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Abstract 

Background Despite effective antiretroviral therapy, people with HIV (PWH) experience persistent systemic inflam-
mation and increased morbidity and mortality. Modulating the gut microbiome through fecal microbiota trans-
plantation (FMT) represents a novel therapeutic strategy. We aimed to evaluate proteomic changes in inflammatory 
pathways following repeated, low-dose FMT versus placebo.

Methods This double-masked, placebo-controlled pilot study assessed the proteomic impacts of weekly FMT ver-
sus placebo treatment over 8 weeks on systemic inflammation in 29 PWH receiving stable antiretroviral therapy (ART). 
Three stool donors with high Faecalibacterium and butyrate profiles were selected, and their individual stools were 
used for FMT capsule preparation. Proteomic changes in 345 inflammatory proteins in plasma were quantified using 
the proximity extension assay, with samples collected at baseline and at weeks 1, 8, and 24. Concurrently, we charac-
terized shifts in the gut microbiota composition and annotated functions through shotgun metagenomics. We fitted 
generalized additive models to evaluate the dynamics of protein expression. We selected the most relevant proteins 
to explore their correlations with microbiome composition and functionality over time using linear mixed models.

Results FMT significantly reduced the plasma levels of 45 inflammatory proteins, including established mortal-
ity predictors such as IL6 and TNF-α. We found notable reductions persisting up to 16 weeks after the final FMT 
procedure, including in the expression of proteins such as CCL20 and CD22. We identified changes in 46 proteins, 
including decreases in FT3LG, IL6, IL10RB, IL12B, and IL17A, which correlated with multiple bacterial species. We 
found that specific bacterial species within the Ruminococcaceae, Succinivibrionaceae, Prevotellaceae fami-
lies, and the Clostridium genus, in addition to their associated genes and functions, were significantly correlated 
with changes in inflammatory markers.

Conclusions Targeting the gut microbiome through FMT effectively decreased inflammatory proteins in PWH, 
with sustained effects. These findings suggest the potential of the microbiome as a therapeutic target to mitigate 
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inflammation-related complications in this population, encouraging further research and development of microbi-
ome-based interventions.

Keywords HIV, Systemic inflammation, Fecal microbiota transplant, Proteomics, Shotgun metagenomics, 
Microbiome

Introduction
Although antiretroviral therapy (ART) has significantly 
improved outcomes, people with HIV (PWH) still exhibit 
persistently high levels of inflammatory markers, a fac-
tor linked to increased mortality risk [1, 2]. Additionally, 
PWH exhibit distinct alterations in their gut microbi-
ome composition and function, which seem to sustain 
immune dysfunction [3–6]. This raises the following 
question: can we modify the microbiome in PWH to 
reduce inflammation?

In HIV/AIDS, CD4 + T cells, especially those produc-
ing IL17, are significantly depleted in the gut lamina pro-
pria. This selective loss of IL17-producing cells, which 
are crucial for maintaining mucosal barriers, leads to a 
“leaky gut,” prompting bacterial translocation and sys-
temic inflammation [7]. The gut microbiome plays a key 
role in this process via various mechanisms. For instance, 
certain microbes, such as Bifidobacteria, may help pre-
vent mucosal defects, reduce microbial translocation, 
and support immune recovery. In contrast, others, such 
as Succinivibrionaceae and Erysipelotrichaceae, may 
counteract pro-inflammatory molecules and accumulate 
antiviral compounds [8, 9]. Notably, the Lachnospiraceae 
and Ruminococcaceae families, which are significant 
butyrate producers known for maintaining enterocyte 
barrier integrity and promoting immunotolerance, are 
often depleted in PWH [10].

However, the microbiome has proven to be a challeng-
ing therapeutic target in this population [11]. Previous 
interventions, including dietary changes [12], prebiotics 
[13], probiotics [13, 14], and nonabsorbable antibiotics 
such as rifaximin [15, 16], have shown limited success in 
modulating the microbiome or reducing inflammation, 
indicating their resilience to such treatments. Therefore, 
we conducted a placebo-controlled pilot study with 30 
PWH on stable ART. This double-masked study involved 
randomizing participants to receive either weekly 
fecal microbiota capsules or a placebo for 8  weeks and 
selecting stool donors for their butyrate-enriched, anti-
inflammatory microbiota profile (a high proportion of 
Faecalibacterium and a low proportion of Prevotella). The 
results suggested that fecal microbiota transplantation 
(FMT) could mitigate HIV-related dysbiosis, increase gut 
microbiota alpha diversity, and achieve transient donor 
microbiota integration, particularly in those with recent 
antibiotic use. FMT notably increased Lachnospiraceae 

and Ruminococcaceae levels and improved intestinal 
fatty acid-binding protein levels [17], underscoring its 
potential benefits for intestinal health and the necessity 
for further research in this domain.

To extend our understanding of the impact of FMT 
on inflammation in PWH, we analyzed the effects of 
FMT on 345 inflammatory proteins in plasma. We also 
explored host-microbiome interactions, identifying the 
main correlations between inflammatory proteins and 
gut microbiota composition and function.

Materials and methods
Study design and setting
This is a post hoc analysis of a randomized, double-
masked, placebo-controlled pilot study (REpeated Fecal 
microbiota REStoration in HIV—REFRESH-), origi-
nally designed to test the safety and tolerability of FMT 
in PWH on ART, with secondary outcomes including 
changes in CD4 + and CD8 + T cells, CD4/CD8 ratio, 
gastrointestinal tolerance, and variations in microbi-
ota composition and donor microbiota engraftment in 
recipients [17]. Participants were recruited from the HIV 
unit of Hospital Universitario Ramón y Cajal in Madrid, 
Spain, between January 27 and June 29, 2017. Partici-
pants were PWH on stable ART with a plasma HIV RNA 
concentration < 37 copies/mL for at least 48  weeks and 
a CD4/CD8 ratio < 1 as an indicator of ongoing immune 
activation [18]. The exclusion criteria were age < 18 years, 
pregnancy, planned use of chemotherapy or antibiotics, 
neutropenia < 500 cells/µL or CD4 counts < 350 cells/
µL, active infections, or dysphagia. The original study 
publication details the data collection, donor screening, 
FMT preparation, randomization, and sample process-
ing. As previously described, we selected three donors 
whose stools were in the highest quartile for fecal Bac-
teroides and Faecalibacterium abundance and butyrate 
concentrations, and in the lowest quartile for Prevotella 
abundance, without pooling their samples for capsule 
preparation [17].

Proteomic profiling of circulating inflammatory proteins
Quantification and quality control
A total of 116 EDTA plasma samples kept at − 80 °C were 
thawed and vortex-mixed before the plate was loaded 
for proteomic analysis. We used the Olink inflamma-
tion panel to measure 368 inflammatory proteins (Olink 
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Proteomics, Uppsala, Sweden), 115 out of 116 of which 
passed quality control, and 345 out of the 368 proteins 
analyzed were detected in more than 50% of the samples. 
A protein was considered undetected if its expression was 
below the detection limit in more than 50% of the sam-
ples in both the FMT and placebo groups. To mitigate 
batch effects across the two necessary runs, we ensured 
an equal representation of samples from both the placebo 
and FMT groups in each run, and all samples from a sin-
gle participant were analyzed within the same batch. We 
measured protein concentrations using proximity exten-
sion assay (PEA) technology, and the results are expressed 
as normalized protein expression (NPX) values, a relative 
protein quantification unit on a log2 scale [19].

Functional prediction of the proteomic analysis
To infer the most relevant pathways associated with the 
46 differentially expressed inflammatory proteins (DEIPs) 
identified during FMT, we uploaded the list to http:// 
metas cape. org [20] using the Express Analysis mode. 
This tool performs enrichment analysis compared with 
different RNA-seq and proteomic analysis databases. The 
METASCAPE network was obtained using Cytoscape. 
The software compares only previously demonstrated 
interactions in the protein‒protein interaction network. 
The Molecular Complex Detection (MCODE) algorithm 
[21] was used to infer molecular complexes from more 
extensive protein networks.

Shotgun metagenomics
Sample collection and DNA extraction
Fecal samples were stored in Omnigene Gut Kits (DNA 
Genotek), which contain a stabilizer solution that pre-
serves the composition of fecal microbial community 
structure DNA for microbiome analysis better than with 
the RNAlater and Tris–EDTA kits [22, 23]. Fecal samples 
were aliquoted and cryopreserved at − 80 °C until use.

Library preparation and sequencing
DNA extraction from fecal samples was performed using 
the MagNA Pure LC Instrument, a robotic workstation, 
and the MagNA Pure LC DNA Isolation Kit III (Roche). 
Subsequent preparation of DNA libraries was performed 
according to the protocols outlined in the Illumina DNA 
Prep Reference Guide 1,000,000,025,416–10 utilizing the 
Illumina DNA Prep Kit (Illumina, reference 20,060,059). 
The input DNA was standardized to a concentration of 
0.2  ng/µl before initiating the library preparation pro-
tocol. During the multiplexing stage, Nextera DNA CD 
Indexes (Illumina, reference 20,018,708) were used. The 
library size was refined per the Illumina Library Prep 
protocol stipulations, employing Sample Purification 

Beads provided within the Prep Kit. The library’s size 
distribution was confirmed using the Fragment Analyzer 
48-Capillary Array alongside the HS NGS Fragment Kit 
(1–-6000  bp) (Agilent, reference DNF-474–0500). The 
finalized libraries were sequenced using the NextSeq 
2 × 150 bp paired-end reagent kit (NextSeq 500/550 High 
Output Kit v2.5, reference 20,024,908) on the MiSeq 
Sequencer. This process was conducted according to the 
manufacturer’s instructions (Illumina MiSeq reference 
guide) at the FISABIO Sequencing and Bioinformatics 
Service in Valencia, Spain.

Preprocessing and quality control
All the sequences used in this analysis passed qual-
ity control, during which the length and quality of the 
reads were filtered using Trimmomatic v0.33 (paired-end 
method, minimum length of 100, average quality of 30) 
[24]. We identified outliers using seqkit v0.10.1 [25].

Taxonomic annotation and quantification of bacterial 
abundance
Shotgun data from 84 samples (54 FMT at weeks 0, 1, 8, 
and 24, and 30 placebo at weeks 0, 8, and 24) were ana-
lyzed using the marker gene taxonomic sequence clas-
sifier mOTUs v3.0.1 with default parameters (marker 
genes cutoff -g 3 and minimum alignment length -l 70 for 
higher sensitivity) [26].

Assembly and quantification of contig coverage
MetaSPAdes (SPAdes genome assembler v3.15.2 in 
metaSPAdes mode) was used for the novo assembly of 
the trimmed reads [27]. Once the contigs were assem-
bled, CoverM v0.6.1 (https:// github. com/ wwood/ Cov-
erM) was used to calculate the abundance of each of 
these fragments. The coverage of each contig was quanti-
fied as RPKM (reads per kilobase of transcript per mil-
lion reads mapped).

Functional annotation
eggNOG-mapper v2.1.11 was used for functional annota-
tion [28] with the default parameters specified in the egg-
NOG-mapper web server (http:// eggnog- mapper. embl. 
de/): 0–001 e-value; 60 bit-score; 40 identity percentage; 
20% coverage; and 20% subject coverage. The search and 
annotation steps in eggNOG-mapper were performed 
using Diamond in blastx mode (-m diamond) [29] on 
proteins predicted by Prodigal v2.6.3 (–genepred prodi-
gal) [30].

Functional profiling
All scripts for processing eggNOG-mapper results and pro-
ducing functional profiles and abundance matrices (gene 

http://metascape.org
http://metascape.org
https://github.com/wwood/CoverM
https://github.com/wwood/CoverM
http://eggnog-mapper.embl.de/
http://eggnog-mapper.embl.de/
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counts and KEGG ortholog terms) were implemented de 
novo in Python 3.

Taxonomic assignment of KEGG orthologs
To assign taxonomies to the contigs with genes that drive 
a signal for a KO term, we employed MMseqs2 taxono
myv.0b27c9d7d7757f9530f2efab14d246d268849925 [31]. 
The contig taxonomy workflow allowed us to perform 
a search against Genome Taxonomy Database (GTDB) 
v220 [32] and compute the lowest common ancestor with 
the 2bLCA algorithm. For each KO term, the assigned 
taxonomies were counted and ranked according to their 
frequency of occurrence. This ranking highlights the 
most prevalent taxa associated with relevant functions 
within the dataset.

Statistical analysis
Analysis of DEIPs for each week was conducted using the 
olink_ttest function, which performs individual t-tests 
for each assay between the FMT and placebo arms. To 
fully leverage the longitudinal experimental design of our 
study, we also used generalized additive mixed models to 
detect DEIPs overall between FMT and Placebo, assum-
ing a Gaussian distribution of the outcome variable, NPX, 
using the R package mgcv [33]. This approach was chosen 
to account for the possibility that protein levels might not 
change at a constant rate (nonlinear) and vary between 
groups over time. We specified the model as follows:

In this model, “group” is included as a fixed effect, cap-
turing the overall difference between the treatment groups; 
“s(week, k = 4)” captures the smooth effect of time (week) 
across all patients, irrespective of the group; “s(week, k = 4, 
by = group)” allows the smooth effect of time (week) to vary 
by group, modeling the interaction between group and week 
and allowing different time trends within each group; and 
“s(patientid, bs = “re”)” specifies a random effect for individ-
ual patients, accounting for repeated measures within each 
patient. Restricted maximum likelihood (REML) was used 
as a smoothing parameter estimation method.

To compute correlations between changes in DEIPs and 
bacterial abundances or bacterial genes and annotated 
functions over time, we used linear mixed effects models 
with the lme4 [34] and lmerTest [35] packages, introducing 
the treatment group and the timepoint as covariates:

NPX ∼ group + s(week, k = 4)

+ s(week, k = 4, by = group)

+ s(patientid, bs =
′′

re
′′

)

NPX ∼ bacterial−feature+ group+ week+ (1|patientid)

This method was chosen because it effectively man-
ages the correlations in our longitudinal data and cap-
tures the linear relationships we needed to identify 
potential bacterial drivers of inflammation. We repre-
sented in networks the significant interactions between 
bacterial abundances or their genes and functions with 
the DEIPs over time using the igraph package [36]. 
Analyses were adjusted for false discovery rate (FDR) 
when indicated using the “p.adjust” function in R with 
the method set to “BH” (Benjamini-Hochberg), and the 
FDR threshold was set at 0.05.

Study approval
The research project was authorized by the Ethics 
Committee (approval number: 165/16), and all par-
ticipants provided informed consent before the study 
procedures were initiated. Patients who could not pro-
vide informed consent or had oral consent documented 
with written consent from a representative were not 
included in the study. Clinical Trials Registry Identifi-
cation Number (clinicaltrials.gov): NCT03008941.

Results
General characteristics of the study population
We recruited 30 participants who were randomly 
divided into two groups: the treatment (FMT) group 
and the placebo group. Samples were collected from 
both groups at 0 (pre-intervention), 1 (after first FMT), 
8 (1  week after last FMT), and 24 (16  weeks after last 
FMT) weeks. The characteristics of the study popula-
tion are summarized in Table S1. In summary, 29 par-
ticipants completed the evaluations. The participants 
in the study represented a population of middle-aged 
men who had sex with men and had well-controlled 
HIV infection. The safety and clinical events during the 
study are described in a previous publication.

The FMT and placebo groups were balanced regard-
ing ART regimen distribution: 5 vs. 5 participants were 
on NNRTI-based triple ART, 1 vs. 2 on PI-based triple 
ART, and 9 vs. 8 on INSTI-based triple ART (p = 0.822). 
Regarding specific drug use during the study, only two 
patients (R3 in the placebo group and R24 in the FMT 
group) were on omeprazole from baseline and contin-
ued its use throughout the study. Only one patient (R24 
in the FMT group) received statins during the study. 
Seven subjects received antibiotic treatment in the 
14 weeks before the intervention, of whom three were 
in the FMT arm. However, as shown in our previous 
study, the use of antibiotics after the baseline did not 
introduce drastic changes in the microbiota. Further-
more, there were no notable differences in food con-
sumption or intake of energy or nutrients between the 
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groups [17]. The mean alcohol intake was 9.3 vs. 7.6 g/
day (p = 0.479).

Fecal microbiota transplantation (FMT) induces changes 
in the expression pattern of plasma inflammatory proteins
FMT resulted in differences in the expression patterns of 
plasma inflammatory proteins assessed by PEA. A heat-
map visualization (Fig. 1) revealed a complex yet distinct 
shift from a more inflammatory state at baseline (week 0) 
toward a less inflammatory profile sustained up to week 
24 in the FMT group compared to the placebo group.

Unsupervised hierarchical clustering of the 345 pro-
teins assessed (lines in the heatmap of Fig.  1) identified 
two major clusters of coregulated proteins. To understand 
the effect of the treatment over time, we clustered the 
columns in the heatmap by group and week. In the FMT 
cohort, we found a marked reduction in the expression of 
inflammatory markers posttreatment (from higher NPX 
values, in red, to lower values, in blue), with the most 
pronounced decrease evident at week 1, which persisted 
after FMT was discontinued. In contrast, the expression 
of inflammatory proteins in the placebo group did not 
decrease over time (from lower NPX values in blue to 
higher values in red). This finding suggested that the FMT 
intervention had a sustained anti-inflammatory effect.

Then, we assessed the impact of FMT on protein 
expression by comparing the number of DEIPs in the 
FMT group with that in the placebo group at baseline 
and after treatment (weeks 1, 8, and 24). Figure 2 shows 
a decrease in the number of overexpressed inflammatory 
proteins in the FMT group relative to the placebo group, 
from 250 proteins at week 0 to 174 at week 1, 149 at week 
8, and 75 at week 24. The FMT and placebo groups ini-
tially had the same number of differentially expressed 
proteins. By week 24, however, the FMT group had 12 
underexpressed versus two overexpressed proteins com-
pared to the placebo group, suggesting that FMT may 
progressively reduce inflammation over time.

Longitudinal analysis of protein expression revealed 
46 proteins differentially expressed after FMT that are 
commonly implicated in cytotoxicity, cytokine stimulation, 
and immune cell recruitment to the infection site
To discern proteins strongly influenced by the inter-
vention, we used generalized additive mixed models 
(GAM). This approach was chosen because of its flex-
ibility in modeling variables and the nonlinear distribu-
tion of protein levels between groups and over time. 
Notably, no significant alterations in protein expres-
sion levels were observed in the placebo arm, except for 

Fig. 1 Heatmap showing the expression levels of plasma inflammatory proteins measured by the proximity extension assay during follow-up. 
A total of 345 proteins were analyzed in biologically independent samples from 14 individuals in the FMT group and 15 in the placebo group. 
Unsupervised clustering analysis of the 345 proteins detected is shown in the rows. Supervised clustering analysis of independent observations 
per patient in the placebo (green) or FMT (purple) arms and at different time points (weeks in blue) are shown in columns. The unit of protein 
expression is scaled normalized protein expression (NPX)



Page 6 of 19Díaz‑García et al. Microbiome  (2024) 12:214

CTSC. Conversely, in the FMT group, for an exploratory 
p value threshold < 0.10, the analysis revealed 46 DEIPs, 
as detailed in Table S2 and Supplemental Figs. 1-3. Those 
with the strongest statistical significance are illustrated in 
Fig. 3 to evaluate their dynamics over time. FMT induced 
a pronounced decrease in the serum levels of 45 out of 
the 46 investigated proteins, which included pro-inflam-
matory and regulatory factors. This finding suggested a 
broad immunomodulatory effect of FMT. Interestingly, 
Persephin (PSPN), a neurotrophic factor that primarily 
supports the survival and differentiation of specific neu-
ronal populations, was the sole protein whose expression 
increased post-FMT. A general description of the main 
functions of the 46 DEIPs is provided in Table S3.

Next, we conducted a network analysis using 
METASCAPE to explore the biological functions of the 
46 DEIPs, as summarized in Fig. 4A. The central nodes 
within the network highlight proteins involved in simi-
lar functions, depicted by different colors, and their 
connections, depicted by purple edges. The highlighted 
pathways included cytokine‒cytokine receptor interac-
tion, IL10 signaling, and IL6 signaling pathways. These 
factors are crucial for immune regulation, suggesting 
that FMT may influence innate and adaptive immune 
responses in PWH. The occurrence of pathways such 
as T-cell modulation in pancreatic cancer and the 

regulation of tumor necrosis factor production indicate 
that FMT has a profound effect on systemic immune 
functions, potentially beyond gastrointestinal physi-
ology. The central, highly interconnected nodes (e.g., 
cytokine interactions, MAPK signaling) suggest that 
these pathways are pivotal hubs in the network altered 
by FMT. Their central roles indicate that FMTs might 
broadly affect inflammatory and immune responses, 
possibly explaining the overall decrease in the serum 
levels of inflammatory proteins.

Two functional complexes were found to be signifi-
cant when we explored clusters of protein‒protein inter-
actions using the MCODE algorithm, which revealed 
densely connected regions in large protein interac-
tion networks (Fig.  4B): (i) Cytokine‒cytokine receptor 
interaction complex, which includes critical inflamma-
tory mediators such as TNFɑ and IL6 and chemokines 
(CCL20 and CCL22). The interactions among these 
proteins, which drive inflammatory responses, and their 
modulation by FMT could explain the observed decrease 
in pro-inflammatory proteins (Fig.  3 and Supplemental 
Figs. 1-3). (ii) The NF-kappa B signaling pathway cluster, 
which comprises TNF and its receptors. Given that NF-
kappa B is a transcription factor that regulates inflam-
mation-related genes, its prominence post-FMT suggests 
significant regulation of inflammatory gene expression.

Fig. 2 Differential protein expression between the FMT and placebo groups over time. The figure shows the number of proteins overexpressed 
(positive values) or underexpressed (negative values) in the FMT group compared to the placebo group at different time points (weeks 0, 1, 8, 
and 24). The text at the top of each graph indicates the number (N) of proteins overexpressed (right) or underexpressed (left). The upper quadrants 
represent DEIPs with a p value < 0.05 (dashed line) or < 0.1 (dotted line), not adjusted by FDR. n = 29 biologically independent samples from 14 
individuals in the FMT group and 15 in the placebo group were measured at four time points
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Correlation network between bacterial species abundance 
and inflammatory protein expression
To investigate the microbial drivers behind the observed 
shifts in inflammation, we fitted mixed models corre-
lating changes in microbiome composition at the spe-
cies level with alterations in the 46 previously selected 
DEIPs in plasma. From the 2074 distinct bacterial species 
detected, we identified 385 associations between changes 
in fecal bacterial species and plasma DEIPs at an adjusted 
p value threshold of 0.05. Several species within the Fir-
micutes phylum and families Ruminococcaceae, Succini-
vibrionaceae, Prevotellaceae, and the Clostridium genus 
showed the strongest associations with DEIPs in plasma 
(Table S5).

We specifically examined the associations between 
microbial species and three anti-inflammatory pro-
teins relevant to HIV immunopathogenesis: Galectin-9 
(LGALS9), which disrupts gut epithelial tight junctions 
and correlates with microbial translocation [37]; IL10RB, 

which limits gut inflammation by inhibiting pro-inflam-
matory cytokines, down-regulating MHC class II expres-
sion, and controlling immune responses to commensal 
bacteria [38–40]; and IL1RN, which inhibits pro-inflam-
matory IL1 signaling, maintaining gut homeostasis and 
limiting inflammation [41, 42].

The Clostridiales order had the most robust impact on 
inflammation, as almost all species exhibiting changes 
directly correlated with alterations in at least 15 plasma 
DEIPs belonged to this group (Table S6). Notably, several 
species within the genus Clostridium, known for their 
role in producing SCFAs such as butyrate, which have 
anti-inflammatory properties, were repeatedly linked 
to several DEIPs [40]. Specifically, Clostridium species 
correlated the DEIPs with anti-inflammatory properties 
IL10RB, LAIR1, IL1RN.

The Succinivibrionaceae and Prevotellaceae fami-
lies, as well as genera previously reported as function-
ally relevant, like Faecalibacterium, Erysipelotrichaceae, 

Fig. 3 The first 12 DEIPs from the 46 identified DEIPs were selected based on their greater statistical significance, not adjusted by FDR, 
for the differences between treatment slopes in the FMT vs. placebo groups. Each scatter plot shows individual expression values for each 
participant, with smoothed mean values represented by purple (FMT) and green (placebo) lines. The study involved 29 participants (14 FMTs and 15 
placebos), with longitudinal measurements taken at weeks 0, 1, 8, and 24. The trajectories of the remaining 36 DEIPs are shown in Figs. S1–S3
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Fig. 4 Network analysis of differentially expressed inflammatory proteins in PWH receiving repeated FMT vs. placebo. A This Cytoscape network 
graph visualizes the biological functions and pathways associated with the 46 DEIPs between PWH who underwent FMT and those who received 
a placebo. The nodes represent the number of proteins involved in the indicated process and their color functional clusters. The size of the nodes 
represents the number of proteins associated with that function (the larger the node is, the greater the number of selected proteins involved 
in that function). The color represents its cluster identity (i.e., nodes of the same color belong to the same cluster). Edges connect the related 
biological processes, and their width shows the strength of the connection between the proteins and the Gene Ontology (GO) term assigned. 
Terms with a similarity score > 0.3 are linked by an edge (the thickness of the edge represents the similarity score). The purple intensity denotes 
the superposition of the edges. B These subnetworks illustrate two distinct molecular complexes identified within the protein-to-protein interaction 
network of the differentially expressed inflammatory proteins. The tool finds protein‒protein interactions previously demonstrated experimentally. 
Each node represents a protein, and each edge denotes the physical protein‒protein interaction described between them. The MCODE algorithm 
groups nodes (elements in the network) together based on the strength and number of interactions they have with each other. Although 
the MCODE algorithm itself does not directly assign functional meaning to the identified subnetworks, the main functions (GO terms) related 
to these proteins with a p value < 0.01 are indicated below the subnetworks. Detailed information about the enrichment analysis, statistical values, 
and specific proteins associated with the functions is provided in Table S4 and its caption
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Roseburia, Lactobacillus and Lactococcus, showed signifi-
cant associations with various DEIPs.

Additionally, the Ruminococcaceae and Succinivibrion-
aceae families were recurrently associated with these 
DEIPs with anti-inflammatory properties (Table  S6). 
The Succinivibrionaceae and Prevotellaceae families and 
other species previously reported as functionally relevant, 
included in the Faecalibacterium, Erysipelotrichaceae, 
Roseburia, Lactobacillus and Lactococcus genera, showed 
significant associations with various DEIPs.

To further refine the biological relevance and miti-
gate the risk of false positive associations, we assessed 
the occurrence of the genus whose species showed the 
strongest associations with changes in DEIPs among par-
ticipants across study timepoints. We did this by calcu-
lating the prevalence of bacteria and summarizing their 
abundance across visits (Fig. 5 and Table S7), which helps 
determine the presence of bacteria within the study par-
ticipants. Specifically, we observed the consistent pres-
ence of genera such as Butyricicoccus, Clostridiales gen. 
incertae sedis, Clostridium, Bacillota gen. incertae sedis, 
and Ruminococcus in the FMT group.

In parallel, certain proteins were recurrently linked 
to bacterial species. For instance, changes in FLT3LG, 
IL12B, and IL17A correlated with at least 20 distinct bac-
terial species. This subset of proteins might serve as bio-
markers for microbial-driven inflammatory responses in 
the host (Table  S8). The relationships between the fecal 
bacterial species and the 46 DEIPs in plasma are illus-
trated in the network analysis in Fig. 6.

Changes in the bacterial gene counts correlate 
with changes in the expression of inflammatory proteins 
in plasma following FMT
Next, we aimed to elucidate the bacterial genes poten-
tially associated with the observed shifts in the expres-
sion of inflammatory proteins following FMT. We fitted 
mixed models to establish correlations between the rela-
tive abundance of bacterial genes and alterations in the 
46 significant DEIPs. With an adjusted p value thresh-
old of 0.05, we identified 585 significant correlations 
between changes in bacterial gene abundances and DEIPs 
(Table S9).

A subset of the bacterial genes, identified by eggNOG-
mapper as yhcR, ectB, grdI, wzm, XK27_00670, and yulB, 
proved to be particularly significant, as their alterations 
were strongly correlated with changes in more than 20 
of the 46 selected DEIPs (Table S10). Among the DEIPs 
correlated with at least 15 bacterial species detailed in 
Table S8, FLT3LG, IL12B, IL17A, and OSCAR were also 
correlated with at least 15 bacterial genes, emphasizing 
the potential influence of the gut microbiome on these 
proteins (Table S11).

We also examined the bacterial genes associated with 
the DEIP with anti-inflammatory properties that were 
consistently associated with Clostridium sp. (Table  S6), 
including IL1RN, IL10RB, LAIR1, and LGALS9. The 
genes identified by eggNOG-mapper as abcC, wzm, yjhB, 
XK27_05700, desR, cdiA, ectB, leuE_1, mgm, dehH1, 
hipB, napF, vexP2, yokD, and yulB were associated with at 
least two of these proteins. Their functions and potential 
mechanisms influencing inflammation following FMT 
are summarized in Table S12. The relationships between 
changes in bacterial gene counts and the 46 DEIP pro-
teins are illustrated in the network analysis in Fig. 7.

Connections between changes in the annotated bacterial 
functions and the expression of inflammatory proteins 
in plasma following FMT
Finally, we fitted mixed models in which we correlated 
the changes in the functional annotations (KOs) from the 
bacterial genomes with the dynamics of the 46 previously 
selected plasma DEIPs. For an adjusted p value < 0.05, we 
identified 730 significant associations between changes 
in functional annotation numbers and DEIPs, while 272 
associations remained when a more stringent threshold 
was applied (adjusted p value < 0.01) (Table  S13). These 
associations are mainly related with metabolic pathways, 
biosynthesis of secondary metabolites, ABC transporters, 
and the two-component system (KEGG mapper output 
of Table S13 with more than 10 associations).

We selected the most relevant functions based on sev-
eral criteria. First, functions associated with changes in 
a high number of DEIPs include the following: polyga-
lacturonase, which correlated with changes in 16 DEIPs 
and it was detected in 5 samples; type VI secretion sys-
tem secreted protein Hcp, which correlated with 8 DEIPs 
and it was present in 15 samples; and 4Fe-4S ferredoxin, 
which correlated with 7 DEIPs and it was present in 8 
samples. Second, functions present in at least 30 sam-
ples and linked with at least 2 DEIPs were divided into 
three subcategories: (i) those correlated with pro-inflam-
matory proteins (IL6, IL17A, FLT3LG, CCL20, IL1RN) 
including ATP-dependent ion protease, epsilon-lac-
tone hydrolase, and several others; (ii) those correlated 
with anti-inflammatory proteins (LAIR1, TNFRSF13C, 
IL10RA, TNFRSF13C, IL10RB) including demethylme-
naquinone methyltransferase / 2-methoxy-6-polypre-
nyl-1,4-benzoquinol methylase, [glutamine synthetase] 
adenylyltransferase / [glutamine synthetase]-adenylyl-L-
tyrosine phosphorylase, and others; (iii) those correlated 
with proteins with context-dependent effects (LGALS9, 
TNFRSF4, LTBR) including CRISPR-associated protein 
Csy3 and (heptosyl)LPS beta-1,4-glucosyltransferase. 
Collectively, these functions could impact systemic 
inflammation by influencing gut barrier integrity, 
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microbiome composition, and host immune responses 
(Table S14). These relationships between changes in bac-
terial annotated functions and the 46 plasma DEIPs pro-
teins are illustrated in the network analysis in Fig. 8.

The DEIPs most connected with changes in annotated 
bacterial functions were the pro-inflammatory IL12B, 
linked to 167 functions, and FLT3LG, linked to 148 func-
tions (Table  S15) of the 730 significant DEIP-function 

associations detailed in Table  S13. Mixed models indi-
cated that all the estimates between IL12B and the anno-
tated functions were negative (Table S13), suggesting that 
microbiome changes following FMT may inhibit this pro-
inflammatory cytokine, which remains elevated despite 
ART [43] and is associated with cardiovascular risk [44]. 
Conversely, nearly all associations between FLT3LG and 
the annotated functions were positive, suggesting that 

Fig. 5 Distribution and prevalence of key bacterial genera identified in the study. A Relative abundance (%) and B number of participants 
with the presence of key bacterial species significantly correlated with five or more DEIPs in plasma, aggregated at the genus level. In the X-axis, 
the F or P prefixes denote the study group (FMT or placebo, respectively), and the numeric suffixes indicate the weeks from baseline
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microbiome changes following FMT may elevate this 
anti-inflammatory molecule. When FLT3LG was admin-
istered to humanized mice, it showed to sustain high lev-
els of plasmacytoid dendritic cells, key producers of type 
I interferons [45]. Remarkably, 107 KEGG ortholog terms 
simultaneously correlated with both IL12B and FLT3LG.

The functions linked with changes in both IL12B and 
FLT3LG were predominantly assigned to Streptococcus 
genus, including S. thermophilus (with known probiotic 
properties) [46], which appears frequently across multi-
ple functions: DNA-3-methyladenine glycosylase I, pen-
icillin-binding protein 2A, hydroxymethylglutaryl-CoA 
reductase, porphyrinogen peroxidase, adenine deami-
nase, and the NarL family two-component system. Other 
notable taxa include Bifidobacterium spp. and Acidami-
nococcus intestini for DNA-3-methyladenine glycosylase 
I, Mitsuokella jalaludinii for putative transposase, and 
Faecalibacterium prausnitzii for NarL family two-com-
ponent system. A description of the functions correlated 
with both IL12B and FLT3LG simultaneously (Table S14), 
their roles, and the potential mechanisms by which they 
could affect gut-associated inflammation are summarized 
in Table S16.

Discussion
In this pilot randomized controlled study investigating 
the effects of repeated oral FMTs on systemic inflam-
mation in PWH receiving ART, we observed significant 
reductions in the expression of a broad array of inflam-
matory proteins. Notably, these effects persisted until 
the final visit, 16 weeks postintervention, suggesting the 
sustainable modulation of systemic inflammation.

Unlike previous interventions that targeted the gut 
microbiome with prebiotics, probiotics, and synbiotics 
(reviewed in [11]), our study directly measured changes 
in inflammation by assessing a comprehensive panel of 
inflammatory proteins. Additionally, whereas previous 
pilot studies noted only limited engraftment of donor 
microbiota following three different modalities of FMT 
[17, 47, 48], our current research identified potential key 
microbial species whose changes correlated significantly 
with long-lasting variations in inflammatory marker 

levels, thereby highlighting their potential for targeted 
interventions in the field of microbiome therapeutics. We 
hypothesize that the long-lasting effects may be due to the 
selection of key bacterial strains for the proliferation of 
other beneficial microbes, events of secondary succession 
(a cascade of ecological changes), increase in the produc-
tion of anti-inflammatory metabolites, and/or expansion 
of relevant immune cells. The key findings of our study, 
along with potential mechanisms underlying shifts in 
inflammatory proteins, are conceptualized in Fig. 9.

To date, no interventions targeting the microbiota of 
PWH on ART, including prebiotics [49, 50], probiot-
ics [14, 51], synbiotics [13], or rifaximin [15], have con-
vincingly proven to ameliorate inflammation or enhance 
immune recovery. Although some studies have reported 
mixed effects of diverse inflammatory cytokines, the 
evaluation of inflammation has typically been restricted 
to a limited set of molecules [17, 47]. Our previously 
reported study indicated that repeated oral FMT induces 
modest yet enduring changes in the gut microbiota 
structure. This was particularly notable in the Rumino-
coccaceae and Lachnospiraceae families, which are com-
monly depleted in PWH [10] and are major butyrate 
producers. Concurrently, there was a reduction in IFABP, 
a biomarker of intestinal barrier integrity and an inde-
pendent predictor of mortality in PWH [17]. Here, we 
further elucidated the effects of FMT on inflammation, 
achieving broader resolution.

Among the 46 DEIPs analyzed following FMT, 45 
exhibited down-regulation across pro-inflammatory and 
regulatory domains. Notably, enhanced signaling via 
cytokine‒cytokine receptor interactions and the IL10 
pathway suggested a shift toward an anti-inflammatory 
profile in patients undergoing FMT. However, this exten-
sive regulation suggests a broad systemic impact beyond 
mere anti-inflammatory effects, challenging simplis-
tic interpretations of immune responses. A consider-
able number of proteins with an inflammatory function 
display dual roles, exerting a distinct influence on the 
immune response depending on the biological con-
text, the presence of other signaling molecules, and the 
specific environmental conditions. Such widespread 

(See figure on next page.)
Fig. 6 Correlation networks between bacterial species abundance and inflammatory protein expression A The network illustrates significant 
correlations between the abundance of fecal bacterial species and the expression levels of DEIPs in plasma, including species showing at least 
one significant association with a DEIP after FDR correction. B The network focuses on bacterial species correlated with at least five DEIPs. 
Circles represent bacterial species, and squares represent DEIPs. The edge intensity on a grayscale indicates the strength of the correlation, 
with darker edges denoting stronger associations. The node size reflects the number of significant correlations. Clostridium species, particularly 
within the Clostridiales order, exhibited numerous correlations with DEIPs, such as OSCAR, CLEC7A, SIRPB1, ADAM23, and IL1RN, highlighting 
their role in modulating inflammation through the production of anti-inflammatory SCFAs, such as butyrate. Other significant associations 
included genera such as Ruminococcus and Butyricicoccus and members of the Succinivibrionaceae family. The genera classified as incertae sedis 
within Clostridiales and Firmicutes (Table S8) also exhibited substantial correlations, suggesting important roles in inflammation
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Fig. 6 (See legend on previous page.)



Page 13 of 19Díaz‑García et al. Microbiome  (2024) 12:214 

down-regulation might reflect a resetting of the immune 
system, which often remains in a state of heightened acti-
vation in chronic HIV infection [1, 2, 18] despite effective 
viral suppression through ART.

Although the generalized reduction in inflamma-
tory marker levels indicates that FMT can efficiently 
shape immune responses—potentially reducing the 
risk of inflammation-related comorbidities—a reduc-
tion in both pro-inflammatory and regulatory proteins 

may reflect a move toward homeostasis in an activated 
immune system. In contrast to this general trend, the 
Persephin (PSPN) level increased post-FMT. Given the 
critical role of PSPN in neuronal survival and differentia-
tion, its up-regulation post-FMT raises intriguing possi-
bilities regarding the impact of the gut microbiota on the 
gut-brain axis, hinting at specific pathways involved in 
gut-immune-neural axis restoration or a unique compen-
satory response to microbiome modification [52].

Fig. 7 Correlation network of bacterial genes correlated with DEIPs. The network illustrates significant correlations between bacterial genes 
and DEIPs in plasma, focusing on genes significantly associated with at least 5 DEIPs. Circles represent bacterial genes, and squares represent DEIPs. 
The edge intensity on a grayscale indicates the strength of the correlation, with darker edges denoting stronger associations. The node size reflects 
the number of significant correlations. Several bacterial genes exhibited multiple significant correlations with DEIPs, highlighting their potential role 
in modulating inflammation
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To further investigate the mechanism of these pro-
teins, we performed an enrichment analysis of the 46 
DEIPs. Most of the identified proteins are related to 
functions that include pro-inflammatory cytokines and 
chemokines, such as TNF, a central mediator of acute 
inflammation; IL1B and IL6, cytokines involved in fever 
and acute phase reactions; and CCL20 and CCL22, 
chemokines responsible for immune cell chemotaxis. In 
addition, some proteins were grouped in a second clus-
ter, suggesting their role in the modulation of adaptive 

immune responses, as they are involved in lymphoid 
tissue organization and B-cell function. For exam-
ple, TNFRSF13C is essential for B-cell development, 
TNFSF11 (RANKL) is involved in T-cell and dendritic 
cell regulation and bone metabolism, and LTBR is crucial 
for lymphoid tissue development. Thus, these 46 DEIPs 
play critical roles in the immune response and clinical 
progression of HIV by affecting both pro-inflammatory 
and anti-inflammatory pathways. For instance, IL6 is 
frequently reported to be elevated in PWH on ART and 

Fig. 8 Correlation network of KEGG orthologs functions correlated with DEIPs. The network highlights significant correlations between bacterial 
annotated functions (KEGG orthologs) and DEIPs, focusing on functions significantly associated with at least 5 DEIPs. Circles represent KEGG 
orthologs, and squares represent DEIPs. The edge intensity on a grayscale indicates the strength of the correlation, with darker edges indicating 
stronger associations. The node size reflects the number of significant correlations. The network underscores the functional pathways involved 
in inflammation, with several KEGG orthologs showing substantial associations with DEIPs, suggesting their role in inflammatory processes
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serves as an independent predictor of mortality in this 
population [1]. TNF-α is associated with inflammation 
and HIV persistence during ART, partly through signal-
ing [53, 54]. The expression of macrophage inflammatory 
protein-3 alpha (CCL20), a protein involved in recruiting 
cells to sites of inflammation, is typically elevated in HIV 
patients [55]. Conversely, key proteins in the IL1 pathway, 
such as IL10RA, the IL10 receptor, and IL1RN, which are 
IL1 receptor antagonists, could be particularly relevant in 
the pathogenesis of inflammation-related cardiovascular 
events [56, 57]. Interestingly, microbiome-derived signals 
can influence the expression of these proteins in the epi-
thelium [58–60].

Network analysis revealed a nuanced landscape of 
protein expression changes following FMT, suggesting 
that not all DEIPs are uniformly influenced by altera-
tions in the microbiome. We identified a subset of pro-
teins, including pro-inflammatory (IL6, IL17A, CCL20, 
IL1RN), anti-inflammatory (FLT3LG, LAIR1, IL10RA, 
IL10RB, and TNFRSF13C), and context-dependent pro-
teins (LGALS9, TNFRSF4, LTBR), that exhibited signifi-
cant correlations with multiple bacterial taxa and were 
prevalent across samples. This finding suggested targeted 

modulation by the microbiome, likely through specific 
microbial metabolic activities or immunomodulatory 
mechanisms. For example, in PWH, gut dendritic cells 
are activated by Prevotella sp. [61], which was positively 
correlated with changes in IL17-A in our study. Prevo-
tella has been found to promote the maturation and acti-
vation of dendritic cells, thereby enhancing their ability 
to present antigens and activate T cells [61, 62].

FLT3LG plays a crucial role in developing and maturing 
dendritic cells [63] correlated in our study with changes 
in Faecalibacterium prausnitzii, a dominant commensal 
of the human gut and a major butyrate producer [64]. 
Conversely, changes in pro-inflammatory IL12B, typi-
cally increased in PWH despite ART [46] and associated 
with cardiovascular risk [47], were negatively linked to 
167 bacterial functions. Other DEIPs highlight the poten-
tial role of FMT in shaping pathogen-specific defense 
mechanisms. These include CCL20, which is essential 
for mucosal immunity and is directly regulated by cer-
tain bacteria, such as Prevotella sp. [65]; IL17A, whose 
expression modulates the microbiome composition [66]; 
and CLEC7A, which is relevant for antifungal immu-
nity and innate immune responses [67]. Collectively, all 

Fig. 9 Conceptual model of changes in gut-associated inflammation in PWH following FMT from selected. This figure illustrates the systemic 
inflammation observed in PWH before FMT and the ecological transitions following FMT, which lead to shifts in inflammatory protein expression. 
Selected donor microbiota, rich in Faecalibacterium and butyrate producers, was administered weekly from week 0 to 7. The interactions 
between bacterial genera, genes, and metabolic functions are highlighted, with particular focus on the roles of IL12B and FLT3LG. These proteins are 
linked to key functions such as base excision repair, bacterial wall synthesis, and dendritic cell differentiation, which may contribute to the observed 
reduction in systemic inflammation and a potential decreased risk in inflammation-related comorbidities like atherosclerosis and malignancies. 
Future research is needed to explore these connections further
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these changes in bacterial functions suggest that FMT 
can reduce systemic inflammation in PWH by modulat-
ing gut barrier integrity, microbiome composition, and 
host immune responses, thereby lowering pro-inflamma-
tory signals like IL12B and enhancing anti-inflammatory 
responses like FLT3LG. The association of these proteins 
with a broad array of bacterial species highlights their 
potential as biomarkers for evaluating the efficacy and 
understanding the biological regulatory effects of FMT.

We identified specific bacterial species significantly 
associated with changes in plasma DEIPs following 
FMT. Species within the Clostridiales order, including 
Clostridium sp. and Ruminococcus sp., were frequently 
correlated with proteins such as OSCAR, CLEC7A, 
IL17A, and FLT3LG. These findings align with our 
selection of stool donors based on high butyrate and 
Faecalibacterium abundances, emphasizing the role 
of butyrate-producing bacteria in modulating immune 
responses. Our previous analysis revealed pronounced 
engraftment in the Lachnospiraceae and Ruminococ-
caceae families, with their abundance remaining ele-
vated after 48  weeks [17]. Butyrate can inhibit NF-κB 
signaling, partly by inhibiting human histone deacety-
lases [50, 68]. This inhibition facilitates the transcrip-
tion of genes involved in regulatory T-cell function, 
such as Foxp3 [69]. As a result, butyrate induces a toler-
ogenic response in human dendritic cells. Our network 
analysis of protein‒protein interactions revealed that 
the NF-kB signaling pathway was significantly regu-
lated post-FMT, suggesting that this pathway is critical 
for microbiome changes post-FMT.

Among the list of DEIPs associated with at least 20 
bacterial species, FLT3LG, IL12B, and IL17A were also 
correlated with at least 15 bacterial genes. Consequently, 
these proteins could serve as indicators of microbial-
driven inflammatory responses. Additionally, we investi-
gated the subset of genes more strongly associated with 
changes in DEIPs with anti-inflammatory properties 
(Table S12). EctB, which is involved in ectoine biosynthe-
sis, may have protective effects on human cells, thereby 
mitigating inflammatory responses, while grdl and wzm, 
which encode a glycosyltransferase and an ABC trans-
porter, respectively, potentially modulate immune recog-
nition and the antigenic load, respectively, contributing 
to an anti-inflammatory environment. Additionally, the 
roles of XK27_00670 in metabolic processes and yubL 
in sporulation could influence microbial community 
dynamics and stability, further impacting host inflamma-
tory pathways and improving gut barrier function [70].

Lastly, we selected the most relevant annotated bac-
terial functions, revealing associations with changes in 
DEIPs. Key functions identified included polygalacturo-
nase, which was correlated with changes in 16 DEIPs and 

detected in 5 samples; type VI secretion system secreted 
protein Hcp, 4Fe-4S ferredoxin, ATP-dependent Lon 
protease, epsilon-lactone hydrolase, demethylmenaqui-
none methyltransferase, [glutamine synthetase] ade-
nylyltransferase; and CRISPR-associated protein Csy3, 
(heptosyl) LPS beta-1,4-glucosyltransferase. We focused 
on the pro-inflammatory IL12B and the anti-inflamma-
tory FLT3LG, due to their high number of associations 
with multiple bacterial functions. The functions associ-
ated with changes in IL12B and FLT3LG were primarily 
linked to the Streptococcus genus, including S. thermo-
philus, and involved various enzymes and proteins. Other 
notable bacteria like Bifidobacterium spp., Acidamino-
coccus intestini, and Faecalibacterium prausnitzii were 
also highlighted for their roles in specific functions, with 
these associations and their potential impact on gut 
inflammation detailed Table S16.

Several factors must be taken into consideration when 
interpreting our results. First, our previous analysis uti-
lized 16S rRNA sequencing across 11 study visits, pro-
viding higher temporal resolution but limited taxonomic 
detail [17]. In contrast, the current analysis employs shot-
gun metagenomics over four study visits, allowing us to 
achieve species-level resolution, albeit with less frequent 
sampling. This difference in methodology provides more 
detailed taxonomic insights in the current study but less 
temporal resolution. Here, we used mOTUs3 to profile 
the microbiome composition at the species level. Given 
our limited sample size, we chose this method to ensure 
greater accuracy in role assignment, thereby mitigating 
the risk of false discoveries despite its lower sensitivity 
than other tools [71]. In this study, we measured micro-
biome function indirectly by assigning significant bac-
terial genes to their functions or proteins. However, a 
direct assessment would have required analyzing higher 
functional levels of the microbiome, such as its transcrip-
tome, proteome, or metabolome, which should be con-
sidered in future studies.

The strengths of our pilot study include (i) the rand-
omized controlled trial design, which allows us to attrib-
ute observed changes directly to the FMT intervention 
rather than to natural microbial variations; (ii) the use of 
a novel proteomic assay, which allows for a more detailed, 
efficient and precise measurement of inflammatory bio-
markers than did previous studies [17, 47, 48]; (iii) the 
application of species-level resolution in microbial analy-
sis; (iv) the lack of significant differences in dietary intake 
between the groups, minimizing confounding variables; 
(v) the comprehensive longitudinal analysis, which helps 
in understanding the changes over time; and (vi) the care-
ful selection of donors with microbiota profiles high in 
Faecalibacterium spp. and butyrate, which target anti-
inflammatory properties.
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While randomized controlled trials are essential for 
establishing causal relationships, our longitudinal corre-
lation analysis between fecal bacteria and plasma proteins 
should be considered preliminary. The immune system 
is intricately regulated and often follows a nonlinear 
response pattern to interventions. This motivates further 
mechanistic studies to elucidate how FMT affects inflam-
mation. Additionally, future research should directly 
measure microbiome functions through metatranscrip-
tomics, metaproteomics, or metabolomics. Factors that 
may enhance the effects of FMT, including donor selec-
tion, baseline microbiome composition, inflammatory 
profiles, specific concomitant antiretroviral drugs, and 
the potential need for antibiotic preconditioning regi-
mens, need to be explored.

In the context of a rapidly advancing field featuring live 
biotherapeutic products and synthetic bacterial com-
munities currently undergoing phase 2 trials, our results 
could inform targeted subsequent investigations. In PWH, 
individuals diagnosed at advanced stages of the disease—
typically showing increased inflammation and higher risk 
of great outcomes—represent a potential target popu-
lation. Furthermore, the effects of down-regulation of 
inflammatory proteins following FMT in PWH treatment 
show promise in other clinical settings, such as enhancing 
the efficacy of PD-1 inhibitors [72]. Our group and oth-
ers are currently evaluating whether repeated FMT has 
an effect in cancer progression. In fact, we are currently 
analyzing results from a pilot trial evaluating repeated 
oral FMT as a strategy to enhance immunotherapy in lung 
cancer (https:// clini caltr ials. gov/ study/ NCT04 924374).

Conclusions
In this pilot study, we explored the potential of oral FMT 
to reduce inflammation in PWH. FMT lowered plasma 
inflammatory protein levels compared to those in patients 
treated with a placebo, and FMT was found to be an 
established independent predictor of mortality, as were 
IL6 and TNF [1, 69]. The shift in inflammation persisted 
up to 16 weeks after the final FMT procedure. We identi-
fied changes in FT3LG, IL6, IL10RB, IL12B, and IL17A, 
which correlated with multiple bacterial species and func-
tions. This subset of proteins might serve as biomarkers 
for microbial-driven inflammatory responses in the host.

Furthermore, we found specific bacterial species within 
the Ruminococcaceae, Succinivibrionaceae, Prevotel-
laceae, and Clostridium genera, as well as their associated 
genes and functions, that were significantly correlated 
with changes in inflammatory markers. These results 
support the notion that the gut microbiome could be a 
therapeutic target for mitigating inflammation in PWH. 
Further research is warranted to explore the potential of 
FMT and other microbiome-based interventions.
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