, which is an antagonist for 
5HTR2A/2B, was administered orally at a dose of 50 
mg/kg BW every 2 days. After one week of adaptation, 
six-week-old male C57BL/6 J mice underwent bile duct 
ligation (BDL) surgery. Under anesthesia, the abdominal 
cavity was opened, and the bile duct was ligated twice 
with 5–0 surgical silk. The bile duct was cut between the 
ligatures. Sham surgery was performed similarly, except 
that ligation and dissection of the bile duct were not 
performed. Oral administration of the bacterial strain 
was performed beginning 1 week after BDL surgery. The 
bacterial strain was orally administered 3 times a week 
at a concentration of approximately  109 CFU/ml in 200 
μl. The mice were eventually sacrificed via an overdose 
of inhalation anesthesia with isoflurane (Hana Pharm, 
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Seoul, Republic of Korea) at the conclusion of the treat-
ment period.

Mice were treated humanely, and all aspects of the ani-
mal study were performed in accordance with National 
Institutes of Health Guidelines for the Care and Use of 
Laboratory Animals. All experimental procedures were 
approved by the Institutional Animal Care and Use Com-
mittee of the College of Medicine, Hallym University 
(Hallym 2022–53).

Microbiome analysis
Metagenomic DNA was extracted using a QIAamp stool 
kit (Qiagen, Hilden, Germany). After the first amplifi-
cation of the V3—V4 region of the bacterial 16S rRNA 
gene, the second amplification was performed using 
Barcoded universal primers. An Agencourt AMPure XP 
system (Beckman, USA) was used to purify amplicons. 
PicoGreen and quantitative PCR were utilized to quantify 
the purified amplicons. After pooling barcoded ampli-
cons, a MiSeq sequencer on the Illumina platform (CJ 
bioscience Inc., Republic of Korea) was used for sequenc-
ing according to the manufacturer’s specifications. The 
16S-based Microbial Taxonomic Profiling platform of 
EzBioCloud Apps (CJ bioscience Inc., Republic of Korea) 
was used for microbiome profiling. After taxonomic pro-
filing of each sample, a comparative analysis of the sam-
ples was performed by comparison with the EzBioCloud 
database. The 16S rRNA database (DB ver. PKSSU4.0) of 
CJ bioscience was used for the taxonomic assignment of 
reads. OTU picking was achieved with UCLUST [26] and 
CDHIT utilizing a 97% similarity cutoff [27]. Beta-diver-
sity, which includes PCoA and UPGMA clustering, was 
displayed in the comparative MTP analyzer.

Refer to the supplementary data for details about other 
materials and methods.

Results
A. muciniphila is drastically depleted from the fecal 
microbiome of human subjects with diseases associated 
with cognitive dysfunction
The study included 97 patients diagnosed with liver cir-
rhosis (without HE, n = 58; with HE, n = 39) and 57 
healthy controls. In addition, 48 cognitively impaired 
subjects (Mini-Mental State Examination [MMSE]-
KC score ≤ 24) and 32 healthy controls (MMSE-KC 
score ≥ 25) classified by an examination of the MMSE 
score were included. Table  1 and Table  S1 present the 
detailed characteristics of each group, including clinical, 
metabolic, and biochemical profiles. Cirrhotic patients 
with HE had lower levels of ALT (P = 0.0009) (Sup-
plementary Fig.  1A), AST (P < 0.0001) (Supplementary 
Fig.  1A), gamma-glutamyl transferase (P < 0.0001), total 
cholesterol (P < 0.0001), and triglycerides (P < 0.0001) 

than cirrhotic patients without HE. No differences in 
blood biochemical profiles were observed between the 
test groups classified using the MMSE.

We analyzed 16S rRNA gene sequencing data to com-
pare the distribution of microbe proportions according 
to the presence or absence of disease. The proportions of 
dominant taxa at the phylum (Fig. 1A) and family levels 
are shown (Supplementary Fig.  1B). Significant differ-
ences in the overall proportions were observed between 
the healthy control group and the cirrhotic group. We 
confirmed that the abundance of Bacteroidetes decreased 
(P < 0.0001); conversely, the abundance of Proteobacteria 
(P < 0.0001) and Actinobacteria (P = 0.033) increased in 
the fecal samples from the cirrhosis group with or with-
out HE (Fig. 1A). In addition, at the family level, Rumu-
nococcaceae (P < 0.0001), Lachnospiraceae (P = 0.0007), 
and Prevotellaceae (P < 0.0001) were depleted, but Ente-
rococcaceae (P = 0.052) and Lactobacillaceae (P = 0.0065) 
levels were elevated (Supplementary Fig.  1A). Alpha 
diversity was determined based on the Chao1, ACE and 
Shannon metrics (Fig.  1B and Supplementary Fig.  1C). 
Compared to the healthy control group, all the cirrhotic 
groups exhibited significant decreases (P < 0.01) in spe-
cies richness (Chao1 and ACE) and diversity indices 
(Shannon). In terms of differences between the cirrhotic 
groups with and without HE, a decrease in the diversity 
indices of the in cirrhotic patients with HE was observed 
(Chao1, P = 0.0014; ACE, P = 0.0009; Shannon, P = 0.025). 
We confirmed the abundance of specific taxa accord-
ing to differences in liver diseases (Fig. 1C). Ruminococ-
caceae (P < 0.0001) and Lachnospiraceae (P < 0.0001) were 
significantly decreased in fecal samples from the cirrhotic 
patient group. Moreover, we also analyzed which species 
varied by patient group, and particular strain in the gut 
microbiota was A. muciniphila (P = 0.0039).

We performed a 16S rRNA gene sequencing analysis 
of fecal samples from patients with cognitive impair-
ment to understand the cognitive impairment symptoms 
in cirrhotic patients. No significant differences in alpha 
diversity or taxon proportions at the phylum and fam-
ily levels were detected between the healthy control and 
cognitive impairment groups (Fig. 1D and E, Supplemen-
tary Fig. 1D, and 1E). Interestingly, we observed that the 
abundance of A. muciniphila was reduced (P = 0.032) in 
the cognitive impairment patient group but not in the 
healthy control group, which was consistent with the 
16S rRNA sequencing results from the fecal samples of 
the cirrhotic patients (Fig. 1F). Hence, a positive correla-
tion (R = 0.015; P = 0.09) was observed between the abun-
dance of A. muciniphila and the MMSE-KC score, which 
is a criterion for cognitive impairment (Fig.  1G). In lin-
ear discriminant effect size analysis (LEfSe) performed to 
confirm differences in bacterial community composition 
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between groups, differences in A. muciniphila accord-
ing to disease were commonly identified in both models 
(Supplementary Fig. 2).

To demonstrate the link between human liver dis-
ease phenomena and gut dysbiosis, we investigated ani-
mal models of liver disease in mice orally administered 

Fig. 1 Cirrhotic patients with hepatic encephalopathy and cognitive impairment patients exhibited a decreased fecal bacterial abundance 
of Akkemansia muciniphila, and which was also identified in animal models. a Taxa summary of bacterial phyla level obtained by 16S rDNA 
sequencing of fecal samples. b Microbial alpha diversity Chao1 in the context of disease progression classifications. **P < 0.01; Wilcoxon rank-sum 
test. c Relative abundances of species with significantly different representations in human groups. Data represent the means ± SEM; **P < 0.01; 
one-way ANOVA. d Relative abundance of bacterial phyla level obtained by 16S rDNA sequencing of fecal samples. e Microbial alpha diversity 
in patients with cognitive impairment. f Relative abundances of A. muciniphila in healthy control and cognitive impairment group. Data represent 
the means ± SEM; *P < 0.05, unpaired t-test. g Pearson’s correlation coefficients, p values, and linear relationships of A. muciniphila relative abundance 
(%) and MMSE-KC score. h Schematic of intervention with DDC diet (red) during the 3 weeks of 4 weeks DDC-induced liver injury animal model. 
i Relative abundance of phylum, family and A. muciniphila in control mice and DDC diet mice. AKK, Akkermansia muciniphila; AKKp, pasteurized 
Akkermansia muciniphila. Data represent the means ± SEM; n ≥ 3; *P < 0.05; unpaired t-test
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3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) (Fig. 1H). 
A gut microbiome imbalance was observed at the phylum 
and family levels, and for specific species, the abundance 
of A. muciniphila decreased (P = 0.07) with the progres-
sion of liver damage through the consumption of the DDC 

diet (Fig.  1I). These results indicate that the abundance 
of A. muciniphila in the gut is likely related to cognitive 
impairment and the progression of liver injury and may be 
an important factor. Interestingly, in an animal model of 
oral DDC administration that mimics human liver disease, 

Fig. 2 Oral administration of A. muciniphila alleviates liver injury and protects intestinal barrier in a mouse model. a Plasma ALT and total bilirubin 
levels. Data represent the means ± SEM; n ≥ 4; **P < 0.01, *P < 0.05; one-way ANOVA. b, c Histological assessment of liver injury with representative 
images of H&E and Masson’s trichrome stained liver sections. Data represent the means ± SEM; n ≥ 3; **P < 0.01, *P < 0.05; one-way ANOVA. Scale 
bar, 200 μm. d, e TUNEL staining in the liver from mouse. Data represent the means ± SEM; n ≥ 3; **P < 0.01 one-way ANOVA. Scale bar, 50 μm. 
f Hepatic mRNA expression of liver genes (Col1a, Tgfβ, Timp1, and α-sma). Data represent the means ± SEM; n ≥ 4; **P < 0.01, * P < 0.05; one-way 
ANOVA. g Histological assessment of colon crypt with representative images of H&E stained colon sections. Data represent the means ± SEM; n ≥ 3; 
**P < 0.01, *P < 0.05; one-way ANOVA. Scale bar, 200 μm. h GI tract dysfunction characterization measured by the colon length. Data represent 
the means ± SEM; n = 3; *P < 0.05; one-way ANOVA. i Immunohistochemical staining of phosphorylated NFκB in the mouse colon. Data represent 
the means ± SEM; n ≥ 3; ****P < 0.0001 one-way ANOVA. Scale bar, 200 μm. j Colon mRNA expression of tight junction-related genes (Zo-1, Occludin). 
Data represent the means ± SEM; n ≥ 4; **P < 0.01, * P < 0.05; one-way ANOVA. k Plasma FD4 (fluorescein isothiocyanate dextran 4) level of the in vivo 
gut permeability assay. Data represent the means ± SEM; n ≥ 4; **P < 0.01; one-way ANOVA
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similar cirrhotic symptoms and cognitive impairment were 
observed. Furthermore, a histological evaluation of liver 
tissue using H&E staining revealed that hepatitis was sig-
nificantly increased (P = 0.018) in the DDC diet group. (Sup-
plementary Fig. 3A and 3B). Notably, we detected neuronal 
cell death in the hippocampus associated with cognitive 
impairment in animal models of DDC-induced hepatocel-
lular injury using IHC staining (Supplementary Fig. 3C and 
3D). We detected damage to the enteric nerve layer with the 
PGP 9.5 antibody, which stains enteric neuronal cells (Sup-
plementary Fig. 3E and 3F). Additionally, cognitive deficits 
due to hippocampal neuronal death were observed in the 
DDC diet group (Supplementary Fig.  3G). Through these 
results, we successfully established an animal model of liver 
disease and identified A. muciniphila depletion, consistent 
with the neuropsychiatric abnormalities observed in human 
patients.

Protective effects of A. muciniphila on gut inflammation 
and hepatocellular injury in a DDC diet animal model
We administered live or pasteurized A. muciniphila to 
C57BL/6 mice fed the DDC diets for 8 weeks to investi-
gate the protective effect of A. muciniphila on liver dam-
age, (Supplementary Fig. 4A). Afterward, we checked the 
plasma ALT and total bilirubin levels in the mice, which 
were consequently decreased in the DDC + A. mucin-
iphila- and DDC + pasteurized A. muciniphila-treated 
groups compared to the DDC group (Fig. 2A). The effect 
of A. muciniphila on alleviating liver injury was con-
firmed by H&E and Masson’s trichrome staining (Fig. 2B 
and C). Additionally, an increase in apoptosis in the DDC 
model was observed using TUNEL staining, confirming 
the effect of treatment with A. muciniphila or pasteur-
ized A. muciniphila on decreasing apoptosis (Fig.  2D 
and E). The mRNA expression of liver genes (Col1a1, 
Tgfβ, Timp1, and α-sma) was also downregulated in both 
the DDC + A. muciniphila- and DDC + pasteurized A. 
muciniphila-treated groups compared to the DDC-only-
treated group (Fig. 2F). The protective effect of A. mucin-
iphila on enteric nerve layer damage was confirmed by 
H&E staining (Fig. 2G).

We also measured the shortening of the colon length, 
which is a measure of gut inflammation, and shortening 
symptoms were alleviated in both the DDC + A. mucin-
iphila- and DDC + pasteurized A. muciniphila-treated 
groups (Fig.  2H). Additionally, the level of phosphoryl-
ated nuclear factor kappa B (pNF-kB) which is a hall-
mark of chronic inflammatory diseases, in the mouse 
colon was measured using IHC staining, and it was sig-
nificantly reduced in both the DDC + A. muciniphila- 
and DDC + pasteurized A. muciniphila-treated groups 
(Fig. 2I). The mRNA expression of the proinflammatory 

cytokine Tnfα was downregulated in plasma. Addition-
ally, a significant decrease (P < 0.05) in the TNFα con-
centration was detected in liver tissue lysate samples. 
(Supplementary Fig. 4B).

We measured the mRNA expression levels of the tight 
junction proteins Zo-1 and Occludin in mouse colon 
tissue to evaluate whether A. muciniphila prevents gut 
leakage. The results showed that the administration of 
DDC led to a decrease in the mRNA expression of the 
tight junction proteins Zo-1 and Occludin in colonic tis-
sue, which was restored by A. muciniphila administra-
tion (Fig. 2J). Fluorescein isothiocyanate-dextran 4 kDa 
(FD4) was applied to the intestinal mucosa and tracked 
systemically in the plasma to quantify gut leakiness, 
and A. muciniphila reduced the systemic translocation 
of FD4 (Fig.  2K). We also measured plasma lipopoly-
saccharide (LPS)/lipopolysaccharide-binding protein 
(LBP) concentrations and found that the administration 
of A. muciniphila reduced (P ≤ 0.05) the plasma endo-
toxin concentrations (Supplementary Fig. 4C).

Furthermore, animal models of liver disease were cre-
ated through bile duct ligation (BDL) surgery to deter-
mine the efficacy of A. muciniphila in various animal 
models of liver injury (Supplementary Fig.  5A). We 
administered A. muciniphila to the BDL surgery model, 
which causes hepatocellular injury and liver cell apop-
tosis, and it subsequently alleviated liver injury (Supple-
mentary Fig. 5B). Similarly, the mRNA expression levels 
of liver genes (Col1a1, Timp1, and α-sma) were lower in 
mice administered A. muciniphila than in those in the 
BDL surgery-only group (Supplementary Fig. 5C). On the 
other hand, the mRNA expression level did not changed.

Reduction in gut inflammation and enteric neuronal cell 
death by A. muciniphila in a DDC diet animal model
We analyzed serotonin level in gut tissues through IHC 
staining using serotonin-specific antibodies to identify 
enteric neuronal cell death and gut inflammation in an 
animal model of liver disease generated by oral admin-
istration of DDC. We observed a significant decrease in 
5-HT (5-hydroxytryptamine) expression in the enteric 
neuronal system (ENS) in the DDC-treated group com-
pared to the control chow group. However, in the group 
treated with A. muciniphila and pasteurized A. mucin-
iphila, we observed increased 5-HT expression. We also 
validated the improvement in gut leakage through struc-
tural analysis of colon tissue sections based on isola-
tion of the enteric nerve layer (Fig. 3A and B). To assess 
whether DDC regulates Iba-1, PGP 9.5 (enteric neural 
marker) and 5-HT expression in the colon, we performed 
5-HT/Iba-1 or Iba-1/PGP9.5 co-immunofluorescence 
staining. In the DDC treatment group, the amount of 
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5-HT decreased and the expression of Iba-1 which indi-
cates activated microglia increased compared that in the 
control group, but the inflammatory response was sig-
nificantly improved in the group treated with A. mucin-
iphila or pasteurized A. muciniphila in combination 

with DDC (Fig.  3C). The graph quantifying the results 
below the representative image confirms this finding 
(Fig.  3E). Furthermore, the increase in Iba-1 expression 
was accompanied by a decrease in PGP9.5 expression 
in the DDC-treated group, and an increase in PGP9.5 

Fig. 3 Serotonin deficiency and activation of neuroinflammatory mechanisms in the gut and brain axis of a liver disease animal model 
and neuronal cell deaths alleviated by A. muciniphila administration. a, b Immunohistochemistry staining of 5-HT in the colon of mice. Quantitative 
analysis of 5-HT-positive cells. Data represent the means ± SEM; representative data of 3 samples; ****P < 0.0001; N.S. = not significant, one-way 
ANOVA. Scale bar, 100 μm. c Immunofluorescent staining of anti-5-HT/anti-Iba-1 in the colon of mice and the fluorescent signals were quantified 
(d) Immunofluorescent staining of anti-Iba-1/anti-PGP9.5 in the colon of mice and the fluorescent signals were quantified (e) Scale bar, 10 μm. 
Data represent the means ± SEM; representative data of 3 samples; ****P < 0.0001; N.S. = not significant, one-way ANOVA. f Scale bar, 10 μm. Data 
represent the means ± SEM; representative data of 3 samples; ****P < 0.0001; N.S. = not significant, one-way ANOVA. g, h Therapeutic effect of AKK 
or pasteurized AKK (AKKp) treated groups in the vagus nerve of mice were analyzed by immunohistochemistry staining. Scale bar, 20 μm. Data 
represent the means ± SEM; representative data of 3 samples; ****P < 0.0001; N.S. = not significant, one-way ANOVA
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Fig. 4 Both BDNF and 5-HT are reduced in DDC only treated group hippocampus, while increased in A. muciniphila treated group. a, b, c 
Co-immunofluorescence staining analysis of anti-5-HT/anti-MAP2 in the hippocampus CA1 region of mice and the fluorescent signals (a, b) 
were quantified (c). Scale bar, 100 μm. Data represent the means ± SEM; representative data of 3 samples; ****P < 0.0001; N.S. = not significant, 
one-way ANOVA. d, e, f, g The immunofluorescence co-staining of anti-BDNF/anti-MAP2 (d, f) and anti-Iba-1/anti-MAP2 (e, g) in the hippocampus 
of the above animals. Scale bar, 100 μm. Data represent the means ± SEM; representative data of 3 samples; ****P < 0.0001; N.S. = not significant, 
one-way ANOVA. h Western blot analysis of prefrontal cortex and hippocampus lysates from the animals treated with DDC only or both treated 
DDC + AKK group or DDC + AKKp group. i Immobility time graph of tail suspension test. Data represent the means ± SEM; n ≥ 11; *P < 0.05, **P < 0.01; 
N.S. = not significant, unpaired t-test. j Cognitive impairment tests of novel objection test and water maze test (k) were performed. Data represent 
the means ± SEM; n ≥ 4; *P < 0.05, **P < 0.01; N.S. = not significant, unpaired t-test
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expression was observed in the group treated with A. 
muciniphila or pasteurized A. muciniphila, confirming 
that A. muciniphila mitigated gut leakage and inflamma-
tion (Fig. 3D and F). Remarkably, immunohistochemical 
staining of the vagus nerve with a 5-HT-specific antibody 
revealed high 5-HT expression in the A. muciniphila and 
pasteurized A. muciniphila treatment groups. This result 
provides direct evidence that A. muciniphila specifi-
cally regulates expression in serotonergic interneurons 
(Fig. 3G and H).

Hippocampal neuronal cell death with cognitive 
impairment in an animal models of liver disease
We measured serotonin levels and the expression of the 
the neuronal marker microtubule associated protein-2 
(MAP2) in the hippocampal brain region to determine the 
importance of the gut-liver-brain axis in animal models 
of liver disease. Surprisingly, the expression of serotonin 
and MAP2 was significantly reduced in the group receiv-
ing DDC orally compared to the control group. Further-
more, the DDC-induced decrease in serotonin and MAP2 
expression were reversed in the group treated with A. 
muciniphila and pasteurized A. muciniphila (Fig.  4A, B, 
and C). Moreover, to determine whether A. muciniphila 
also affects dopamine expression, we examined dopamine 
expression in the substantia nigra of the brain and in the 
gut and vagus ganglia and found that dopamine expres-
sion was reduced by DDC but was not restored by A. 
muciniphila (Supplementary Fig. 6A, S6B, and S6C). The 
vagus nerve is a single neuron that connects the gut-brain 
axis and is referred to as the highway for neurotransmit-
ters produced in the brain and gut [28, 29].

In addition, the levels of BDNF, a molecule that plays 
an important role in cognitive function in the brain, and 
Iba-1, a marker of activated microglia, were measured in 
each group. Similar to previous results, BDNF expres-
sion was reduced in the DDC-treated group (Fig.  4D), 
and Iba-1 expression was significantly increased (Fig. 4E). 
In contrast, quantitative and qualitative analyses con-
firmed that BDNF expression was increased and Iba-1 
expression was decreased in DDC + A. muciniphila- 
or DDC + pasteurized A. muciniphila-treated groups 
(Fig. 4F and G). Similar observations were confirmed by 
immunoblotting. Increased neuronal death and 5-HT 
depletion was observed in the DDC-only group but the 
loss of hippocampal neurons and 5-HT was prevented 
in the DDC + A. muciniphila- or DDC + pasteurized A. 
muciniphila-treated groups (Fig. 4H). We also conducted 
animal behavioral experiments related to cognitive func-
tion and depression to determine the effects of neuronal 
death in the hippocampus and decreased expression of 
BDNF and serotonin and found that the DDC-treated 
group exhibited depression and cognitive dysfunction, 

which was improved in the A. muciniphila and pasteur-
ized A. muciniphila-treated groups (Fig.  4I, J, and K). 
Additionally, the therapeutic effect of A. muciniphila was 
also confirmed in the BDL surgery model (Supplemen-
tary Fig.  6D and 6E). These scientific analyses suggest 
that the inflammatory mechanism and apoptosis of gut 
and brain neurons in animal models of liver disease may 
be regulated by A. muciniphila, which regulates BDNF 
and serotonin expression.

Sarpogrelate inactivates 5HT2A/2B receptors in liver tissue 
but does not affect the 5HT/5HT receptors in the gut 
or brain via the gut-organ axis
Sarpogrelate is a 5-HT2A and 2B receptor antagonist 
that has been shown to inhibit the action of serotonin 
in the body. In the liver, serotonin is synthesized and 
released by platelets and contributes to the develop-
ment of liver injury and portal hypertension in patients 
with cirrhosis [30, 31]. To investigate the inflammatory 
mechanisms and cognitive dysfunction of brain sero-
tonergic neurons ameliorated by increased serotonin 
secretion by A. muciniphila in combination with sar-
pogrelate, we treated the animal model of DDC-induced 
liver injury with sarpogrelate for 5 weeks (Supplementary 
Fig. 7A). Consequently, the effect of sarpogrelate on alle-
viating liver injury was confirmed by H&E staining (Sup-
plementary Fig.  7B), and the mRNA expression of liver 
genes (Col1a, Tgfβ, Timp1, and α-sma) was also down-
regulated in the DDC + sarpogrelate + A. muciniphila- or 
DDC + sarpogrelate + pasteurized A. muciniphila-treated 
groups compared to the group treated without sarpogre-
late (Supplementary Fig.  7C). However, we found that 
sarpogrelate had no effect on the inflammatory mecha-
nisms and cognitive dysfunction, or serotonergic neurons 
in the brain (Supplementary Fig. 8). These results suggest 
the existence of a vagus ganglion-mediated gut-brain axis 
connection and a survival mechanism for serotonergic 
neurons in the hippocampal region of the brain that is 
mediated solely by nonblood neurotransmitters.

The administration of A. muciniphila alleviates liver injury 
by suppressing 5-HT2A/2B receptor expression
To investigate whether A. muciniphila relieves liver injury 
through serotonin receptors, we measured 5-HTR2A/2B 
expression levels in mouse liver tissue (Fig. 5A, C, E, and 
G). The expression of 5-HTR2A/2B was significantly 
increased in the group orally administered DDC com-
pared to the control group. In addition, the increase in 
5-HTR2A/2B expression induced by DDC was reduced 
in the groups treated with A. muciniphila and pasteur-
ized A. muciniphila. The expression of the receptors was 
examined in the liver tissue of a hepatocellular injury 
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mouse model treated with sarpogrelate to determine 
whether the 5-HTR2A/2B antagonist has an effect on 
A. muciniphila-induced expression reduction, (Fig.  5B, 
D, F, and H). Additionally, we confirmed whether 

5-HTR2A/2B expression levels change in cell experi-
ments. When the LX-2 human hepatic stellate cell line 
was treated with sarpogrelate or pasteurized A. mucin-
iphila, the expression levels of 5-HTR2A/2B decreased, 

Fig. 5 5-HT2A/2B receptor expression are increased in DDC only treated group liver tissue, while reduced in A. muciniphila treated group. a, b, 
c, d immunofluorescence staining analysis of anti-5-HTR2A in the liver tissue of mice and the fluorescent signals (a, b) were quantified (c, d). 
Scale bar, 100 μm. Data represent the means ± SEM; n ≥ 3; **P < 0.01, *P < 0.05; one-way ANOVA. e, f, g, h immunofluorescence staining analysis 
of anti-5-HTR2B in the liver tissue of the above mice. The fluorescent signals (e, f) were quantified (g, h). Scale bar, 100 μm. Data represent 
the means ± SEM; n ≥ 3; ***P < 0.005, **P < 0.01; one-way ANOVA
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which was consistent with the results from the animal 
model (Supplementary Fig.  7D). Taken together, these 
results suggest that administration of A. muciniphila or 

pasteurized A. muciniphila can achieve the remission of 
liver injury by inhibiting 5-HTR2A/2B, which contributes 
to liver injury activity by binding to serotonin.

Fig. 6 BDNF/serotonin is associated with the progression of liver cirrhosis. a mRNA expression of 5-HT2A receptor and 5-HT2B receptor, and BDNF 
in human liver biopsy. Western blot analysis of 5-HT2A receptor and 5-HTR2B receptor in human liver biopsy. Data represent the means ± SEM; 
n = 10; **P < 0.01, *P < 0.05. one-way ANOVA. b Concentrations of serotonin and BDNF measured in portal blood of patients with liver cirrhosis. 
Data represent the means ± SEM; n ≥ 12; **P < 0.01, *P < 0.05. one-way ANOVA. c Pearson’s correlation coefficients, P values, and linear relationships 
of serotonin and BDNF concentration, A. muciniphila relative abundance, and HVPG. d Pearson’s correlation coefficients, p values, and linear 
relationships of serotonin and BDNF concentration, A. muciniphila relative abundance, and Child–Pugh score



Page 14 of 18Kang et al. Microbiome          (2024) 12:181 

Validation of the correlation between BDNF/serotonin 
levels and disease progression in human subjects with liver 
fibrosis and cirrhosis
Since A. muciniphila had a positive effect on the gut-
liver-brain axis through the regulation of serotonin and 
the recovery of BDNF levels in the brain, gut and liver 
in the animal model of liver injury, we checked plasma 
serotonin levels in the animal model, which were mark-
edly reduced by DDC and recovered by A. muciniphila 
(Supplementary Fig.  9A). Additionally, the expression 
of 5-HT2A/2B mRNA in mouse liver tissue was con-
firmed (Supplementary Fig.  9B). No significant differ-
ence was observed in 5-HT2A receptor expression, but 
the 5-HT2B receptor expression level was significantly 
decreased by pasteurized A. muciniphila.

We verified the changes in serotonin and BDNF 
according to the exacerbation of liver cirrhosis by 
analyzing portal blood and liver biopsies from human 
subjects (Fig.  6). Biopsy samples from patients with 
liver disease confirmed the mRNA expression of the 
5-HT2A/2B receptor and BDNF (Fig. 6A). The expres-
sion of the 5-HT2A receptor was increased in patients 
with stage 2 hepatitis compared with patients with 
fatty liver disease (stage 1). However, a reduction was 
observed in stage 3 patients or patients with advanced 
fibrosis (cirrhosis). In contrast, the 5-HT2B receptor 
was activated and its levels were significantly increased 
in stage 3 patients and patients with severe cirrhosis. 
Similar observations were confirmed by immunob-
lotting. 5-HT2A receptor expression increased from 
stage 1 to stage 2 and decreased in stage 3. Addition-
ally, 5-HT2B receptor expression increased as the stage 
progressed (Fig.  6A). We found that BDNF steadily 
decreases with the progression of liver disease, a pat-
tern that was consistent with findings from patient with 
liver disease and various animal models of liver disease 
(Fig.  6B). The hepatic portal blood we sampled was 
associated with portal hypertension, a common symp-
tom in patients with hepatopathy, which allowed us to 
specifically identify the increase in serotonin associated 
with increased blood cells [32].

We confirmed the correlation between HVPG, sero-
tonin, BDNF, and A. muciniphila abundance and vali-
dated the association with liver cirrhosis (Fig.  6C). A 
positive correlation was observed between serotonin 
concentrations and HVPG, whereas a negative correla-
tion was observed with BDNF concentrations. In addi-
tion, a negative correlation was observed between the 
HVPG and the relative abundance of A. muciniphila, 
which was confirmed to have a positive effect on the 
liver and cognitive function in animal models. These 
results were the same even when the patient group was 
divided based on Child–Pugh score (Fig.  6D). Hence, 

the current results suggest that BDNF is another 
important molecule in addition to serotonin in human 
liver disease progression and cirrhosis.

Discussion
We observed a decrease in the abundance of Lachno-
spiraceae and Ruminococcaceae and a change in alpha 
diversity in the gut microbiota of patients with liver cir-
rhosis, as previously reported, but no significant change 
was observed in the gut microbiome of subjects with 
simple cognitive impairment. Interestingly, we found a 
common A. muciniphila depletion in subjects with cir-
rhosis and cognitive impairment. Several studies have 
reported preventive and protective effects against cogni-
tive impairment occurring in neuropsychiatric disorders 
through supplementation with A. muciniphila [33, 34]. 
Cognitive dysfunction caused by hepatic encephalopathy, 
a major complication of liver cirrhosis, is manifested by 
the disruption of the gut-liver-brain axis, and we hypoth-
esized that A. muciniphila depletion is strongly corre-
lated with liver disease and cognitive function [35].

Prior to validation in animal models, a plan to induce 
liver disease by administering a DDC diet was established 
and evaluated to mimic the state of cognitive impairment 
caused by liver injury. Considering the effect on the gut 
microflora, liver damage was induced by diet rather than 
drugs, and the occurrence of disorders in the gut-liver-
brain axis and a decrease in the abundance of A. mucin-
iphila were confirmed to indicate its suitability for use as 
an animal model. In several studies, the evaluation and 
efficacy of A. muciniphila in treating metabolic diseases 
and diabetes were verified, and the effect of pasteuriza-
tion was confirmed [36, 37]. Pasteurization can be effec-
tive in the host, as it can increase the accessibility of 
certain bacterial compounds that have a positive effect. 
Interestingly, in the animal experiments, the hepatocyte 
injury induced by biliary injury was effectively inhibited 
by pasteurized A. muciniphila treatment. Surprisingly, 
serotonin (5-HT), which is associated with cognitive 
function, was detected in the enteric plexus and vagus 
nerve in a mouse model of DDC-induced hepatocellular 
injury. Although several other neurotransmitters were 
also depleted, serotonin was the only neurotransmit-
ter whose levels were restored by reintroduction of A. 
muciniphila. The mechanism by which 90% of the seroto-
nin delivered to the brain is produced by enteric neurons 
and transmitted to the brain via the vagus nerve indicates 
that the liver, gut, and brain actively interact through 
neurotransmitter and neurohormone secretion from the 
vagus nerve. The same effect was observed on the animal 
model of BDL surgery-induced liver injury.

In particular, the reduction in Tnfα levels in plasma was 
greater after treatment with pasteurized A. muciniphila, 
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suggesting that inflammation caused by the bacterial 
compounds was reduced. Further investigation of the 
detailed molecular mechanism by which pasteurization 
and pasteurization-produced bacterial compounds alle-
viate liver injury is necessary.

Previous studies have shown that serotonin and sero-
tonin receptor signaling are correlated with liver disease 
[38]. Hepatic steatosis can be improved by reducing 
hepatic 5-HTR2A signaling [39]. Additionally, 5-HTR2B 
stimulation of activated hepatic stellate cells plays an 
important role in directing the balance between cell 
regeneration and fibrosis, and antagonism of 5-HTR2B 
attenuates fibrosis [40]. Overall, the serotonin signaling 
system in the liver plays an important role in liver injury 
and cell regeneration and consequently its modulation 
can be used as a therapeutic approach [41]. However, the 
mode of action of this serotonin signaling system and the 
identification of regulatory factors need further confir-
mation in the future.

We verified that the administration of A. muciniphila 
could act as one of these modulators. A. muciniphila 
antagonized the expression of 5-HTR2A/2B in the liver 
and alleviated liver injury. Liver tissue mRNA expres-
sion did not reflect the exact expression, but histological 
evaluation through immunofluorescence staining con-
firmed a tendency for the expression of these receptors 
to decrease.

Moreover, in liver biopsies collected from patients 
with liver disease, 5-HTR2A expression was elevated in 
patients with hepatitis and decreased in patients with cir-
rhosis. Considering that 5-HTR2A contributes to hepatic 
steatosis, we confirmed that 5-HTR2A is activated until 
the hepatitis stage, after which its activity decreases as 
the liver enters cirrhosis, and then fibrosis is activated 
through the increased expression of 5-HTR2B. Consist-
ent with the expression of serotonin receptors, serotonin 
levels in the portal vein increases with the progression of 
cirrhosis. The importance of serotonin in the pathogen-
esis of portal hypertension has been highlighted in pre-
vious studies and is strongly linked to reversible portal 
systemic encephalopathy [42, 43]. In addition, we con-
firmed that the level of the BDNF molecule, which is 
linked to the cognitive impairment commonly found in 
cirrhotic patients, was significantly reduced in patients 
with cirrhosis and hepatitis.

Regarding the causal relationship between brain cog-
nitive impairment induced by liver injury and A. mucin-
iphila, to date, no study has shown this causal association 
with strong evidence. Few reports have indirectly proven 
the relationship between brain cognitive impairment 
induced by liver injury and A. muciniphila [12, 44]. In 
patients with sarcopenic cirrhosis, a decreased propor-
tion of A. muciniphila is correlated with unfavorable 

outcomes [45]. In addition, A. muciniphila was associ-
ated with decreased neuroinflammation in mice colo-
nized after fecal microbiota transplantation from humans 
with cirrhosis [46]. Similarly, Verrucomicrobiaceae, to 
which A. muciniphila belongs, was correlated with cog-
nitive improvement and reduced inflammation after fecal 
microbiota transplantation [47]. In our study, we showed 
for the first time the therapeutic effect of A. muciniphila 
on cognitive dysfunction and liver fibrosis and verified 
this effect through animal experiments and analyses of 
human tissue.

Microbiota-derived metabolites have been reported to 
be key regulators of various diseases [48]. A. muciniphila 
is also associated with disease control through metabo-
lites [49]. In our study, administration of A. muciniphila 
recovered the levels of proinflammatory cytokines, endo-
toxin (LPS and LBP), serotonin associated cognitive func-
tion, and liver injury, suggesting that A. muciniphila acts 
as a cornerstone in regulating the gut-liver-brain axis.

Furthermore, after oral administration of A. mucin-
iphila to an animal model of liver injury, RNA analysis of 
liver tissue revealed increased expression of various mol-
ecules that play important roles in neuroplasticity, with 
BDNF identified as the key molecule. This protein is an 
overlapping molecule that has been identified in patients 
with hepatic encephalopathy and is associated with liver 
disease in humans and animals. Taken together, the iden-
tification of the regulation of the serotonin and BDNF 
molecules by A. muciniphila suggests novel molecular 
pharmacology for identifying the mechanisms of micro-
bial therapy. Overall, we suggest that A. muciniphila may 
be beneficial for patients with liver disease and cognitive 
impairment.
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patients. (a) Plasma ALT and AST levels in human groups. Data represent 
the means ± SEM; **P < 0.01, *P < 0.05; one-way ANOVA. (b) Relative 
abundance of bacterial family level obtained by 16S rDNA sequencing 
of cirrhotic patients fecal samples. (c) Microbial alpha diversity (ACE 
and Shannon) in cirrhotic patients fecal samples. *P < 0.05, **P< 0.01; 
Wilcoxon rank-sum test. (d) Relative abundance of bacterial family level 
obtained by 16S rDNA sequencing of cognitive impairment patients 
fecal samples. (e) Microbial alpha diversity Shannon in cognitive impair-
ment patients fecal samples. Wilcoxon rank-sum test. Supplementary 
Fig. 2. Linear discriminant effect size analysis results in cirrhotic patients 
and cognitive impairment patients. (a) Histogram of the linear discrimi-
nant analysis (LDA) scores and taxonomic representation differentially 
abundant in cirrhotic patients without HE, cirrhotic patients with HE 
and healthy subjects. (b) Histogram of the LDA scores and taxonomic 
representation differentially abundant in cognitive impairment patients 
and healthy subjects. Supplementary Fig. 3. Gut-liver-brain axis damage 
and cognitive decline in a liver disease mouse model. (a, b) Histological 
assessment of liver injury with representative images of H&E and Mas-
son’s trichrome stained liver sections. Data represent the means ± SEM; 
n ≥ 3; *P < 0.05, unpaired t-test. Scale bar, 200 μm. (c, d) Representative 
images of immunohistochemistry staining of TH in the hippocampus 
region of mice and quantitative analysis of TH-positive cells. Data 
represent the means ± SEM; representative data of 3 samples;****P < 
0.0001; unpaired t-test. Scale bar, 200 μm (e, f ) Representative images 
of immunohistochemistry staining of TH in the colon region of mice 
and quantitative analysis of TH-positive cells. Data represent the means 
± SEM; representative data of 3 samples; ****P < 0.0001; unpaired t-test. 
Scale bar, 100 μm (g) Cognitive impairment tests of novel objection test 
and t-maze test were performed. Data represent the means ± SEM; n 
≥ 6; **P < 0.01; N.S. = not significant, unpaired t-test. Supplementary 
Fig. 4. Effects of A. muciniphila on Tnfα and gut permeability in the DDC 
mouse model. (a) Schematic of study design. Mice was intervention 
with antibiotics or vehicle control during the 4 weeks. And then, mice 
were placed on normal chow or DDC diet for 8 weeks with oral A. 
muciniphila (live or pasteurization) administration. (b) Hepatic mRNA 
expression of Tnfα. TNFα concentrations in liver tissue and plasma a 
CBA kit was used to measure the levels of cytokines. Data represent the 
means ± SEM; n ≥ 4; *P < 0.05, **P < 0.01; one-way ANOVA. (c) Plasma 
lipopolysaccharide and lipopolysaccharide-binding protein concentra-
tions in the DDC mouse model. Data represent the means ± SEM; n ≥ 
4; *P < 0.05; one-way ANOVA. Supplementary Fig. 5. Oral A. mucin-
iphila administration alleviates liver damage in BDL mouse model. (a) 
Schematic of study design. Mice underwent bile duct ligation surgery, 
and after 5 days of recovery, pasteurized A. muciniphila was orally 
administered. (b) Histological assessment of liver injury with representa-
tive images of H&E and Masson’s trichrome stained liver sections (c) 
Hepatic mRNA expression of liver genes (Col1a, Tgfβ, Timp1,and α-sma). 
Data represent the means ± SEM; n = 3; **P< 0.01, *P < 0.05; one-way 
ANOVA. Supplementary Fig. 6. A. muciniphila induces dopaminergic 
neuronal loss and motor dysfunctions in mice while restores seroton-
ergic neurons in BDL surgery mice model. (a) Representative images of 
immunohistochemistry staining of TH in the SN region (upper), colon 
(middle) and vagus nerve (bottom) of mice and quantitative analysis of 
TH-positive cells (b). Data represent the means ± SEM; representative 
data of 3 samples; ****P < 0.0001; one-way ANOVA. Scale bar, 200 μm 
(upper), 100 μm (middle) and 50 μm (bottom). (c) Motor behavioral 
assay of nest building tests were performed. Data represent the means 
± SEM; n ≥ 4; *P < 0.05, **P < 0.01; N.S. = not significant, unpaired t-test. 
(d) NeuN, 5-HT and Iba-1 staining in mouse hippocampus region by 
immunohistochemistry. Scale bar, 100 μm (e) Data represent the means 
± SEM; representative data of 3 samples; ****P < 0.0001; one-way 
ANOVA. Supplementary Fig. 7. Sarpogrelate treatment enhances allevia-
tion of liver injury by A. muciniphila in chronic hepatocellular injury 
mice model. (a) Schematic of study design. Mice was intervention with 
antibiotics or vehicle control during the 1 weeks. And then, mice were 
placed on normal chow or DDC diet for 3 weeks with oral A. muciniphila 
(live or pasteurization) and sarpogrelate (30 mg/kg) administration. 
(b) Histological assessment of hepatocyte injury with representative 
images of H&E stained liver sections. Scale bar, 200 μm. (c) Hepatic 
mRNA expression of liver genes (Col1a, Tgfβ, Timp1,andα-sma). Data 

represent the means ± SEM; n = 5; **P < 0.01, *P < 0.05 compared to DDC 
group. ##P < 0.01, #P < 0.05 compared to sarpogrelate treated group; 
one-way ANOVA. (d) mRNA expression of 5-HT2A receptor and 5-HT2B 
receptor in LX-2 cells. Data represent the means ± SEM; n = 4; *P < 0.05; 
one-way ANOVA. Supplementary Fig. 8. Sarpogrelate blocks the restorative 
effect of A. muciniphilain chronic hepatocellular injury mice model. (a, b, c, 
d, e, f ) Immunofluorescent staining of anti-5-HT/anti-MAP2 (a), anti-BDNF/
anti-MAP2 (c) and anti-Iba-1/anti-MAP2 (e) in the hippocampus of mice 
and fluorescent signals were quantified (b, d, f ). Data represent the means 
± SEM; representative data of 3 samples;****P < 0.0001; N.S. = not signifi-
cant, unpaired t-test. Scale bar, 100 μm. Supplementary Fig. 9. Plasma sero-
tonin concentration and liver tissue 5-HT2A/2B receptor mRNA expression 
levels in DDC mouse model. (a) Concentrations of serotonin measured in 
cardiac and portal vein blood. Data represent the means ± SEM; n ≥ 3; **P 
< 0.01, *P < 0.05; one-way ANOVA. (b) mRNA expression of 5-ht2a receptor 
and 5-ht2b receptor in mouse liver. Data represent the means ± SEM; n = 
5; **P < 0.01, *P < 0.05; N.S. = not significant, one-way ANOVA.
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