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Metagenomics reveals the temporal 
dynamics of the rumen resistome 
and microbiome in goat kids
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Abstract 

Background  The gut microbiome of domestic animals carries antibiotic resistance genes (ARGs) which can be trans-
mitted to the environment and humans, resulting in challenges of antibiotic resistance. Although it has been reported 
that the rumen microbiome of ruminants may be a reservoir of ARGs, the factors affecting the temporal dynamics 
of the rumen resistome are still unclear. Here, we collected rumen content samples of goats at 1, 7, 14, 28, 42, 56, 70, 
and 84 days of age, analyzed their microbiome and resistome profiles using metagenomics, and assessed the tempo-
ral dynamics of the rumen resistome in goats at the early stage of life under a conventional feeding system.

Results  In our results, the rumen resistome of goat kids contained ARGs to 41 classes, and the richness of ARGs 
decreased with age. Four antibiotic compound types of ARGs, including drugs, biocides, metals, and multi-com-
pounds, were found during milk feeding, while only drug types of ARGs were observed after supplementation 
with starter feed. The specific ARGs for each age and their temporal dynamics were characterized, and the net-
work inference model revealed that the interactions among ARGs were related to age. A strong correlation 
between the profiles of rumen resistome and microbiome was found using Procrustes analysis. Ruminal Escherichia 
coli within Proteobacteria phylum was the main carrier of ARGs in goats consuming colostrum, while Prevotella rumini-
cola and Fibrobacter succinogenes associated with cellulose degradation were the carriers of ARGs after starter supple-
mentation. Milk consumption was likely a source of rumen ARGs, and the changes in the rumen resistome with age 
were correlated with the microbiome modulation by starter supplementation.

Conclusions  Our data revealed that the temporal dynamics of the rumen resistome are associated with the micro-
biome, and the reservoir of ARGs in the rumen during early life is likely related to age and diet. It may be a feasible 
strategy to reduce the rumen and its downstream dissemination of ARGs in ruminants through early-life dietary 
intervention.
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Background
In modern society, intensive livestock production sys-
tems provide high-quality milk and meat to meet the 
demand for sufficient and high-quality food, but it largely 
depends on the wide application of antibiotics that 
results in antibiotic resistance in animals and humans 
[1–3]. The rumen microbiome might act as a large res-
ervoir of antibiotic resistance genes (ARGs) which have 
been defined as environmental contaminants since 2006 
[4, 5]. Recently, several studies confirmed that ARGs (e.g., 
daptomycin, macrolide, betalactams, and aminoglycoside 
classes) widely exist in the rumen microbiome [4, 6–8, 
8], and can be released into the feces and subsequently 
contaminates external ecosystems, such as water and 
soil, through runoff from manure, and be transmitted to 
humans by ruminant products or direct contact [9–13]. 
Thus, regarding the important position of the rumen 
microbiome in livestock production and its challenges as 
a reservoir for ARG dissemination, it is urgent to under-
stand the association between rumen microbiome and 
resistome, thereby ensuring the sustainable development 
of animal husbandry and food safety [14].

Many variables may influence ARGs. For example, the 
use of antibiotics in disease treatment and feed additives 
can result in changes in ARGs [15]. The diet and envi-
ronmental factors that can drive changes in microbiome 
dynamics or dysbiosis also have impacts on ARGs of the 
gut in both animals and humans [4, 7, 16]. Moreover, the 
horizontal transfer of ARGs is very important for ARG 
measurement since it allows for resistance to expand 
beyond specific clones. However, knowledge about the 
factors influencing horizontal gene transfer within the 
microbial community is limited [17]. Thus, understand-
ing the sources, distributions, and residuals of ARGs 
within one community as a reservoir could help us inte-
grate ARG dissemination among different systems. Auf-
fret et  al. concluded that diet affected the ARGs profile 
in the rumen microbial community in beef cattle as they 
found that chloramphenicol and microcin resistance 
genes were dominant in forage-fed cattle, but amino-
glycoside and streptomycin resistances were enriched 
in concentrate-fed animals [4]. To explore the impact of 
dietary intervention on the development of antibiotic 

resistance is necessary since the dietary nutritional con-
tent is associated with gut resistome [18]. Compared to 
the fecal community, the rumen microbiome is distinct, 
as it experiences multifaceted and significant changes in 
the neonatal stage to acquire the capacity to digest carbo-
hydrates [19–22]. Since the neonatal rumen microbiome 
is modulated by dietary factors [23, 24], it is necessary 
and urgent to investigate the characteristics of ARGs dis-
tribution and evolution in the rumen, and whether solid 
diet supplementation can affect the horizontal transfer of 
ARGs during the early life of ruminants, which is help-
ful to address the aggravation of bacterial resistance and 
dissemination.

To address this gap, we hypothesized that the early 
colonization of the rumen microbiome in newborn goat 
kids serves as an initial source of ARGs, and the rumen 
resistome is partly affected by microbial changes caused 
by diet during early life. In this study, metagenomics 
was performed to measure the temporal dynamics of 
the rumen resistome and microbiome in goat kids. Age-
associated ARGs were identified by metagenomics, and 
the expression of these ARGs was measured by RT-qPCR 
and metatranscriptomics to validate the obtained results. 
Using network analysis, we further detected the associa-
tions among ARGs and their association with the rumen 
microbiota. Temporal changes in carbohydrate-active 
enzymes in the rumen microbiome correspondingly 
complement the association between dietary changes 
and resistome dynamics. The current research provides a 
comprehensive understanding of the rumen resistome in 
early life and reveals that diet during early life may mod-
ify ARGs in livestock.

Results
Ruminal microbiome changes with age and diet
We sequenced the metagenome of 43 rumen-content 
samples of goat kids from 1, 7, 14, 28, 42, 56, 70, and 
84  days old (Fig.  1A), which resulted in a total of 632 
Gbps of sequencing data. The sequencing statistics are 
given in Table  S1, and the taxonomic annotation rates 
are summarized (Figure S1). As microbiota is the major 
carrier for ARGs, the temporal dynamics of the rumen 
microbiome was first investigated to give fundamental 

(See figure on next page.)
Fig. 1  Rumen microbiome changes with ages in the early life of goats. A The ages, sampling day, and diet regime for goat kids in this study. B The 
number of observed families in rumen. The line inside the box denotes the median, and the boxes denote the interquartile (IQR) between the first 
and third quartiles (25th and 75th percentiles, respectively). The observed families on d1 were significantly lower than other ages (Wilcoxon 
rank-sum test, p < 0.05). C Principle Coordinate Analysis (PCoA) of Bray–Curtis distances between microbiota. The R2 and P-value of PERMONOVA 
to test the differences of beta diversity was labeled. The cluster of d1 samples was distinct compared with other ages, while d7 and d14 were 
clustered separately compared with the ages when goat kids accessed the starter diet (d42 to d84). D Bacterial abundances at the family level. Each 
bar represents a bacterial family and each column represents one sample
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Fig. 1  (See legend on previous page.)
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knowledge. The rumen microbiota consisted of bacteria 
(94.6%), eukaryotes (3.2%), archaea (1.4%), and viruses 
(0.7%) (Table S2), which indicates that approximately 
5% of the rumen is non-bacterial, reflecting a substan-
tial level of cross-kingdom diversity. At the phylum 
level, Proteobacteria, Bacteroidetes, Firmicutes, and 
Actinobacteria were the four top taxa across all sam-
ples, accounting for 85% of the total bacterial commu-
nity (Figure S2). Proteobacteria decreased in abundance 
from d1 to d28, while its level did not change from d42 to 
d84. Bacteroidetes remained at a similar abundance dur-
ing the whole experiment. The abundance of Firmicutes 
varied at different ages, and it was higher on d28, d56, 
and d84. The abundance of Actinobacteria was low on 
d1 but remained high at other time points. Fibrobacteres 
increased in abundance over time and peaked after wean-
ing (d70 and d84).

The observed families and Shannon Index on d1 were 
significantly lower than those at other ages (Fig.  1B, 
Figure S3). Sequencing data also displayed a temporal 
change in microbial structure based on principle coor-
dination analysis (PCoA) (Bray–Curtis distance, PER-
MANOVA test: R2 = 0.21, P = 0.001) (Fig. 1C). The cluster 
of d1 samples was distinct compared with other ages, 
while d7 and d14 were clustered separately compared 
with the ages when goat kids accessed the starter diet 
(d42 to d84).

Bacteroidaceae and Prevotellaceae, two family mem-
bers in the Bacteroidetes phylum, were major bacteria 
across all samples (Fig.  1D). The relative abundance of 
Bacteroidaceae was the highest on d1, followed by that 
on d7 and other ages with similar abundances. Prevotel-
laceae was among the multiple families with comparable 
abundance from d1 to d14, but exhibited a rising trend 
from d28 to d42, and remained a top family until the 
end of the trial. Another two important families belong-
ing to the Proteobacteria phylum, Enterobacteriaceae 
and Pasteurellaceae, were enriched on d1 (21.2% and 
16.7%), but their abundances were approximately 1% on 
other days. The Fibrobacteraceae (Fibrobacteres phylum) 
was approximately zero from d1 to d14 and significantly 
increased from d28 to d84. Moreover, some bacteria were 
enriched at certain ages. For example, the Campylobacte-
raceae (Proteobacteria phylum) was specifically abundant 
on d7, and Porphyromonadaceae (Bacteroidetes phylum) 
was enriched on d14.

The archaea in the rumen were also classified. The 
major phyla of archaea were Euryarchaeota, Crenar-
chaeota, and Thaumarchaeota (Figure S4A). The phy-
lum Euryarchaeota accounted for 75% of total archaeal 
reads on d1 and over 80% on other days. Crenarchaeota 
and Thaumarchaeota were abundant on d1, while they 
were lower on other days. A total of 143 archaeal genera 

were observed, and the dominant genera across all sam-
ples included Methanobrevibacter, Methanosarcina, and 
Thermococcus (Figure S4B). The abundance of Methano-
brevibacter increased from d1 to d14 and then decreased 
with increasing age.

The temporal dynamics of the rumen resistome
To understand the temporal dynamics of the rumen 
resistome in goat kids during early life, metagenomic 
sequences were investigated for the presence of anti-
biotic resistance genes (ARGs). Our analysis with the 
AMRplusplus (v2) pipeline found that the 1031 detected 
ARGs belonged to 396 ARG groups across all samples, 
representing 41 antibiotic resistance classes. Four anti-
biotic compound types of ARGs, including Drugs, Bioc-
ides, Metals, and Multi-compound, were found from d1 
to d28, while only Drug type ARGs remained from d42 
to d84 in the rumen (Figure S5), indicating that the ARGs 
under Biocides, Metals and Multi-compound types pos-
sibly came from colostrum which is the primary nutri-
ent source for goat kids but did not present in the rumen 
with age and diet. Similarly, the Shannon Index of ARGs 
was higher on d1 and kept a low value over time, while 
the richness of observed ARGs decreased significantly 
from d1 to d14 (p < 0.001) and remained at a similar rich-
ness from d42 to d84 (Figure S6). Moreover, the rumen 
resistome of goats significantly changed over ages, 
explaining the 35.7% variation based on the Bray–Cur-
tis distance (PERMANOVA: R2 = 0.21, P = 0.001), with 
d1 samples forming a separate cluster while samples of 
later ages clustered together (Fig.  2A). Additionally, d7 
and d14 samples were distinct from those of other ages 
when goat kids were supplemented with starter, which 
indicated that a change of the rumen resistome profile 
occurred at that time (Fig. 2A).

The ARG composition at the class level also changed 
with age (Fig.  2B). Corresponding to the diversity of 
ARGs, the number of abundant ARG classes was more 
on d1, while less dominant classes were observed from 
d7 to d84, with MLS (macrolides, lincosamides, and 
streptogramin A and B), Aminoglycosides and Tetra-
cyclines accounting for approximately 89% of the total 
ARGs. Some ARG classes, including Drug and biocide 
resistance, and multi-metal resistance, were observed 
only on d1 after consuming colostrum. MLS increased 
from d1 to d7, and then decreased and maintained simi-
lar abundances from d28 until the end of this trial. The 
abundance of Elfamycins was approximately 3% from d1 
to d14 and decreased from d42 to d84. The ARGs con-
ferring resistance to Aminoglycosides, Tetracyclines, 
and Oxazolidinone increased on d7 and remained high 
until d84. The detected ARGs that were predicted to be 
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Fig. 2  The rumen resistome structure and composition in goat kids. A Principle Coordinate Analysis (PCoA) of Bray–Curtis distances for the rumen 
resistome, showing changes in resistome structure over time as assessed by PERMANOVA test. Samples collected on d1 formed a separate cluster 
while later samples were more similar. B Relative abundance of antibiotic resistance genes (ARGs) at the class level of MEGARes 2.0. Each column 
represents a sample, and each bar represents an ARG class



Page 6 of 18Chai et al. Microbiome           (2024) 12:14 

Cationic antibiotic peptides remained at similar abun-
dances throughout the experiment.

To determine the temporal variations in ARGs as the 
kids grew and the age-specific enrichment of ARGs, 
linear discriminant analysis (LDA) effect size (LEfSe) 
was performed (Fig.  3A). The ARGs, including four 
drug type ARGs (RPOB, GYRA, GYRBA, and ROB), 
three multi-compound ARGs (MDTF, ACRF, and 
ACRB), and one metal type ARG (MGTA), were all 
enriched on d1 and decreased in abundance from d7 
to d84. The ARGs identified as the signatures for other 
ages belonged to the Drug types. On d7, the abundant 
ARGs were MLS23S, TUFAB, TET44, TET32, and 
APH2-DPRIME, while SAT and BRO were enriched 
on d14. Among them, TUFAB was abundant from d1 
to d14 and remained non-abundant from d28 to d84. 
On d42, TETQ, ERMF, NIMJ, and ACI had the high-
est values, and their abundances were lower on d1 

compared to other days. The abundance of MEFA 
reached a peak on d56 and decreased a little on sub-
sequent days. The ARGs, including RRSC, RRSH, 
CAP16S, TETX, and LNUC, were enriched on d70, 
whereas TETW, TETO, and TET40 were abundant on 
d84. These signature ARGs for d70 and d84 increased 
abundance with age. Overall, the abundant ARGs on 
d1, such as RPOB, GYRA, GYRBA, MDTF, and ROB, 
decreased with age, but the dominant ARGs in the 
rumen were TETQ, TETX, TETW, TETO, and TET40 
after supplementation starter. As a separate validation 
of the metagenomic dataset for ARGs, quantitative 
reverse transcription PCR (RT-qPCR) and metatran-
scriptomics confirmed that TET44, TETQ, TETW, 
TETO, and TET40, as major tetracycline resistance 
genes, increased with age (Figure S7). It indicates that 
the temporal changes of rumen ARGs in metagenomics 
were consistent with their expression.

Fig. 3  The temporal dynamics of antibiotic resistance genes (ARGs) and their interactions. A Heatmap depicted the age-associated ARGs 
identified by the LEfSe algorithm. The heat map shows the average relative abundances of ARGs on a log scale. The color of cells from purple to red 
corresponds to the relative abundance of ARGs from low to high. B A network analysis of the interactions among ARGs at different ages. The SparCC 
algorithm was employed for network analysis. The nodes (resistance genes, ARGs) were colored by antibiotics at the group level of MEGARes 2.0, 
and the font color of ARGs represents the age-associated signatures identified by the LEfSe
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To understand the temporal dynamics of ARG inter-
actions in the rumen, the major ARGs were used to 
predict co-occurrence patterns. The network inference 
model revealed that the interactions among ARGs 
were strongly associated with age (Fig.  3B). ROB, 
RPOB, and GYRA identified as the d1-signature ARGs 
formed a cluster, representing the co-occurrences pos-
sible from colostrum effects. ROB was connected with 
TET40 and TETO which increased with age, which 
built a bridge to connect the dominant ARGs at dif-
ferent ages. The ARGs, which were higher during the 
period of starter supplementation and belonged to 
Tetracyclines and MLS, had strong correlations and 
formed the largest cluster. Moreover, a cluster of ARGs 
(RRSH and CAP16S) dominant on d70 was observed, 
and MLS23S with high abundances across all ages 
clustered with two other ARGs.

Rumen microbial phylogeny associated with the resistome
By assigning taxonomy to ARG-containing metagen-
omic contigs, the microbial origin of observed ARGs 
in the rumen was identified. The bacterial host phyla of 
ARGs were mainly composed of Proteobacteria, Bac-
teroidetes, Firmicutes, Fibrobacteres, and Actinobac-
teria, and changed with age (Figure S8). Proteobacteria 
mainly carried ARGs on d1, and its abundance decreased 
and remained stable from d28 to d84. Bacteroidetes 
was another important carrier of ARGs on d1, and their 
abundance increased from d7 to d84. Fibrobacteres of 
ARGs was significantly increased from d42 to the end 
of the study. Proteobacteria, one of the most important 
ARG carriers, was associated with colostrum and starter 
supplementation. Enterobacteriaceae and Pasteurellaceae 
abundances were enriched on d1 (Fig.  4A). Bacteroi-
daceae was high on d1 and d7 and then decreased with 
age. However, Xanthomonadaceae was low from d1 to 
d28 and increased from d42 to d84. Prevotellaceae and 

Fig. 4  Rumen resistome associated with its bacterial community. A The most abundant host bacterial families of ARGs. Dots’ size represents 
the average relative abundance of bacteria at a certain age. B Procrustes analysis of the association between the composition of the resistome 
and that of bacterial community among different ages. The correlation coefficient, r, and P-value were generated by the ‘protest’ function, 
with p < 0.05 as the significant threshold. C A network analysis of the co-occurrence patterns between ARG and microbial taxa. The SparCC 
algorithm was used to calculate the relationships between bacterial taxa and ARGs. High abundances of families of Proteobacteria, such 
as Enterobacteriaceae, Pasteurellaceae, and Pseudomonadaceae, on d1, were strongly correlated with ARGs (ROB, GYRA, and RPOB) enriched. The 
abundance of bacterial families (Xanthomonadaceae, Prevotellaceae, and Fibrobacteraceae) increased with age and were associated with the ARGs 
as signatures during the starter supplementation period (d42 to d84)
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Fibrobacteraceae increased significantly from d0 to d28 
and remained in high abundance until d84.

A significant correlation between the composition 
of microbial communities and that of ARG profiles was 
confirmed by Procrustes analysis (correlation coefficient 
r = 0.9079 and p = 0.0001) (Fig. 4B), suggesting that com-
munities with similar microbial compositions had similar 
resistome. Then, we investigated the co-occurrence pat-
terns between ARGs and the major microbial families 
using the network analysis approach. High abundances 
of families of Proteobacteria on d1, such as Enterobacte-
riaceae, Pasteurellaceae, and Pseudomonadaceae, were 
strongly correlated with ARGs (e.g., ROB, GYRA, and 
RPOB) enriched on d1 (Fig.  4C). The bacterial families 

(e.g., Xanthomonadaceae, Prevotellaceae, and Fibrobac-
teraceae) increased with age and were associated with 
the ARGs as signatures during the starter supplementa-
tion period (d42 to d84). These taxa were speculated to 
be possible ARG hosts during the development of the 
rumen resistome in goats in early life. Moreover, Prevo-
tellaceae and Ruminococcaceae formed a connection for 
MLS23S to other ARGs abundant during the starter feed-
ing period, indicating ARG transmission among different 
ages.

To better understand the bacteria carrying ARGs, the 
metagenomic contigs at the species level that were abun-
dant at the families or phyla were characterized (Fig. 5). 
The main ARG contributors in Proteobacteria included 

Fig. 5  The temporal dynamics of majorhost bacterial species and phyla of antibiotic resistance genes (ARGs) in rumen resistome. The size of cycles 
represents the relative abundance of bacterial species at a certain age. To facilitate viewing, only those dominant species carrying ARGs were 
shown, and the diet regime was labeled with different colors for each microbial taxa. As observed, abundances and species of the bacteria carrying 
ARGs changed with age from d1 to d84
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Escherichia coli, Mannheimia haemolytica, Bibersteinia 
trehalosi, Pseudomonas stutzeri, Pseudomonas aerugi-
nosa, and Campylobacter sp. RM8964, which mainly car-
ried ARGs on d1 (colostrum stage) and d7 (milk stage), 
and Salmonella enterica and Xanthomonas cassava, 
which carried ARGs after d42 (period supplemented with 
starter). Several bacterial species under Bacteroidetes 
showed a similar pattern to Proteobacteria. For instance, 
Bacteroides fragilis, Bacteroides vulgatus, Bacteroides 
thetaiotaomicron, Bacteroides heparinolyticus, and Por-
phyromonas gingivalis were abundant from d1 to d14, 
while Prevotella ruminicola mainly carried ARGs from 
d28 to d84. Interestingly, Fibrobacter succinogenes, the 
only species in the Fibrobacteres phylum for the degrada-
tion of plant-based cellulose, increased significantly after 
supplementation of the starter (d42 to d84). Moreover, 
pathogens, such as Fusobacterium necrophorum, Lac-
tobacillus amylovorus, and Clostridioides difficile, were 
characterized as ARG carriers, and their abundances 
were affected by age and dietary changes. Overall, E. 
coli, M. haemolytica, B. trehalosi, P. stutzeri, B. fragilis, 
B. vulgatus, and B. thetaiotaomicron were ARG hosts in 
goat rumen possibly due to consumption of colostrum. 
At the same time, X. cassava, P. ruminicola, and F. suc-
cinogenes carried ARGs when goat kids started to con-
sume a high carbohydrate diet (starter), which indicated 
that colostrum served as the source for the initial rumen 
ARGs and bacterial carriers for ARGs were associated 
with age and dietary changes.

Age and diet changed the functions of the microbiome 
and rumen resistome
Regarding the dietary transition from colostrum to milk 
to starter shaping the microbiome and the temporal 
dynamics of resistome in the rumen, the functions of 
the diet-related microbiome with age and its association 
with ARG structure were evaluated. After metagenomic 
assembly (statistics are presented in Table S3) and open 
reading frames (ORFs) prediction, we firstly annotated 
the functional and metabolic pathways of the rumen 
microbiome nonredundant gene catalog based on the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
eggNOG databases. From KEGG annotation results, the 
categories of ‘Metabolism’ and ‘Genetic Information Pro-
cessing’ at level 1 were the most abundant across all ages 
(Figure S9). At the KEGG level 2 ortholog groups, many 
functions belonged to amino acid metabolism (18.23%), 
carbohydrate metabolism (13.32%), translation (11.66%), 
replication and repair (6.86%), membrane transport 
(6.58%), metabolism of cofactors and vitamins (5.72%), 
and nucleotide metabolism (5.23%) (Figure S10A). More-
over, eggNOG annotation showed that Posttranslational 
modification, protein turnover, chaperones (9.18%), and 

Carbohydrate transport and metabolism (6.03%) were 
more abundant (Figure S10B). Additionally, metatran-
scriptomics validated the main functions at KEGG level 2 
obtained from metagenomics, such as amino acid metab-
olism, carbohydrate metabolism, and energy metabolism 
(Figure S10C).

Then, we focused on the functions of carbohydrate-
active enzymes and proteins. Rumen metagenomes ana-
lyzed for CAZy, COG, and KEGG showed a significant 
change in the functional configuration of the rumen 
microbiome with ages (Bray–Curtis; PERMANOVA 
R2 = 0.60, R2 = 0.59; P = 0.001 for both cases), with sig-
nificant differences occurring on d1 as well as differences 
on d7 and d14 compared to other ages (Fig. 6A, B, Fig-
ure S11). A progressive increase in the number of total 
CAZy enzyme families was observed (Fig.  6C), and the 
count of each CAZy class increased with age (Figure S12). 
The predicted function of the rumen microbiome was 
composed of six classes of CAZy-annotated enzymes, of 
which over 76% characterized CAZy proteins were classi-
fied as glycoside hydrolase (GH) and glycosyltransferase 
(GT) (Fig. 6D). The relative abundance of GH increased 
from d1 to d28 and remained at this high level until d84, 
while GT had an opposite pattern compared with that of 
GH. The abundance of carbohydrate-binding modules 
(CBM) was approximately 15% among all ages. Genes 
encoding polysaccharide lyases (PL) were less abundant 
in d1 rumen samples but remained relatively abundant 
from d7 to the end of the trial. As an additional validation 
of metagenomics, metatranscriptomic data confirmed 
that the number of total CAZy enzyme families increased 
with age, and the major classes of CAZy-annotated 
enzymes were GH, GT, and CBM (Figure S13).

Differential abundance analysis was performed to iden-
tify CAZy families that changed with age in the rumen, 
most of which were GH and GT (Fig. 7A). GH24, GH4, 
GH107, GH15, GH102, GH112, GH13, GT52, GT56, 
and GT25 showed high abundances on d1. Among these 
enzymes, GH24 included lysozyme (EC 3.2.1.17) which 
is the major enzyme in the colostrum of goats. Other 
enzyme families including GH5, GH6, GH57, GH106, 
GT3, GT84, GT50, and GT25 increased with age and 
had higher abundances from d42 to d84. GH5 and GH6 
contained cellulase (EC 3.2.1.4) and cellobiohydrolase 
(EC 3.2.1.91), GH5 included β-glucosidase (EC 3.2.1.21), 
and GH57 had α-amylase (EC 3.2.1.1), which indicated 
that CAZy families in the rumen were associated with 
the consumption of a starter diet containing high car-
bohydrate components. To validate the CAZy enzymes 
identified by metagenomics, the activities of α-amylase 
and carboxymethyl cellulase (CMC) in rumen were 
determined (Figure S14A, B). With age, the concentra-
tions of α-amylase and CMC showed similar trends to 
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the abundances of GH57 and GH6 in metagenomics 
(Figure S14C, D) and metatranscriptomics (Figure S14E, 
F), indicating the accuracy of metagenomic annotation 
of rumen enzymes. Moreover, metagenomic assembly 
was used to predict the bacterial origins of the observed 
CAZy families, and the most abundant microbiota at the 
family level changed with age as shown in Fig.  7B. The 
predicted bacteria, including Pasteurellaceae, Entero-
bacteriaceae, and Clostridiaceae, were abundant on d1, 
matching the abundances of the ARGs bacterial origins. 
Lachnospiraceae contributed to the CAZy enzymes on d7 
and d1. Bacteroidaceae were abundant in d14 and d28. 
The contributions of Prevotellaceae, Fibrobacteraceae, 

and Xanthomonadaceae to CAZy enzymes were higher 
in later days, likely resulting from age and the increased 
intake of a solid diet. Moreover, these three bacterial fam-
ilies were the main ARG hosts from d42 to d84, reflecting 
that the function of the rumen microbiome is associated 
with the resistome.

The changes in CAZy enzymes and their predicted 
microbial hosts revealed that diet (both colostrum and 
starter) modulated the rumen microbiome harboring 
enzymes to digest nutrients (e.g., lactose and fiber). The 
absence of colostrum in the rumen and the presence of 
a new carbohydrate source from the starter decreased 
ARG species while age increased its abundance due to 

Fig. 6  Changes in enzymatic activity over age. A Principle Coordinate Analysis (PCoA) of Bray–Curtis distance of CAZy content. B PCoA of Bray–
Curtis distance of COG pathways. Each point in (A, B) represents a unique sample. The P-value of the PERMONOVA test was labeled. C Total count 
of CAZy enzyme families in goat kids from day 1 to day 84. D Stacked bar plot of the relative abundances of CAZy families per class of enzymes 
with age. Each column represent a sample. Carbohydrate-Active EnZymes database (CAZy); Clusters of Orthologous Groups of proteins database 
(COG); Glycoside Hydrolases (GH); GlycosylTransferases (GT); Polysaccharide Lyases (PL); Carbohydrate Esterases (CE); Carbohydrate-Binding Modules 
(CBMs); Auxiliary Activities (AA)
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the changing rumen microbiome (Fig.  1D). The pre-
dicted microbial hosts of significantly changed CAZy 
enzymes corresponded with gradual changes observed in 
the rumen microbiome of ARGs as well as the network 
analysis at the bacterial family level (Fig.  4A and Fig-
ure S15). The relative abundances of Prevotellaceae and 
Xanthomonadaceae were negatively correlated with Pas-
teurellaceae and Lachnospiraceae (r =  − 0.52, r =  − 0.51, 
p < 0.05), respectively. Together, the data in this study 
support that both age and diet contribute to the micro-
bial composition and its functions in the rumen, and sub-
sequently influence the rumen resistome.

Discussion
The rumen, an important organ of ruminants, is inhab-
ited by a complex microbial system composed of various 
bacteria, archaea, viruses, and fungi [25]. The micro-
biome, which rapidly colonizes the rumen of newborn 
ruminants and changes with age, is critical to rumen 
development and ruminant growth [23, 26]. However, 
the rumen microbiome may also be a reservoir for anti-
biotic resistance and pathogenicity genes that are active 

after the birth of hosts [4, 27]. This study determined the 
temporal dynamics of the taxonomic composition of the 
rumen microbiome of goat kids, the results of which are 
in agreement with those of previous studies, revealing the 
colonization and development of the rumen microbiome 
in early life [28–31]. A strong correlation between the 
resistome and microbial composition in the rumen was 
found. Proteobacteria and Bacteroidetes members (Fami-
lies: Enterobacteriaceae, Pasteurellaceae, Prevotellaceae, 
and Bacteroidaceae, commonly carrying ARGs) showed 
high proportions of the rumen microbiome of goat kids 
in early life. The abundance of these bacteria changed 
over time and was associated with dietary changes. The 
temporal dynamics of the rumen resistome were asso-
ciated with colostrum, starter, and the maturation of 
the microbial community. The initial acquisition of the 
rumen resistome may correlate with colostrum [32], and 
further investigation is needed. Moreover, the priority 
effects and long-term persistence of the resistome need 
to be determined in the future.

In this study, we found that the richness of ARGs 
decreased and resistome structure changed with 

Fig. 7  The abundances of age-associated CAZy families and their predicted bacterial families. A Heatmap depicting the age-associated CAZy 
enzymes. The color of cells from purple to red corresponds to the relative abundance of ARGs on a log scale from low to high. GH24 included 
lysozyme (EC 3.2.1.17) which is the major enzyme in colostrum. GH5 and GH6 contained cellulase (EC 3.2.1.4) and cellobiohydrolase (EC 3.2.1.91), 
GH5 included β-glucosidase (EC 3.2.1.21), and GH57 had α-amylase (EC 3.2.1.1). B The most abundant host bacterial families predicted to produce 
the CAZy are shown in the heatmap. The predicted bacteria, including Pasteurellaceae, Enterobacteriaceae, and Clostridiaceae, were abundant on d1, 
matching the abundances of the ARGs bacterial origins. The contributions of Prevotellaceae, Fibrobacteraceae, and Xanthomonadaceae to CAZy 
enzymes were high in later days, likely resulting from the increased intake of the solid diet
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increasing age. A recent study found decreases in alpha 
diversity of fecal ARGs with age in dairy calves not 
receiving any antibiotics [32], which is consistent with 
our results. Correspondingly, four antibiotic compound 
types were observed during the milk feeding stage (d 1 to 
28), while only one type was observed after d 42. Notably, 
the number of antibiotic resistance classes (MLS, beta-
lactams, and Elfamycins) in the Drug types decreased 
with age, reflecting decreases in ARG richness. Betalac-
tams as a major class of plasmid-mediated extended-
spectrum antibiotics are used in veterinary and human 
medicine against bacterial infections and could improve 
feed utilization and performance of animals [33, 34]. 
However, other ARG classes, such as Aminoglycosides, 
Tetracyclines, and Oxazolidinone, increased over time, 
raising the concern that not all ARGs decrease in abun-
dance with age.

The dynamics of age-associated ARGs were identi-
fied in our results. Before weaning when goat kids con-
sumed milk as their primary nutrient resource, ARGs, 
including RPOB (daptomycin) and TUFAB (Elfamycins), 
GYRBA (Aminocoumarin topoisomerases), and GYRA 
(Fluoroquinolones), were abundant. These ARGs were 
also detected in cow milk samples [8], suggesting the 
vertical transmission of ARGs from milk to the rumen. 
Moreover, it is possible that these ARGs might be from 
an external environment. MLS23S abundance was high 
throughout the trial. MLS23S within the mechanism of 
macrolide-resistant 23S rRNA mutation could be carried 
in many pathogenic bacteria [35]. Other ARGs, including 
TETQ, TETW, TETO, TET44, TET40, and TET32 (Tet-
racyclines), were more abundant with age (demonstrated 
by both metagenomic sequencing and RT-qPCR data). 
The TETW gene is carried by several ruminal bacteria 
with an integrative and conjugative element for conju-
gation, recombination, and regulation, resulting in hori-
zontal ARG transfer [36, 37]. TET32, TETW, and TETO 
were identified in the Clostridium-related human colonic 
anaerobe K10 and are highly distributed in the rumen 
of ruminants [38]. TET40 and its immediate flanking 
regions could disseminate genes to other bacteria in dif-
ferent environments [39]. Briefly, high abundances of 
MLS and Tetracyclines in the rumen were confirmed in 
other studies [7, 37]. As a result, these antibiotics widely 
used in food-producing animals in the US and Europe 
might enter and save into the rumen [40, 41].

An association between the microbiome and resistome 
was reported in previous studies [16, 42]. In this study, 
a strong correlation between the rumen resistome and 
microbiome was also found. The rumen microbiome in 
goat kids harbored 41 classes of ARGs according to the 
MEGARes 2.0 database when 57 classes were recruited, 
suggesting that the rumen microbiome carries antibiotic 

resistance genes. Proteobacteria, abundant in our results 
and a previous study [43], was identified as the most 
important ARG carrier, especially when goat kids con-
sumed milk. Enterobacteriaceae and Pasteurellaceae as 
two main bacterial families under Proteobacteria were 
highly abundant on the day of kidding and strongly 
correlated with ARGs enriched on d1. Moreover, the 
major bacterial species of Escherichia coli and Pseu-
domonas aeruginosa were found in this study. Proteo-
bacteria seems to be the most common feature in the gut 
resistome and microbiome in animals and humans [4, 
8, 44], and is known for horizontally transferring DNA 
sequences (including ARGs) to other bacteria [45] or 
possible microbial diffusion between the two compart-
ments of the digestive tract in mammalian hosts. E. coli 
was found to carry various ARGs in both the milk and 
rumen resistome [32, 37], suggesting that colostrum 
was a major source for both the rumen microbiome and 
resistome. E. coli and P. aeruginosa horizontally transfer 
ARGs to Actinobacteria, and a ‘carry-back’ mechanism 
for these bacteria involving conjugative transfer was 
reported [45]. This could explain why the abundance of 
Xanthomonadaceae (Proteobacteria) of ARGs increased 
with age and was associated with the ARG signatures 
during the starter supplementation period (d42 to d84). 
Overall, Proteobacteria with a strong relationship with 
ARGs could shape the microbial community and subse-
quently the antibiotic resistance structure in the early life 
of goat kids.

Bacteroidetes are another important group of ARG 
carriers [37]. The Bacteroidaceae family and its species, 
including B. fragilis, B. vulgatus, B. heparinolyticus, and 
B. thetaiotaomicron, were important hosts for ARGs 
from d1 to d14. Bacteroidaceae in rumen utilizes carbo-
hydrates as an energy source [46]. The bacterial species 
within Bacteroidaceae harbor TETQ and other tetracy-
cline resistance genes, which shows a link between the 
microbiome and resistome [32]. Prevotella ruminicola 
(Bacteroidetes) and Fibrobacter succinogenes mainly 
carry ARGs from d28 to d84. These two bacteria are 
mainly responsible for degradation and volatile fatty 
acid production [47, 48]. In this study, the increases in 
P. ruminicola and F. succinogenes were associated with 
starter supplementation after d 30. Moreover, the genes 
horizontally transferred from Proteobacteria to Bacte-
roidetes have been reported [49]. It is speculated that a 
solid diet might drive the dynamics of the bacterial com-
munity and affect horizontal ARG transfer among rumen 
bacteria.

The ARGs in the rumen of goat kids may be transferred 
from the colostrum of the mother to the rumen of goat 
kids. Unfortunately, we did not measure the resistome 
of colostrum samples in this study. However, a strong 
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correlation of the resistome composition between paired 
colostrum-fecal samples was reported in calves [32], sug-
gesting the strong possibility of transmission of ARGs 
from milk to the rumen. The ARGs abundant on the day 
of kidding were reported in raw cow’s milk [50], imply-
ing that dam’s milk may contribute to the initial acquisi-
tion of ARGs in the rumen. Moreover, Biocides, Metals, 
and Multi-compound types were observed in the rumen 
resistome before weaning, proving that these ARGs 
might persist in the rumen if the goat did not receive 
antibiotics and they might disseminate into the hindgut. 
Heavy metals and antibacterial biocides, which are com-
monly detected in animal feed and farm environments, 
could contribute to the promotion of ARGs in colostrum 
or doelings’ rumen [51, 52]. Additionally, several rumen 
samples were not detected in the ARGs related to metal 
and biocides on d 1 and 7, suggesting that individual vari-
ations have also impacts on the rumen resistome based 
on metagenomics. Taken together, milk, as an impor-
tant nutrient source for neonatal animals, combined 
with environmental factors possibly served as the major 
source of the rumen resistome in goat kids.

Solid diet supplementation not only provides impor-
tant nutrient sources for young ruminants but is also an 
effective feeding strategy to improve the rumen micro-
biome and animal performance [23, 24]. A recent study 
confirmed that the rumen resistome was influenced 
by diet through modulating the microbiome [4]. In our 
study, significant changes in the structure and composi-
tion of the rumen microbiome and ARGs were observed 
after goats consumed the starter on d 30, which is con-
sistent with our hypothesis that diet might play a role in 
driving the dynamics of the rumen resistome. In addi-
tion, no antibiotics were used in animals throughout 
this study, indicating that ARGs could be horizontally 
transferred to dominant bacteria that were modulated by 
diet. Transfer of ARGs of Tetracycline from Bacteroides 
fragilis to B. thetaiotaomicron and Prevotella ruminicola 
strains through conjugative transposons [53], and genes 
transferred from Bacteroides to Fibrobacter succinogenes 
[54] were reported, which explains our results and docu-
ments that diet might be associated with ARG horizontal 
transfer by manipulating the microbiome. This implied 
that diet strategy might be an approach to manipulate 
rumen resistome, which should be deeply investigated in 
future studies. Additionally, studying the aging influences 
on the rumen resistome is necessary.

To further understand the mechanism of dietary fac-
tors responsible for the dynamic changes in the rumen 
microbiome and resistome, the functional changes in 
the rumen microbiome community were determined. 
The findings of this study revealed that the composi-
tion of enzymes associated with carbohydrates changed 

significantly with age. High abundances of lysozyme 
on the day of kidding and increased abundances of 
enzymes (e.g., cellulase, β-glucosidase, cellobiohydro-
lase, α-amylase) associated with fiber degradation dur-
ing starter supplementation represent the early diet 
transition from colostrum to a solid diet. This phenom-
enon was also illustrated by the changes in the rumen 
microbiome with Enterobacteriaceae, Pasteurellaceae, 
and Bacteroidaceae being abundant on d1 and Prevotel-
laceae and Fibrobacteraceae being abundant after supple-
mented with a solid diet. Similarly, the ARGs carried by 
the microbiome showed a similar pattern. Furthermore, 
microbes and ARGs contained in colostrum possibly 
served as the initial colonization source for the rumen 
resistome, whereas diet and age-causing changes of cer-
tain microbial taxa might have a secondary impact on the 
rumen resistome.

Conclusions
In summary, this study provides insights into the tem-
poral dynamics of the rumen resistome in early-life 
goats. The richness of antibiotic-resistance genes in 
the rumen decreased with increasing age in the experi-
mental antibiotic-free animals. However, some ARGs 
increased in abundance and expression with age. The 
rumen resistome was associated with the microbiota 
that can carry and horizontally disseminate antibiotics 
resistance genes. The transmission of bacteria or genes 
from the dam’s milk to the neonatal rumen possibly is 
the initial and primary source of the rumen resistome. 
Feeding strategies or nutritional practices in young rumi-
nants, such as solid diet supplementation manipulating 
the microbiome, can influence the rumen resistome and 
ARG horizontal transfer. The current study complements 
the transmission chain of antibiotic-resistance genes in 
animals, which provides a clue to controlling ARGs in 
the gut microbiome through the feeding regime. Further 
research needs to determine the interactions of antibiotic 
resistance genes and dietary strategies to improve pro-
duction performance in the livestock industry, and the 
potential transit of ARGs from the rumen to the hindgut 
in the livestock, the environment, and even humans.

Materials and methods
Animals and sampling
The current study was performed according to the guid-
ance of the Animal Ethics Committee of the Chinese 
Academy of Agricultural Sciences (Protocol Number: 
AEC-CAAS-20191105; Approval date: 3 November 
2019). Goat kids were raised on a goat farm (Laiwu, 
Shandong Province, China). All goats were reared with 
their dams from d 1 to d 60 and weaned and separated 
from their dams on d 60. A solid commercial starter was 
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supplemented from d 31 to d 84. Accordingly, the goats 
that consumed dam’s milk as the only food source from d 
1 to d 30, were fed both milk and starter from d 31 to d 60 
and received only starter from d 61 to d 84. The detailed 
feeding regime is shown in Fig.  1A. The ingredients of 
the starter included high-quality corn, bran, soybean, 
DDGS, and detoxification cotton meal, with protein and 
NDF accounting for 18.03% and 29.62%, respectively. All 
goat kids in this study were healthy during our sampling 
period and did not receive any recorded therapeutic or 
prophylactic antibiotic treatments from day 1 to 84. The 
dams of these goat kids also did not receive any antibiotic 
treatments during the period of pregnancy and lactation. 
Regarding the management of this farm, no antibiotics 
were added to the diet for animals, and penicillin, strep-
tomycin, gentamicin, and enrofloxacin were used to treat 
morbid animals.

Regarding the age, feeding, and diets, a total of forty-
eight healthy female Laiwu black goat kids with similar 
body weight and feed intake at eight-time points (1, 7, 14, 
28, 42, 56, 70, 84 days (d) of age) were selected. Six repli-
cates at the designated age were slaughtered for the sam-
pling of rumen content. Notably, on d1, goat kids suckled 
colostrum within half hour after born under observa-
tion and were slaughtered at the end of this day (around 
20–24  h after born). Briefly, all goat kids were taken to 
an on-farm experimental abattoir, anesthetized using 
sodium pentobarbitone, and slaughtered by exsanguina-
tion from the jugular vein. After skinning and eviscera-
tion, the cardia and pylorus of the exposed rumen were 
sealed to reduce contamination from microbiota in other 
gastric parts and homogenize the rumen digesta. The 
rumen content samples were collected into two auto-
claved 40  mL tubes (approximately 30  mL samples per 
tube). However, for the early age of goats (e.g., d1, d7), we 
tried our best to collect as much as possible. All rumen 
content samples were snap-frozen in liquid nitrogen and 
subsequently stored in a freezer at − 80  °C for further 
analysis.

DNA extraction and shotgun metagenomic sequencing
Rumen content samples (n = 48) from goat kids at eight 
ages were subjected to metagenomic sequencing. To 
reduce the risk of environmental contamination of sam-
ples, all experimental procedures were performed in a 
stringent clean, and sterile class II B2 biosafety cabinet. 
Rumen content samples were thawed on ice, and total 
genomic DNA was extracted using a DNeasy PowerSoil 
Kit (Cat. No.12888, Qiagen, Hilden, Germany) accord-
ing to the manufacturer’s instructions. Negative controls 
during extraction and PCR were included. DNA integ-
rity was evaluated using 1% agarose gel electrophoresis. 
DNA concentration was determined using a Qubit 2.0 

Fluorimeter (Invitrogen, Carlsbad, CA, USA). The DNA 
quality of five samples (one at d1, d7, d28, d42, and d84, 
respectively) was poor and subsequently removed from 
the library. The metagenomic library was constructed 
using a TruSeq DNA PCR-Free Library Preparation Kit 
(Illumina, San Diego, CA, USA). The quantity of the 
metagenomic library was evaluated with a Qubit V.2.0 
Fluorimeter. Metagenomic sequencing was conducted 
using an Illumina HiSeq 4000 platform with 150  bp 
paired-end reads at the Realbio Technology Center 
(Shanghai, China). Sequencing data generated from shot-
gun metagenomes in this study have been deposited with 
the NCBI SRA (#PRJNA741606).

Host contaminations were removed from the raw 
sequencing file using KneadData by alignment to the 
Capra hircus genome. The remaining reads were then 
trimmed for quality using Trimmomatic (version 0.36) 
[55]. Next, high-quality sequencing reads were classified 
using Centrifuge (1.0.2-beta) by following the recom-
mended protocol against the NCBI nt database [56].

Resistance gene analysis
To classify the resistome of the rumen, metagenomic 
sequencing reads were aligned to MEGARes 2.0 (https://​
megar​es.​meglab.​org) by following the pipeline of Amr-
PlusPlus (version 2.0.2) [57]. Briefly, the host genome 
was removed from the raw metagenomic sequences 
and trimmed for quality. Then the non-host and high-
quality reads were aligned to the MEGARes database 2.0 
using BWA to produce SAM files for resistome analysis 
through ResistomeAnalyzer with default settings. The 
outputs of the resistome were organized to the levels of 
gene accession ID, gene group, mechanism of resistance, 
class, and antibiotic compound type. The gene accession 
ID level data were used to calculate the beta diversity; 
normalized data aggregated from the gene group-level 
output to the group (e.g., TETO, TETW) and class (e.g., 
MLS, Aminoglycosides) levels were used for heatmap or 
stacked bar plot visualization in this study. The sequenc-
ing reads harboring ARGs were predicted by classifying 
taxonomy into metagenomic assembled contigs. Briefly, 
the sequencing reads aligned to the database (see Amr-
PlusPlus 2 pipeline) were classified to the RefSeq data-
base using Kraken2 [58, 59].

Functional capacity analysis
To study the functional composition of rumen micro-
bial communities, metagenomic sequence reads that 
had undergone the removal of the host genomes were 
assembled using MEGAHIT (version 1.0.6) [60] with 
default parameters. The assembly was predicted using 
Prodigal (version 2.6.3) [61], and the produced amino 
acid sequences were used for functional annotation. 

https://megares.meglab.org
https://megares.meglab.org
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The DIAMOND program (v2.0.13) was used to map the 
amino acid sequences of the gene catalog into the pro-
teins in the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (release 88.0) and evolutionary genealogy 
of genes Non-supervised Orthologous Groups (egg-
NOG) (v 4.5) databases with default parameters (e 
value ≤ 1e − 5) and the highest-scoring annotated hit 
(HSP > 60 bits) [62–64]. The KEGG database is to under-
stand the biological system, resulting in an understand-
ing of the functions of the microbiome in the host. The 
eggNOG database describes orthologous proteins and 
functional annotations at multiple taxonomical levels. 
Next, according to the above outputs, the amino acid 
sequences were aligned against two reference databases, 
the Carbohydrate-Active EnZymes database (CAZy) [65] 
using dbCAN2 (v2.0.11) [66] and the Clusters of Orthol-
ogous Groups of proteins database (COG) [67] using 
BLAST +  + (v2.11.0) [68] for functional capacity analysis. 
Data were normalized using the total number of trimmed 
reads, and normalized counts were used to calculate the 
Bray–Curtis dissimilarity between samples. Metagen-
omic-assembled contigs that were predicted to encode 
CAZy families were mapped to RefSeq databases using 
Kranken2 [58, 59]. The most abundant predicted taxon 
at the family level for each CAZy family was chosen for 
further analysis.

Quantitative reverse transcription PCR (RT‑qPCR) for ARGs
To validate metagenomic sequencing, RT-qPCR was 
conducted to determine the gene expression of ARGs 
obtained from sequencing. The ARGs, including TET44, 
TETQ, TETW, TETO, and TET40, were selected to 
represent the ARGs that gradually increased over age. 
Total RNA was isolated and transcribed into cDNA. The 
primers used for RT-qPCR are listed in Supplementary 
Table S4. We used 16S as a housekeeping gene and calcu-
lated 2−ΔΔCT values to assess the dynamic change in the 
abundance of ARGs.

Measurement of rumen enzyme activity
In addition to metagenomic sequencing, the concentra-
tions of α-amylase and carboxymethyl cellulase (CMC) 
in rumen samples were measured to validate functional 
capacity. Rumen content samples on d1 were removed 
due to the insufficient sample amount. Commercial 
kits (Nanjing Jiancheng Bioengineering Institute, Nan-
jing, China) were used for measurements of the activity 
of α-amylase and CMC. All procedures were followed 
according to the manufacturer’s protocol. Briefly, the 
rumen fluid was centrifuged at 140 × g for 10 min at 4 °C, 
and the supernatant fluid was sonicated for 3  min and 
then centrifuged at 12,000 × g for 5  min. The measured 
wavelength for α-amylase and CMC was 540 nm.

Metatranscriptomic sequencing
Metatranscriptomics is used for whole gene expression 
profiling and the active functions of complex microbial 
communities. Considering the cost of metatranscrip-
tomics and the sample size we collected, only rumen 
contents on d7, d28, d56, and d84 were sequenced for 
the measurement of gene expression and validation for 
metagenomics. Total RNA was isolated from rumen 
samples using TRIzol reagent (Invitrogen, Carlsbad, CA, 
USA) according to the manufacturer’s recommendation. 
The integrity of the RNA was measured with an Agilent 
2100 Bioanalyzer using the RNA Nano Chip (Agilent 
Technologies, Santa Clara, CA, USA). The quantity of 
RNA was determined by a Nanodrop 1000 spectropho-
tometer (Thermo Fisher Scientific, Waltham, MA, USA). 
The second type of library was constructed using rRNA 
depletion via the Ribo-Zero rRNA Removal Kit (H/R/M; 
Illumina Inc.), followed by library preparation with the 
TruSeq RNA Library Preparation Kit (Illumina Inc., 
San Diego, CA, USA) and sequencing on the Illumina 
NovaSeq 6000 platform (Illumina Inc.). Reads were qual-
ity-filtered and end-trimmed with Trimmomatic version 
0.39. Low-quality regions (Phred quality score < Q30) 
were removed and reads shorter than 50 nt or duplicates 
were discarded. Clean reads were assembled and mapped 
to the MEGARes and CAZy databases as stated above.

Statistical and bioinformatics analysis
The alpha diversity, including the Shannon index and 
observed bacteria or genes in each sample, was cal-
culated to evaluate the corresponding diversities by R 
(v3.6.3). Principal coordinates analysis (PCoA) based on 
Bray–Curtis distance was performed. Then the dissimi-
larity of bacterial composition and ARG profiles among 
ages were assessed by permutational multivariate analysis 
of variance (PERMANOVA) using the “adonis2” function 
in the R “vegan” package. DESeq2 [69] was used to nor-
malize the count data, age-dependent ARGs and CAZy 
families were identified by using the linear discriminant 
analysis (LDA) effect size (LEfSe) with default settings 
(e.g., LDA score > 2), and the signatures were visualized 
using heatmaps. To determine the relationship between 
rumen microbial composition and resistome, the SparCC 
algorithm was employed for network analysis in the R 
“igraph” package. Correlation coefficients below 0.6 and p 
values above 0.05 were removed. Additionally, the p val-
ues in network analysis were adjusted to avoid false posi-
tives using the FDR methods.

The correlation between the composition of the 
rumen resistome and that of the microbiome was 
determined using the Procrustes correlation [70]. 
The abundance matrix of ARGs and the bacterial spe-
cies were Hellinger transformed, and then a PCoA 
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for the bacterial species community and ARG abun-
dances were performed using Bray–Curtis distances. 
This step was finished by using the function “vegdist” 
in the R “vegan” package. The function "Procrustes" 
in R was used for the rotation of the two dissimilarity 
matrixes. The correlation coefficient r of the symmet-
ric Procrustes, the sum of squares, and the p value were 
calculated by the function “protest” in the R “vegan” 
package, with 9999 permutations. The outputs of Pro-
crustes associations between the rumen microbiome 
and the resistome composition were visualized using 
the “ggplot2” package in R.
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