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Abstract 

Background  Understanding the interactions and dynamics of microbiotas within biological wastewater treatment 
systems is essential for ensuring their stability and long-term sustainability. In this study, we developed a systematic 
framework employing multi-omics and Hi-C sequencing to extensively investigate prokaryotic and phage communi-
ties within a hybrid biofilm and activated sludge system.

Results  We uncovered distinct distribution patterns, metabolic capabilities, and activities of functional prokaryotes 
through the analysis of 454 reconstructed prokaryotic genomes. Additionally, we reconstructed a phage catalog 
comprising 18,645 viral operational taxonomic units (vOTUs) with high length and contiguity using hybrid assembly, 
and a distinct distribution of phages was depicted between activated sludge (AS) and biofilm. Importantly, 1340 
host-phage pairs were established using Hi-C and conventional in silico methods, unveiling the host-determined 
phage prevalence. The majority of predicted hosts were found to be involved in various crucial metabolic processes, 
highlighting the potential vital roles of phages in influencing substance metabolism within this system. Moreover, 
auxiliary metabolic genes (AMGs) related to various categories (e.g., carbohydrate degradation, sulfur metabolism, 
transporter) were predicted. Subsequent activity analysis emphasized their potential ability to mediate host metabo-
lism during infection. We also profiled the temporal dynamics of phages and their associated hosts using 13-month 
time-series metagenomic data, further demonstrating their tight interactions. Notably, we observed lineage-specific 
infection patterns, such as potentially host abundance- or phage/host ratio-driven phage population changes.

Conclusions  The insights gained from this research contribute to the growing body of knowledge surrounding inter-
actions and dynamics of host-phage and pave the way for further exploration and potential applications in the field 
of microbial ecology.
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Background
The hybrid moving bed biofilm reactor (HMBBR), where 
the suspended activated sludge (AS) and attached bio-
mass (biofilm) on carriers co-exist, represents an opti-
mized wastewater treatment system that combines the 
merits of both AS and biofilm processes, resulting in 
improved overall efficiency and stability of the treatment 
process [1]. Within the HMBBR system, AS contributes 
to the removal of organic pollutants and nutrients from 
wastewater through microbial flocs or granules involved 
in organic matter degradation, nitrification, denitrifica-
tion, and polyphosphate accumulation processes [2–4]. 
Compared with the AS process, the attached biofilms are 
effective at accumulating slow-growing nitrifiers and pro-
vide anoxic/anaerobic conditions that are favorable for 
the habitation of anaerobic microorganisms and denitri-
fiers [5, 6]. By integrating the features of these two pro-
cesses, the hybrid system possesses the potential to foster 
a more complex microbial community, owing to the pres-
ence of distinct microbial assemblies in both environ-
ments. Given their distinct microbial assemblies, gaining 
insight into the assembly and ecology of phage communi-
ties in both AS and biofilm is of great interest.

Recent studies have shed light on the huge diver-
sity and ecology of phages in the AS treatment process 
[7–10]. In our recent study, approximately 50,000 phage 
sequences were reconstructed from AS samples col-
lected from six wastewater treatment plants (WWTPs) 
in Hong Kong [7]. This research not only uncovered the 
tremendous phage diversity but also demonstrated that 
they could potentially influence nutrient removal and the 
carbon cycle within the biological wastewater treatment 
system by regulating microbial community and auxiliary 
metabolism. Fan et al. investigated the diversity and bio-
geography of phages in global AS systems, which further 
confirmed the presence of the highly diverse phage taxo-
nomic groups and emphasized their potential ecological 
roles in AS systems [10]. Nonetheless, the assembly of 
phages in the biological biofilm system, a more biomass-
dense ecosystem, remains unexplored. In comparison 
to the AS system, biofilms are denser and more hetero-
geneous, and these characteristics suggest the possibil-
ity of distinct phage distribution and ecology within this 
system [11]. By utilizing a biofilm simulation framework, 
Simmons et  al. demonstrated that factors like nutrient 
availability, the probability of infection per host encoun-
ter, and phage diffusion ability can significantly influence 
the interactions between phages and hosts within biofilm 
[12]. Moreover, Hwang et  al. have highlighted that the 
prolonged contact of diverse microbes, as well as limited 
host and viral dispersal due to biofilm characteristics, can 
affect host-phage interactions [11]. For instance, these 

factors may promote simultaneous infection involving 
multiple hosts. Hence, exploring the phage infection pat-
tern within the biological biofilm system is crucial for 
understanding their ecological roles within this system.

To fully understand the potential ecological roles of 
phages in biological wastewater treatment systems, it 
is essential to reconstruct phage genomes and establish 
prokaryote-phage linkages from this complex system. 
At present, the virus-like particle (VLP) enrichment 
approach has enhanced the recovery of phages from 
complex environments [7, 13–15]. This approach tack-
les the difficulties in recovering phages from environ-
mental samples that arise due to the highly complex 
nature of samples and the presence of numerous host 
cells. Moreover, by incorporating advanced sequencing 
strategies, like long-read sequencing, the reconstruction 
of phage genomes with high completeness and length 
becomes possible [16–18]. In addition, the advancement 
of approaches for host-phage pair determination, such 
as Hi-C, enables a robust and high-throughput approach 
to capture the proximity signal of phage and host DNA 
during infection [19]. Phage DNA can be physically con-
nected with the host DNA through in vivo crosslinking, 
which further involves the cleavage of cross-linked DNA 
and re-ligation to identify which fragments of DNA were 
in close spatial proximity within the cell, thereby con-
firming their internal relationship [20–22]. Currently, 
this approach has been successfully used in complex 
environmental systems for host-phage pair determina-
tion [11, 20].

In this study, we aim to get a comprehensive under-
standing of the distributions and interactions of the 
prokaryotic and phage communities within a hybrid 
system. Illumina short-read and nanopore long-read 
sequencing were combined to establish the genome cata-
logs of prokaryotes and phages. The newly reconstructed 
454 prokaryotic genomes and 18,645 viral operational 
taxonomic units (vOTUs) demonstrated the distinct dis-
tribution and diversity of prokaryotic and phage com-
munities between AS and biofilm. Furthermore, the 
extensive host-phage interactions revealed by integrat-
ing in silico prediction methods and Hi-C sequencing 
shed light on their close connections and potential roles 
in regulating the microbial community and metabolism. 
Notably, a time-series metagenome dataset spanning a 
13-month period was utilized to uncover the phage-host 
infection dynamics and the potential effects of phage 
infection on system stability. Overall, this study offers 
a comprehensive understanding of the prokaryote and 
phage distribution, diversity, and interaction patterns, 
including coexistence or infection dynamics, within the 
full-scale hybrid biofilm and activated sludge system.



Page 3 of 17Wang et al. Microbiome          (2024) 12:134 	

Methods
Sample collection
In the present study, AS and carrier biofilm samples 
were simultaneously collected from an HMBBR at Stan-
ley Sewage Treatment Works in Hong Kong on June 29, 
2021. The details of this treatment work are provided in 
Additional file  1. AS samples were collected from four 
tanks (named A, B, C, and D) along the flow path, while 
carriers were collected from tank B, referred to as TB-c. 
The treatment work setup and sampling scheme are 
depicted in Additional file  1: Fig. S1. Immediately fol-
lowing collection, samples were rapidly frozen in liquid 
nitrogen, delivered to the lab, and preserved at − 80 ℃ for 
subsequent DNA and RNA extraction and sequencing. 
Furthermore, water samples were taken at each sampling 
site and filtered using a 0.45-um membrane for chemical 
analysis. The detailed chemical parameters of different 
sampling points are listed in Additional file 2: Table S1.

Nucleotide extraction and sequencing
For the carrier sample, the attached biofilm was carefully 
peeled off using a clean brush before the extraction pro-
cedure. The total genomic DNA and RNA of AS and car-
rier biofilm samples were extracted using the DNeasy® 
PowerSoil® Kit (Qiagen, Hilden, Germany) and RNeasy® 
PowerSoil® Total RNA Kit (Qiagen, Hilden, Germany), 
respectively, following the manufacturer’s instructions. 
The concentration and purity of extracted DNA were 
assessed using the Qubit assay (Thermo Fisher Sci-
entific) on a Qubit® 2.0 Fluorometer (Invitrogen Life 
Technologies, NY, USA) and NanoDrop (Thermo Fisher 
Scientific, USA), respectively. For Illumina sequenc-
ing, the NovaSeq  PE150  platform was used to gener-
ate 150-bp paired-end reads with a 350-bp insert size at 
Novogene (Beijing, China). For nanopore sequencing, 
the library was prepared using the ligation sequenc-
ing kit (SQK-LSK109) and sequenced using R9.4.1 flow 
cells (FLO-MIN106) on the GridION sequencer (Oxford 
Nanopore Technology, UK). For metatranscriptomic 
sequencing, the Ribo-Zero rRNA removal kit (Illumina, 
USA) was initially used to eliminate rRNA. The remain-
ing RNAs were fragmented into around 250–300 bp and 
then reverse-transcribed into double-stranded cDNAs, 
which were then sequenced to generate paired-end reads, 
as mentioned above. For metagenomic sequencing, 
approximately 30–60 Gb of sequencing data were gener-
ated for each sample. In the case of metatranscriptomic 
sequencing, around 10  Gb of data were produced for 
each sample.

Metagenomic analysis
Before downstream analysis, metagenomic paired-end 
reads from AS and biofilm samples were quality-checked 

using fastp (v0.20.1) [23] with default parameters. To gain 
an overview of the prokaryotic and eukaryotic composi-
tion of each sample, phyloFlash (v3.4.1) [24] was initially 
employed for the taxonomic assignment of the com-
munities based on the metagenomic short reads, using 
SILVA SSU Ref database (v.138.1) [25]. Furthermore, two 
different assembly approaches were utilized to recover 
representative genomes from these samples, including 
the iterative haplotype-resolved hierarchical clustering-
based hybrid assembly (HCBHA) approach developed 
by our group [26] and OPERA-MS (v0.8.3) [27]. Subse-
quently, the metagenome-assembled genomes (MAGs) 
retrieved from different cycles and methods were derep-
licated using dRep (v2.6.2) [28] with an average nucleo-
tide identity (ANI) cutoff of 99%. CheckM (v1.1.3) [29] 
was used to estimate the quality of the MAGs, and only 
MAGs with completeness of ≥ 50% and contamination 
of ≤ 10% were selected for further analyses.

Phylogenetic analysis, MAG annotation, and metabolic 
prediction
GTDB-Tk (v2.3.2, reference data version r214) [30, 31] 
was utilized for the taxonomic classification and phylog-
eny inference of the newly recovered MAGs. FastTree 
(v2.1.10) [32] was used to infer the genome tree gener-
ated by GTDB-Tk. The resulting tree was then visualized 
using the Interactive Tree of Life (iTOL) (https://​itol.​
embl.​de/) [33]. Prodigal (v2.6.3) [34] was used for open 
reading frame (ORF) prediction of the recovered MAGs. 
The genes and metabolic traits of the newly recovered 
MAGs were annotated using the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) GhostKOALA [35].

To predict the metabolic potential of these recon-
structed MAGs, METABOLIC (v4.0) [36] was employed. 
In order to estimate the specific community-level meta-
bolic capacity or activity, the number and relative abun-
dance or activity of MAGs in the community capable of 
performing a specific metabolic function were summed. 
A MAG with a relative abundance exceeding 0.01% is 
considered present in a sample. CoverM (v0.4.0) [37] 
was used to calculate the abundance and expression of 
individual microbes by mapping the metagenomic and 
metatranscriptomic reads to the retrieved MAGs, using 
parameters of 90% read-percent-identity and 80% read-
aligned-percent. Before metatranscriptomic analysis, 
SortMeRNA (v4.0.0) [38] was applied to remove non-
coding RNA sequences from the metatranscriptomic 
data.

Viral sample collection, enrichment, and processing
For phage catalog establishment, AS and carrier samples 
were collected simultaneously on June 29, 2021. Approxi-
mately 5 L of AS slurry was collected from each tank (A, 

https://itol.embl.de/
https://itol.embl.de/
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B, C, and D), and carriers were collected from tank B 
(TB-c) (Additional file 1: Fig. S1). The detailed filtration 
and purification process is described in Additional file 1. 
The DNA of the enriched sample was extracted using the 
phage DNA isolation kit (Norgen Biotek Corp., Canada) 
with proteinase K, following the manufacturer’s instruc-
tions. The concentration and purity of the extracted DNA 
were assessed using NanoDrop (Thermo Fisher Scien-
tific, USA). DNA samples were then stored at − 80 ℃ for 
subsequent analysis. The procedures for Illumina and 
nanopore sequencing are the same as for the sequencing 
section above. Approximately 37  Gb of nanopore long-
read data and 55  Gb of Illumina short-read data were 
generated from the five VLP-enriched samples.

For the Hi-C sequencing, the AS and carrier biofilm 
samples were first crosslinked with a 1% final formal-
dehyde concentration; the mixture was incubated for 
20 min at room temperature with periodic mixing. For-
maldehyde was quenched by adding excess glycine and 
incubated for 15 min at room temperature with periodic 
mixing. Samples were then recovered by centrifugation, 
rinsed with PBS, re-centrifuged, and collected samples 
were stored at − 80 ℃. Subsequently, the fixed samples 
were delivered to Phase Genomics (Seattle, WA 98109, 
USA) for subsequent treatment, sequencing, and analy-
sis. The detailed information of Hi-C library preparation 
is described in Additional file 1.

Assembly and prediction of viral operational taxonomic 
units
Three different assembly approaches were used in this 
study, including short-read assembly, Flye [39] assembly, 
and OPERA-MS [27] assembly. The detailed assembly 
processes are described in Additional file  1. Assembled 
contigs from short-read and two hybrid strategies were 
subjected to phage sequence prediction. In this study, 
Virsorter2 (v2.2.2) [40] and DeepVirFinder (v1.0) [41] 
were used for phage sequence identification. To obtain 
high-confidence phage sequences, assembled con-
tigs ≥ 5  kb in length were reserved for analysis, and 
conservative settings for both tools were adopted. With 
DeepVirFinder, contigs with a score ≥ 0.9 and p < 0.05 
were identified as putative phages [42]. The prediction 
results of these two methods were combined to get the 
putative phage sequences of each assembly. Subsequently, 
the putative phages predicted from these three assembly 
approaches were clustered to yield non-redundant rep-
resentativevOTUs by performing UCLUST-like cluster-
ing using the MIUViG recommended parameters of 95% 
average nucleotide identity over 85% alignment fraction 
(relative to the shorter sequence) [43]—the codes used 
here were available at the CheckV website (https://​bitbu​
cket.​org/​berke​leylab/​checkv/​src/​master/).

vOTU classification, annotation, and auxiliary metabolic 
gene prediction
The taxonomy classification of retrieved vOTUs was con-
ducted based on gene-sharing network clustering using 
vConTACT2 (v0.11.3) [44] with the database version 
“ProkaryoticViralRefSeq211-Merged”. Besides, PhaGCN2 
(v2.0) [45] based on the ICTV database was also used 
for taxonomy classification. DRAM-v, the viral mode 
embedded by DRAM (v1.2.4) [46], was employed for 
the annotation of vOTUs and prediction of auxiliary 
metabolic genes (AMGs). Prior to the DRAM-v work-
flow, CheckV (v0.9.0) [47] was first used to remove the 
potential contamination from the host to get the cleaned 
phage sequences. Putative AMGs with both auxiliary 
scores below four and accompanying gene descriptions 
were retained for further manual curation. Based on the 
DRAM-v annotation results, genes related to nucleo-
tide metabolism, organic nitrogen, glycosyl transferases, 
and ribosomal proteins were excluded from subsequent 
activity analysis [48, 49]. To profile the abundance and 
activity of AMGs, bulk metagenomic and metatranscrip-
tomic reads were mapped to all vOTU genes using RSEM 
(v1.3.3) [50] to get the genes per million (GPM) and tran-
scripts per million (TPM) values. BACPHLIP [51] and 
PhaTYP [52] were used to classify the lytic or lysogenic 
phages. The prediction results from PhaTYP will be given 
priority. If PhaTYP is unable to provide a prediction, the 
results from BACPHLIP will be utilized as an alternative.

Diversity and abundance analysis of vOTUs
To depict the distribution and diversity of phages, meta-
viromic and bulk metagenomic reads were mapped to 
the identified phage genomes to calculate the cover-
age (divided by the phage genome size) using CoverM 
(v0.4.0) [37] with the mode of “-mean”. A phage in a meta-
virome and bulk metagenome will be considered present 
if the phage coverage exceeds 0.75 and 0.1, respectively. 
The phage coverage values used in this study were further 
normalized by the dataset volume, defined as coverage 
per Gb data. The normalized coverage matrix was then 
used for Shannon and Simpson index calculation and 
principal coordinate analysis (PCoA).

Prediction of host‑phage associations
To obtain a comprehensive host-phage association net-
work, an integrated approach consisting of homologous 
sequence match, transfer RNA (tRNA) match, CRISPR 
spacer match, and Hi-C pair connections was applied. 
For homologous sequence match, the contigs of recov-
ered MAGs were compared with phage sequences using 
BLASTn (≥ 90% identity, matches > 500  bp) [53]. For 
tRNA match, tRNAs in phage genomes were identified 
using tRNAscan-SE (v2.0.9) [54] with the general tRNA 

https://bitbucket.org/berkeleylab/checkv/src/master/
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model (option -B) and default parameters. These detected 
tRNAs were then queried against the recovered MAGs 
using BLASTn, requiring 100% query coverage and 100% 
sequence identity [55]. For the CRISPR spacer match, 
spacers were identified in the recovered MAGs using 
the CRISPR Recognition Tool (CRT) [56]. The extracted 
spacers were then searched against phage genomes using 
BLASTn (BLASTn-short, ≥ 97% identity, ≥ 90% coverage, 
and ≤ 1 mismatch) [7]. To detect Hi-C linkages, the Prox-
iMeta platform, developed by Phase Genomics (Seattle, 
WA 98109, USA), was used for the establishment of host-
phage pairs based on Hi-C data. The detailed information 
of host-phage linkage matching is described in Addi-
tional file 1.

Analysis of host‑phage dynamics
A 13-month time-series AS metagenomic dataset was 
employed to analyze host-phage dynamics. The AS sam-
ples were collected monthly from January 2018 to Janu-
ary 2019 and have previously been used for resistome and 
mobilome analyses in the same system [57]. The coverage 
of prokaryotes and phages was calculated by mapping 
metagenomic data to the MAGs and vOTUs using Cov-
erM (v0.4.0) [37], using parameters of 90% read-percent-
identity and 80% read-aligned-percent. The coverage 
values were further normalized by the metagenomic data 
size. Procrustes analysis [58] was conducted to investi-
gate the relationships between the prokaryotic and phage 
communities using the generated coverage matrices. This 
analysis was performed using the OmicShare tools, a free 
online platform for data analysis (https://​www.​omics​
hare.​com/​tools). Lineage-specific phage/host ratios were 

computed based on the predicted host-phage pairs at the 
phylum level.

Results
Microbial community structures in AS and biofilm
We first aimed to compare the overall microbial com-
munity structures and diversities of AS (A, B, C, D) and 
biofilm (TB-c) samples. The marker gene-based classifi-
cation results indicated that bacteria dominate all sam-
ples, accounting for 84.0–94.6% of the recruited rRNA 
gene reads, followed by eukaryotic communities (5.3–
15.5%) (Additional file 1: Fig. S2). Samples A–D show a 
similar pattern, and TB-c had proportionally more eukar-
yotes. Furthermore, distinct patterns of bacterial com-
positions at the phylum level were revealed between AS 
and biofilm samples. However, no remarkable distinction 
was observed among AS samples. The bacterial mem-
bers belonging to phyla Pseudomonadota, Bacteroidota, 
Actinomycetota, Planctomycetota, and Chloroflexota 
dominated both AS and biofilm samples, accounting for 
68.0–81.7% of the total community composition (Fig. 1a). 
Notably, a higher relative abundance of Chloroflexota, 
Nitrospinota, and Acidobacteriota was observed in 
biofilm.

The reconstructed MAGs from multiple assembly 
cycles, using hybrid assembly, were combined and derep-
licated at 99% of ANI, ultimately resulting in a derepli-
cated set of 454 MAGs (≥ 50% completeness and ≤ 10% 
contamination) (Additional file  2:  Table  S2). Approxi-
mately 49.8–51.5% of metagenomic reads of AS samples 
could map to the final bin set, while a lower proportion 
(31.0%) of biofilm reads could be recruited. The final 
genome set included 147 high-quality MAGs and 307 

Fig. 1  Microbial assembly in AS and carrier biofilm. a The relative abundance of the top 15 phyla within the bacterial and archaeal communities, 
which was derived from the taxonomic assignment of metagenomic 16S rRNA gene reads. b The relative abundance of the top 15 phyla 
within the bacterial and archaeal communities, which was determined by mapping the metagenomic reads to the recovered MAGs

https://www.omicshare.com/tools
https://www.omicshare.com/tools
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medium-quality MAGs (Additional file  1: Fig. S3), clas-
sified according to the criteria defined by MIMAG stand-
ards [59]. In line with the classification result of miTags, 
these recovered MAGs spanned 26 known phyla, primar-
ily affiliated with the phyla of Pseudomonadota (n = 131), 
Bacteroidota (n = 57), Actinomycetota (n = 54), Plancto-
mycetota (n = 54), and Chloroflexota (n = 42) (Additional 
file 1: Fig. S3 and Additional file 2: Table S2). Notably, the 
GTDB-Tk classification result indicated that 12 MAGs 
were not able to be assigned to the known family (Addi-
tional file 2: Table S2), and approximately 97 MAGs could 
not find close genomes at the genus level. Only 77 of the 
454 recovered MAGs could be annotated at the species 
level. These findings highlight the high novelty of the 
recovered genomes.

The microbial community compositions at the phy-
lum level, as interpreted by recovered MAGs (Fig.  1b), 
were comparable to the profiles illustrated by miTags 
(Fig. 1a), although a slight variation in the relative abun-
dance of some predominant phyla was observed. The 
relative abundances of recovered MAGs (Additional 
file  2:  Table  S3) were depicted in the phylogenetic tree 
(Additional file  1: Fig. S3), where remarkable variations 
in the relative abundance of specific microorganisms 
were observed. For instance, anaerobic ammonium oxi-
dation (anammox) bacteria were only detected in the 
carrier biofilm, accounting for about 5% of the entire 
microbial community. Additionally, two complete ammo-
nia oxidation (comammox) bacteria were identified and 
dominated the carrier biofilm. Overall, distinct micro-
bial distribution patterns were observed between AS and 
biofilm.

Distinct metabolic capacities between AS and biofilm
The differences in the microbial communities can lead 
to variations in metabolic capacities. As such, we fur-
ther investigated and compared the metabolic potentials 
and metabolic activities of the microbial communities 
involved in the biogeochemical cycling of carbon, nitro-
gen, and sulfur across the biofilm and AS samples. 
Among the recovered MAGs from this ecosystem, the 
majority are capable of organic carbon oxidation (446 
MAGs), fermentation (417 MAGs), acetate oxidation 
(354 MAGs), and sulfur oxidation (243 MAGs) (Addi-
tional file 1: Fig. S4). For nitrogen cycling, three recovered 
MAGs were predicted to be involved in the ammonia oxi-
dation process, including two comammox Nitrospira and 
one ammonia-oxidizing bacteria (AOB). Additionally, 51 
MAGs were found to encode genes for nitrite oxidation, 
with eight of these nitrite oxidizers affiliated with nitrite-
oxidizing bacteria (NOB) and two MAGs affiliated with 
comammox Nitrospira. Only one MAG capable of sulfite 
reduction was recovered in this study.

The metabolic capacity prediction results indicated 
that the microbial communities of AS samples encode 
a greater capacity for all existing metabolic functions 
involved in carbon cycling, except for hydrogen gen-
eration (Fig.  2a). Consistent high metabolic activities of 
these metabolic functions were also revealed (Fig.  2a). 
For nitrogen cycling, higher capacities for ammonia oxi-
dation, nitrite oxidation, and anammox reactions were 
observed in the carrier biofilm community (Fig. 2b). The 
abundant, newly recovered comammox Nitrospira and 
diverse NOB might contribute to the higher capacity and 
activity for nitrite oxidation in the biofilm community. In 
contrast, microbial communities of AS exhibited greater 
capacities for denitrification, nitrogen fixation, and nitrite 
ammonification (Fig.  2b). Organisms capable of sulfite 
oxidation and sulfate reduction were abundant and active 
in the biofilm community (Fig. 2c). Notably, a higher H2S 
production capacity through thiosulfate disproportiona-
tion was observed in biofilm. However, microbes capable 
of reducing sulfur were absent in this system.

Diverse and novel phages in this hybrid biofilm 
and activated sludge system
To create a more comprehensive phage catalog, vOTUs 
identified from three different assemblers were combined 
and de-replicated to generate the final set of vOTUs. The 
detailed information on the vOTUs derived from various 
approaches is summarized in Additional file 2: Table S4. 
Following clustering, 18,645 vOTUs were obtained, 
with a longer average length of 28,038  bp and N50 of 
42,298 bp (Additional file 2: Table S4, S5). Approximately 
62.0–92.1% of metaviromic reads could be recruited by 
the final vOTUs set (Additional file 2: Table S4), suggest-
ing that this set could represent the majority of phages 
enriched from this system.

By leveraging the phage catalog, we performed an 
extensive analysis of the taxonomic classification of 
phages recovered from this system. Given the absence 
of a universal marker gene in phages, microbial-style 
marker-based taxonomy classification is not feasible [44]. 
Furthermore, considering the substantial diversity and 
novelty of phages in biological systems, methods suitable 
for the annotation and classification of novel phages are 
required. Therefore, in this study, both the gene-sharing 
network clustering algorithm (vConTACT2 [44]) and a 
graph convolutional network-based deep learning clas-
sifier (PhaGCN2 [45]) were utilized. Gene-sharing net-
work clustering was performed by calling the proteins 
encoded by phages and taxonomically known reference 
phage genomes from the Viral RefSeq (Fig.  3a). After 
removing the reference phage genome-only clusters, the 
results showed that a total of 8596 vOTUs were clus-
tered into 2538 viral clusters (VCs) with two or more 
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members (Additional file  2:  Table  S6); this resulted in 
approximately 46% of vOTUs being assigned to a VC. 
By examining the presence of reference genomes in the 
VCs, only 59 VCs (225 vOTUs) could be assigned to a 
known viral family, and about 86% of these annotated 
VCs were classified into the family of Siphoviridae, Myo-
viridae, and Podoviridae (Fig. 3a). The lower assignment 
rate indicated that this system harbored a substantial 
number of unexplored phages. For the classification 
using PhaGCN2, which has enhanced the resolution of 
taxonomic classification of phages, similar constitutes for 
taxonomy profiling were obtained (Fig. 3a and Additional 
file 2: Table S7). Additionally, lifestyle prediction results 
indicated that about 62% of the reconstructed phages are 
lytic (Fig. 3a and Additional file 2: Table S8).

Metaviromic and bulk metagenomic data from these 
two sample types were used to profile the distribu-
tion and diversity of phage communities in biofilm and 
AS (Additional file  2:  Table  S9), respectively. Apparent 
dissimilarities in phage communities between biofilm 
and AS were revealed by PCoA analyses (Additional 
file  1: Fig. S5a,  b). Only 4867 vOTUs and 1817 vOTUs 

were shared among all samples in the metavirome and 
metagenome, respectively (Fig. 3b, c); meanwhile, a large 
number of vOTUs were shared amongst AS samples, 
emphasizing the distinct phage composition between 
AS and biofilm. Moreover, the phage diversities in AS 
and biofilm were also compared. In metaviromes, higher 
Shannon and Simpson diversity of biofilm were observed, 
and minor distinctions in the diversity of AS samples 
were demonstrated (Additional file  1: Fig. S5c,  d). For 
the metagenomes, the Shannon and Simpson indexes 
were not consistent with the result of metaviromes; lower 
diversity indices were observed in biofilm (Additional 
file 1: Fig. S5c, d). Lower phage coverage in both biofilm 
metavirome and metagenome was observed, although 
higher diversity was observed in the biofilm metavirome 
(Fig. 3d, e). Notably, both in the metavirome and metage-
nome, these samples displayed little differences in viru-
lent and temperate phage fractions (Fig. 3d, e).

Tight‑connected prokaryotic hosts and phages
The integration of conventional in silico approaches and 
Hi-C method reported that 1190 vOTUs could be linked 

Fig. 2  Metabolic profiles of the hybrid communities. The community-level metabolic capacity/activity for carbon (a), nitrogen (b), and sulfur (c) 
cycling across carrier biofilm and AS samples. The relative abundances of all genomes capable of a specific metabolic function were summed 
to profile the community-level capacity. The metabolic activities of all genomes capable of a specific metabolic function were summed to profile 
the community-level activity



Page 8 of 17Wang et al. Microbiome          (2024) 12:134 

to 335 prokaryotes reconstructed from this system. 
CRISPR spacer-based searching reported 177 host-phage 
pairs. Homology and tRNA sequence searching found 
393 and 69 host-phage pairs, respectively. Furthermore, 

the Hi-C signal was able to find as many as 817 host-
phage pairs, which significantly improved the resolu-
tion of host-phage relationships. After summarizing the 
host-phage pairs assigned by these four methods, a total 

Fig. 3  Taxonomic diversity and distribution of vOTUs. a Classification and lifestyle prediction of the reconstructed vOTUs. b Venn diagram of vOTUs 
in metavirome. c Venn diagram of vOTUs in metagenome. d Coverage and proportion of virulent and temperate phages in AS and biofilm 
metaviromes. e Coverage and proportion of virulent and temperate phages in AS and biofilm metagenomes. For AS samples, the proportion 
of phages represents the average of four samples
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of 1340 host-phage pairs were ultimately obtained (Addi-
tional file  1: Fig. S6 and Additional file  2:  Table  S10). 
These putative hosts spanned 23 bacterial phyla, with 
Pseudomonadota and Chloroflexota being the most fre-
quently predicted hosts (Additional file 1: Fig. S7). More 
intriguingly, 77 vOTUs were predicted to infect Patesci-
bacteria, which are normally with small genome sizes. 
In addition, 170 vOTUs were linked to Planctomycetota, 
including abundant anammox. Other nitrifiers were also 
found to be infected by phages in this system, such as 
AOB, comammox, and NOB.

Upon obtaining the host-phage pairs collection, the 
prevalence of host-phage pairs in both AS and biofilm 
was explored using bulk metagenomes. A host-phage 

pair in a bulk metagenome will be considered present 
if the phage coverage exceeds 0.1 and the host’s relative 
abundance is over 0.01% for that specific pair. Results 
demonstrated that more than 660 host-phage pairs were 
exclusively observed in AS samples, while 185 host-
pairs occurred solely in biofilm, emphasizing the dis-
tinct prokaryote-phage infection events between these 
two environments (Fig.  4a). In addition, it was found 
that approximately 24.5–31.9% (based on coverage) of 
the phages could be assigned to specific hosts, and the 
predicted hosts accounted for 21.1–39.0% of the entire 
microbial community (Fig.  4b). Notably, the distribu-
tion of phages was found to be in good agreement with 
that of their predicted prokaryotic hosts, based on the 

Fig. 4  Host-phage interactions and potential metabolic functions of hosts. a The upset chart shows the number of host-phage pairs and their 
sharedness in each sample. b The proportion of predicted hosts and their associated phages within the whole prokaryotic and phage communities, 
respectively. c The relative abundance of predicted hosts and their associated phages at the phylum level. For phage, the coverage of phage 
with a host affiliated with the same phylum was summed and divided by the summed coverage of phages with putative hosts. d The proportion 
of function-specific hosts contributing to the overall metabolic capacity or activity of specific metabolic functions in the metagenome (upper 
panel) and metatranscriptome (lower panel). The proportion was calculated by dividing the abundance or activity of function-specific hosts 
by the abundance or activity of function-specific prokaryotes in the system
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grouping results of host-phage pairs at the phylum level 
(Fig. 4c). This highly consistent trend in the appearance 
of hosts and their related phages suggests a strong con-
nection between them. Furthermore, the distinct com-
position of the identified host between AS and biofilm 
can be anticipated based on the distinct host-phage pairs 
profile observed for both AS and biofilm. Importantly, 
the majority of these predicted hosts occupied more than 
70% of the abundance of the prokaryotes with a specific 
metabolic capacity identified in this system, and they also 
represented the active members involved in a particular 
metabolic process, as indicated by the proportion of the 
transcriptional activities of these hosts (Fig.  4d). These 
results suggested that phages may play a crucial role in 
mediating the carbon, nitrogen, and sulfur cycling in this 
system by regulating the host metabolism.

Auxiliary metabolic potential of phages
The auxiliary metabolic potential of reconstructed phage 
was also explored through the prediction and annotation 
of AMGs encoded by the phages. A total of 5253 phage 
genes were predicted as AMGs based on the DRAM-v 
annotation, of which 2301 could be obtained annota-
tion information (Additional file  2:  Table  S11). Results 
indicated that most putative AMGs were assigned to 
the category related to carbon utilization, organic nitro-
gen metabolism, and miscellaneous (MISC) processes 
(Additional file 2: Table S11). Given the credibility of the 
prediction of their auxiliary function, genes related to 
glycosyl transferases, peptidase, amino acid, and infor-
mation systems were excluded from subsequent discus-
sion [48, 49]. Of these retained predicted AMGs involved 
in carbon utilization, 197 putative AMGs encoding gly-
coside hydrolases and 22 putative AMGs encoding poly-
saccharide lyases were found. Intriguingly, two AMGs 
capable of driving the assimilatory sulfate reduction and 
two AMGs involved in the urea cycle were predicted, 
respectively. Moreover, AMGs involved in central car-
bon, C1 metabolism, hydrocarbon degradation, and other 
modules were also identified in these phage genomes 
(Fig. 5a and Additional file 2: Table S11). We additionally 
noted that the difference between the annotated numbers 
of AMGs and the expected frequencies of AMGs (calcu-
lated based on the proportion of genes of each category 
in the reference databases) (Additional file 2: Table S12) 
was statistically highly significant (chi-square p < 0.001). 
This finding implies that the enrichment of certain cat-
egories is not solely the result of the database size.

To predict the potential function of AMGs in this sys-
tem, we conducted further analysis on their abundance 
and expression levels. Results reveal that the gene abun-
dance of AMGs associated with the carbohydrate-active 
enzymes (CAZymes) is relatively higher than that of 

other categories (Fig. 5a). Additionally, highly expressed 
genes belonging to CAZymes were observed in bio-
film (Fig.  5a). Furthermore, we subdivided the modules 
belonging to this category and explored the abundance 
(Fig.  5b) and expression (Fig.  5c) of genes within these 
modules. Interestingly, different expression profiles were 
observed between biofilm and AS samples. In AS sam-
ples, genes related to glycoside hydrolases exhibited the 
highest expression, whereas in biofilm, a comparable 
expression of genes associated with glycoside hydrolases 
and carbohydrate-binding modules was observed. Fur-
thermore, phage-mediated assimilatory sulfate reduction 
activity was observed in AS samples.

Phage‑host infection dynamics
The dynamics of phage-host infection were explored by 
employing the abundance information of prokaryotes 
and phages calculated from the time-series AS metagen-
omic data (Additional file  2:  Table  S13, S14). First, we 
examined the dissimilarities in the overall prokaryotic 
and phage communities over time and investigated the 
relationships between these two communities using Pro-
crustes analysis. Notably, Procrustes analysis revealed 
highly consistent trends in the changes for both com-
munities, emphasizing that phage composition was 
strongly correlated (M2 = 0.0683, p = 0.001) with prokary-
otic composition (Fig. 6a). Furthermore, we profiled the 
relative abundance of phages and their associated hosts 
at the phylum level, uncovering noticeable variations 
over time (Fig. 6b). For instance, the relative abundance 
of the Planctomycetota populations increased over time, 
while an opposite trend was observed for Actinomyce-
tota. For phages, the relative abundance of Planctomyce-
tota-related phages did not show similar trends as their 
hosts, while a consistent decrease trend was shown for 
Actinomycetota-related phages. Consistent fluctuation 
changes in related phages were demonstrated for the 
phyla of Bacteroidota, Chloroflexota, and Myxococcota. 
For the abundant phylum Pseudomonadota, their abun-
dance remained stable over time, while the related phage 
increased. Based on these varying trends of prokaryotic 
hosts and phages, we speculate that host-phage may have 
various infection dynamics.

To explore the infection patterns of hosts and phages, 
we performed a correlation analysis using the Spear-
man correlation coefficient at the phylum level. Very 
strong positive correlations were observed for Chloro-
flexota, Patescibacteria, and their associated phages 
(Fig.  6c). Additionally, Actinomycetota, Bacteroidota, 
and Myxococcota and their related phages also exhib-
ited strong correlations (Additional file 1: Fig. S8). These 
findings suggest that these phage populations increased 
or decreased in tandem with their hosts. However, no 
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consistent or opposite variation trends were observed 
for other phyla. To further explore their potential inter-
actions or phage infection mechanisms, we also exam-
ined the phage/host ratios to indicate infection events 
or phage replication activity over time. We observed 

variations in the phage/host ratios for different phyla 
during this period (Additional file 1: Fig. S9). According 
to correlation results, a very strong correlation between 
the phage/host ratio and phage coverage for Nitrospirota 
and Pseudomonadota was observed (Fig. 6d). Significant 

Fig. 5  Abundance and activity of predicted AMGs. a The summary of predicted AMGs from reconstructed vOTUs, as well as their abundance (GPM) 
and expression (TPM) in AS and biofilm samples. b Proportions of genes (abundance) associated with various CAZymes. c Proportions of gene 
expression associated with various CAZymes
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correlations were also found for the phyla of Acidobacte-
riota, Bacteroidota, and Myxococcota (Additional file  1: 
Fig. S10). This implies that the increase or decrease of 
phages was not solely determined by host abundance but 
was influenced by changes in the phage/host ratio, that is, 
their infection or replication capability within host cells.

Discussion
In this study, the distribution and activities of functional 
microbes were investigated by integrating metagenomics 
and metatranscriptomics. Distinct microbial community 

compositions were observed between AS and carrier bio-
film, with abundant eukaryota and archaea present in the 
biofilm. High-quality genomes recovered through hybrid 
assembly revealed that this system harbored numerous 
novel organisms not represented in existing databases, 
including diverse and abundant nitrifiers involved in the 
nitrogen cycle and archaea populations affiliated with 
the DPANN superphylum. Notably, the unique char-
acteristics of this system allow for distinct distribution 
patterns and varying activities of functional microbes. 
For instance, AOB, NOB, and comammox were found in 

Fig. 6  Temporal dynamics and infection feature of host-phage pairs. a Procrustes analysis of prokaryotic and phage communities over time. 
Prokaryotic and phage community members were represented by the reconstructed MAGs and vOTUs, respectively. The years 2018 and 2019 are 
denoted by the numbers 18 and 19, respectively, while the last two digits indicate the corresponding month. b Relative abundance of predicted 
hosts and associated phages over time, which was summarized at the phylum level. c Spearman correlation between host and phage coverage 
at the phylum level. d Spearman correlation between phage/host ratio and phage coverage at the phylum level. The shaded areas represent 95% 
confidence intervals
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both the biofilm and AS, while anammox bacteria were 
detected only in the biofilm with high abundance. The 
substrate and oxygen gradients within this system may 
explain this distribution [60, 61]. Regarding the denitri-
fication process, higher activities for nitrite, nitric oxide, 
and nitrous oxide reduction were observed in AS sam-
ples, particularly in tank A, the anoxic tank in this treat-
ment system. Higher transcriptional activities of genes 
for nitrate reduction were observed in the biofilm, sug-
gesting that the nitrite generated during this process may 
actuate the anammox reactions in the biofilm, empha-
sizing the cross-feeding within this system [6]. Collec-
tively, the biochemical characteristics of microorganisms 
play a crucial role in shaping their spatial distribution, 
which subsequently influences their accessibility to vari-
ous substrates. Further studies are needed to investigate 
the metabolite exchange mechanisms among different 
populations, as well as the strategies employed for their 
preservation.

The phage community, similar to the prokaryotic com-
munity, displays notable differences between AS and bio-
film samples. A considerable number of unique phages 
were enriched and identified in both AS and biofilm 
samples, with these variations also being evident in the 
corresponding bulk metagenomes. This finding is con-
sistent with the conventional wisdom that phages and 
hosts are highly dependent and that most phages have a 
narrow host range [55]. In addition to the distribution of 
hosts leading to differences in phages, the characteristics 
of their surrounding environment will also affect their 
distribution and dispersal. The lower coverage in the 
biofilm suggested differences in phage density. Previous 
studies have suggested that the microbial communities 
within biofilms are less susceptible to phage infections 
due to the inhibition of phage transport into the biofilm 
[62, 63]. This limitation makes it less likely for phages to 
infect bacteria located farther away within the biofilm. In 
contrast, AS slurry is more favorable for the dispersal and 
infection of phages, which could account for their high 
density in AS compared to biofilm.

The high-resolution analysis of host-phage relation-
ships using the Hi-C technique enables us to gain a 
comprehensive understanding of the potential eco-
logical roles of phages by linking them to functional 
prokaryotes. Notably, the high proportion of infected 
prokaryotic hosts involved in various metabolic func-
tions highlighted the potential vital roles that phages 
have in influencing this system. In addition to regu-
lating the host mortality and reprogramming host 
metabolism, which in turn impacts the metabolic 
functions, phages also appear to impact system func-
tion through auxiliary metabolism, as suggested by the 
AMGs encoded in their genomes. The abundance and 

activity of AMGs encoding glycoside hydrolases and 
polysaccharide lyases suggest that phages contribute 
to the breakdown of complex carbohydrates and poly-
saccharides. This could potentially facilitate microbial 
carbon degradation and utilization, ultimately influenc-
ing carbon cycling within this system [64, 65]. The high 
expression of carbohydrate-binding modules might aid 
in the binding of glycoside hydrolases to the substrate, 
particularly in biofilm, subsequently promoting the 
hydrolysis of complex carbohydrates [66]. Furthermore, 
the presence of sulfur auxiliary metabolism in recovered 
phages was observed, emphasizing their potential roles 
in the associated cycling processes. Similar findings of 
the potential auxiliary metabolism of phages have been 
reported in various systems [48, 49, 64, 67, 68].

Time-series data analysis enables us to explore the 
dynamics of prokaryotic and phage communities over 
time. By leveraging identified host-phage pairs, correla-
tion analyses between phages and their associated hosts 
lead us to speculate that phage-host infection dynam-
ics. Our findings reveal a strong correlation between the 
abundance of phages infecting specific phyla, such as 
Chloroflexota and Patescibacteria, and the abundance 
of their respective hosts. However, for phages infecting 
other phyla like Nitrospirota and Pseudomonadota, the 
phage/host ratio determines their abundance, with infec-
tion rates or reproduction abilities changing alongside 
their associated hosts. Previous studies have highlighted 
that the phage/host ratio is an important factor reflect-
ing the host-phage relationships [65, 69, 70]. Importantly, 
phage/host ratio varies across different ecosystems and 
environmental conditions have been revealed [65, 71]. 
The varied lineage-specific phage/host ratios imply that 
the shifting in biotic and/or abiotic parameters may affect 
the phage-host infection dynamics, subsequently affect-
ing microbial responses to the altered environmental 
conditions [65]. For the phylum of Nitrospirota, their core 
members are NOB and comammox, the altered phage/
host ratio imply a potentially vital role of phages in influ-
encing nitrogen cycling within this system. Additionally, 
the phage/host ratio may be indicative of phage activ-
ity, as actively replicating phages would exhibit higher 
genome coverage than their hosts [70]. In this system, a 
higher and varied phage/host ratio was observed for the 
phyla Planctomycetota, Chloroflexota, and Myxococcota, 
suggesting that the phages associated with these phyla 
are more active (Additional file 1: Fig. S9). Microorgan-
isms affiliated with these phyla represent a considerable 
proportion of the prokaryotic community and participate 
in various metabolic processes. This observation fur-
ther implies that phages may have a vital impact on the 
transformation and cycling of substances within the sys-
tem. Collectively, these findings highlight that not only 



Page 14 of 17Wang et al. Microbiome          (2024) 12:134 

environmental conditions might influence prokaryotes, 
but bacteriophage infections also play a role in shaping 
prokaryotic communities. However, further research is 
needed to understand how phage infections are affected 
by environmental conditions and how these infections in 
turn impact the response of hosts to the environmental 
conditions.

The current life strategies of phages encompass the 
“kill-the-winner” and “piggyback-the-winner” models 
[72, 73]. The “kill-the-winner” model emphasizes the 
lytic life stage of viruses, suggesting that when a host is 
actively growing and its population numbers are increas-
ing, lytic infections will be favored over lysogenic infec-
tions. In contrast, the “piggyback-the-winner” model 
posits that lysogeny is favored when hosts are abun-
dant [72]. In this study, the fractions of lytic or temper-
ate phages are not well correlated with host abundance 
(Additional file 1: Fig. S11), suggesting the existing viral 
infestation models may not be suitable for explaining the 
complex system. One potential explanation is that the 
metagenome predominantly captures viable or infectable 
cells along with their intracellular phages from AS sam-
ples [70]. Meanwhile, lysed cells and released phages may 
not be readily available for detection as they are released 
into the surrounding fluid. Moreover, a recent study has 
highlighted that phage adsorption and entry into host 
cells do not equate to full completion of the lytic cycle 
owing to cellular defense systems [74]; therefore, in-
depth investigation into the infection mechanisms may 
provide valuable insights and help address this ques-
tion. Furthermore, Berg et  al. have suggested that lytic 
and lysogenic viruses can readily co-infect the same host 
population and that host strain-level diversity might be 
an important factor controlling virus-host dynamics 
including lytic/lysogeny switch [72]. Therefore, investi-
gating the dynamics of phages at the host strain level is of 
great importance, especially for the important functional 
microbes involved in the pollutant removal process.

Conclusions
In conclusion, our study provides a comprehensive 
understanding of the relationships between prokaryotic 
and phage communities in this hybrid biological system. 
Distinct distributions of prokaryotic and phage com-
munities were revealed between AS and biofilm sam-
ples. Additionally, a tremendous diversity of phages was 
depicted, with a higher abundance of phages found in AS. 
The Hi-C approach substantially augments the linking of 
prokaryotes and phages, highlighting that phages may 
impact the ecosystem function by regulating host mortal-
ity and metabolism, as well as influence substance cycling 
through auxiliary metabolism. Furthermore, the inte-
gration of these newly established host-phage pairs with 

time-series metagenomic data unveiled phage-host infec-
tion dynamics over time, further emphasizing the poten-
tially crucial impact of phages on system performance 
and stability. Gaining a deep understanding of the rela-
tionship between biotic and/or abiotic parameters and 
infection dynamics represents an important and intrigu-
ing area for further research.
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