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RNA‑based amplicon sequencing 
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Abstract 

Background  Characterization of microbial activity is essential to the understanding of the basic biology of microbial 
communities, as the function of a microbiome is defined by its biochemically active (“viable”) community members. 
Current sequence-based technologies can rarely differentiate microbial activity, due to their inability to distinguish 
live and dead sourced DNA. As a result, our understanding of microbial community structures and the potential 
mechanisms of transmission between humans and our surrounding environments remains incomplete. As a potential 
solution, 16S rRNA transcript-based amplicon sequencing (16S-RNA-seq) has been proposed as a reliable methodol-
ogy to characterize the active components of a microbiome, but its efficacy has not been evaluated systematically. 
Here, we present our work to benchmark RNA-based amplicon sequencing for activity assessment in synthetic and 
environmentally sourced microbial communities.

Results  In synthetic mixtures of living and heat-killed Escherichia coli and Streptococcus sanguinis, 16S-RNA-seq suc-
cessfully reconstructed the active compositions of the communities. However, in the realistic environmental samples, 
no significant compositional differences were observed in RNA (“actively transcribed — active”) vs. DNA (“whole” 
communities) spiked with E. coli controls, suggesting that this methodology is not appropriate for activity assess-
ment in complex communities. The results were slightly different when validated in environmental samples of similar 
origins (i.e., from Boston subway systems), where samples were differentiated both by environment type as well as by 
library type, though compositional dissimilarities between DNA and RNA samples remained low (Bray–Curtis distance 
median: 0.34–0.49). To improve the interpretation of 16S-RNA-seq results, we compared our results with previous 
studies and found that 16S-RNA-seq suggests taxon-wise viability trends (i.e., specific taxa are universally more or less 
likely to be viable compared to others) in samples of similar origins.

Conclusions  This study provides a comprehensive evaluation of 16S-RNA-seq for viability assessment in syn-
thetic and complex microbial communities. The results found that while 16S-RNA-seq was able to semi-quantify 
microbial viability in relatively simple communities, it only suggests a taxon-dependent “relative” viability in realistic 
communities. 
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Background
Cultivation-free metagenomic sequencing provides an 
unprecedented level of detail on the composition, diver-
sity, structure, and encoded functions of microbial com-
munities in distinct environments. However, the ability 
to differentiate viable (metabolically active) microbes 
from nonviable (inactive) community members remains 
a major challenge [1] — most high-throughput profiling 
methods do not make this distinction (i.e., they detect 
both active and inactive community members), and none 
has been well-validated for quantifying whole-commu-
nity viability [1]. The inability of most commonly used 
DNA-based profiling methods to distinguish viable from 
nonviable community members thus limits our knowl-
edge of basic microbiome function and our ability to eas-
ily survey microbe-microbe, microbe-environment, and 
microbe-host interactions [2]. This is particularly true in 
anthropogenic, biochemically unnatural settings such as 
the built environment (BE), where nonviable cells often 
outnumber their viable counterparts [3, 4]. Despite their 
low abundances, viable microbes can pose health risks, 
especially in circulated ventilation BEs such as hospitals, 
clean rooms, and underground transit systems, where 
microbe transmission from the BE to humans is highly 
probable [5].

Several high-throughput sequencing-based meth-
ods have been developed for community-wise viability 
(activity) characterization, although their accuracy and 
the usage in complex microbial communities remain in 
debate [6, 7]. These methods integrated various modi-
fications to differentiate sequences from live microbes 
vs. dead ones, including the archetypal culture-based 
method [8], chemical treatment that depletes DNA 
sourced from extracellular or nonviable (“relic”) DNA 
[2, 9, 10], and RNA (cDNA) amplification that inherently 
detects transcripts from only active cells, given that RNA 
degrades much faster than DNA. However, despite the 
wide usage in various environments, these methods tend 
to scale poorly to complex real-world microbial commu-
nities [6, 11]. Culture-based approaches are inherently 
limited to only a small fraction of “culturable” microbes 
and thus can only be used as a complementary validation 
for commensals or pathogens detected in critical envi-
ronments [1, 8]. The readily used chemical-based meth-
ods — propidium monoazide staining combined with 
sequencing (i.e., PMA-seq) — were proved inefficient 
in profiling the active communities in realistic environ-
ments [6]. The performance fluctuated widely across 
different chemical and biological conditions and was ulti-
mately only appropriate for very simple synthetic com-
munities. These findings underscored the need for novel 
approaches which accurately determine microbial com-
munity viability in real-world settings.

As alternatives to the chemical-based methods, RNA-
based methods can be utilized to characterize only the 
active component of microbial communities, as only 
biochemically active microbes should be vibrantly tran-
scribing. Additionally, RNA molecules have a shorter 
half-life than DNA in the cellular and extracellular 
compartments, which thus reflects the viable or tran-
scriptionally active microorganisms [12]. These factors 
make RNA-based methods potentially more suitable for 
viability assessment, including shotgun metatranscrip-
tomics, and several marker gene methods, such as 16S 
rRNA transcripts or mRNA from other housekeeping 
genes. It should be noted that “viability” is a complex 
term including not only cells that are in an active growing 
phase, since dormant cells which may or may not pro-
duce ribosomal RNA actively can also be termed viable. 
RNA-based methods thus more directly correlated with 
current biochemical activity than viability. Therefore, in 
this study, we use “viable” (“or “live”) primarily referring 
to the metabolically active state or microbes. Shotgun 
metatranscriptomic sequencing, although being informa-
tive in providing both taxonomic and functional insights, 
has been limited in viability assays due to the challenges 
in sample processing and results interpretations. This is 
especially true in BE communities due to the low yield of 
molecular templates, greater (and often unknown) biodi-
versity, and the rapid degradation of mRNA (which can 
also be a benefit providing “real-time” activity status) 
[13, 14]. For similar considerations, amplicon sequenc-
ing based on protein-coding housekeeping genes has yet 
to be validated and leveraged extensively. By comparison, 
several unusual properties of the 16S rRNA gene have 
made it the most common target for amplicon-based 
microbial community profiling, including near-universal 
bacterial conservation, regions of high selection (and 
thus conservation) for PCR-based amplification, and a 
sizeable number of variable nucleotides facilitating fine-
grained phylogenetic differentiation [15]. Sequencing tar-
geting the 16S rRNA transcripts has been widely used for 
viability assessment in various environments, including 
microbial communities sampled from soil [16, 17], water 
[11], indoor environments [18], and human bodies [19]. 
In these studies, 16S rRNA transcripts and genes were 
amplified simultaneously for parallel RNA (cDNA) and 
DNA sequencing (16S-RNA-seq), the assumption being 
that rRNA transcript abundance can serve as a proxy for 
“viability” or an organism’s overall metabolic activity.

However, there are atypical properties of the 16S rRNA 
transcript making it potentially problematic for viability 
assays, given that viability is a complex multifaceted term 
including not only cells that are actively growing but also 
those in dormant states that may or may not actively 
transcribe ribosomal RNA. The 16S rRNA gene produces 



Page 3 of 15Wang et al. Microbiome          (2023) 11:131 	

large, nonprotein-coding RNA transcripts, which are 
structurally much more stable than most protein-coding 
transcripts [12]. The persistence of stable rRNA after the 
cessation of other cellular activity can thus violate the 
biological assumption that transcripts indicate viable, 
or recently viable/metabolically active, microbes, while 
all microbes (both living and dead) will be detected in 
DNA libraries [6, 20]. It is thus unclear whether this tech-
nique accurately profiles the viable (or more precisely 
here, metabolically active) microbiome of diverse chemi-
cal and biological backgrounds. Despite its application 
in microbial communities from diverse environments, 
the reliability of 16S-RNA-seq remains to be analyzed 
systematically.

In this study, we provide the first systematic evaluation 
of RNA-based amplicon sequencing for viability (activ-
ity) assessment of human-associated and BE microbial 
communities. We found that while 16S-RNA-seq was 
able to semi-quantify activity in simple mixtures of live/
heat killed microbes, it only suggested a trend of overall 
activity of certain taxa within complex communities. This 
could potentially be due to the biology of the 16S rRNA 
genes as well as the limitations within the 16S-RNA-seq 
technology.

Fig. 1  16S-RNA-seq accurately quantifies microbe viability in simple synthetic communities. a Expected community structures of ten live/dead 
Escherichia coli and Streptococcus sanguinis mixtures in DNA and RNA libraries: group (1) 100% live E. coli (DNA library) and 100% E. coli expected 
in RNA library; (2) 100% dead E. coli (DNA) and 0% E. coli expected in RNA libraries; (3) 100% live S. sanguinis (DNA) and 100% S. sanguinis (RNA); (4) 
100% dead S. sanguinis (DNA) and 0% S. sanguinis expected (RNA); (5) 50% live E. coli and 50% live S. sanguinis (DNA), same proportion expected 
in RNA libraries; (6) 50% dead E. coli and 50% dead S. sanguinis (DNA), no signal expected in RNA libraries; (7) 50% live E. coli, 25% live S. sanguinis, 
and 25% dead S. sanguinis (DNA) and 67% E. coli and 33% S. sanguinis (RNA); (8) 25% live E. coli and 25% dead E. coli, 50% live S. sanguinis (DNA), and 
67% S. sanguinis and 33% E. coli (RNA); (9) 50% live E. coli, 50% dead S. sanguinis (DNA), and 100% E. coli (RNA); and (10) 50% dead E. coli and 50% 
live S. sanguinis (DNA) and 100% S. sanguinis (RNA). b 16S rRNA gene copy numbers detected from the DNA and RNA extractions from 10 synthetic 
cultures. c Relative abundances of synthetic community members by 16S-RNA-seq in DNA and RNA libraries. Each experiment had three biological 
replicates. As expected, the experimental results closely follow the predicted simple community composition, albeit small fluctuations in the 
relative abundance of the microbes
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Methods
Preparation of synthetic microbial communities and E. coli 
spike‑in culture
We constructed ten synthetic microbial communities 
(Fig.  1a and Supplementary Table  1) comprising active 
or heat-killed E. coli strain ATCC 47,076 and S. sanguinis 
strain ATCC 10,556. The bacteria were subcultured on 
brain–heart infusion (BHI) agar and incubated over-
night at 37 °C in room air (for E. coli) or 5% CO2 (for S. 
sanguinis). The bacteria were then inoculated into 5 mL 
fresh BHI broth and incubated at 37 °C while shaking at 
250  rpm until early log-phase growth (OD600 = 0.1) was 
achieved. The cultures were adjusted to 105  CFU/ml 
by serial tenfold dilution in BHI broth. For each of the 
strains, half of the cultures were killed by heat at 75 °C for 
10 min (for E. coli) or 65 °C for 30 min (for S. sanguinis). 
The heat-killed bacteria were then mixed with live cul-
ture proportionally as shown in Fig. 1a to a final volume 

of 1  mL. The ten 1-mL cultures were then proceeded 
with DNA/RNA parallel extraction as described below. 
Each group was prepared in three replicates for statistical 
comparisons.

To explore the quantitative potential of 16S-RNA-
seq in realistic complex communities, we spiked known 
amounts of E. coli cells into microbial samples collected 
from computer screens, computer mice, soil, and human 
saliva. As calibrated previously [6], the bacterial bio-
mass (16S rRNA gene copies) on computer screens and 
computer mice was roughly equivalent to 102–103 E. coli 
cells, while the bacterial biomass observed from soil and 
saliva were estimated at 106–107 cells. Therefore, the low 
biomass samples (computer screens and computer mice) 
were spiked with ~ 500 E. coli cells (0.5  mL × 103  CFU/
ml), and for high biomass samples (soil and saliva), we 
spiked with 106 E. coli cells (1 mL × 106 CFU/ml).

Fig. 2  16S-RNA-seq was not able to differentiate active vs. whole microbiome in spiked realistic communities. Our second evaluation of 
16S-RNA-seq used four environmental microbial community types (high and low biomass and high and low expected activity) spiked with varying 
levels of cultured/heat-killed E. coli. a Relative abundances of 15 taxa detected with the highest mean abundance across all samples with clear 
differences between sample types. Four biological replicates were taken for computer screens and mice and three biological replicates for saliva 
and soil. b Bray–Curtis dissimilarity within and between communities from DNA and RNA libraries indicated no significant differences between the 
RNA (cDNA) and DNA pairs (PERMANOVA R2: 2.3%, FDR q: 0.254). The RNA (cDNA) libraries showed the highest inter-replicate dissimilarity, followed 
by the DNA in most cases. Columns labeled with the “sample_DNA” (e.g., Screen_DNA) show dissimilarities within the indicated DNA libraries. 
Those annotated “type_RNA” (e.g., Screen_RNA) show calculations within the RNA libraries, and “type_between” (e.g., Screen_between) represents 
distances between paired samples in DNA vs. RNA libraries. c After constructing an ordination based on each sample’s pairwise Bray–Curtis 
dissimilarity, the dissimilarities were largely explained by sample types. With the screens and mice ordinating closest together, as expected. Lines 
connect identical samples in DNA and RNA libraries
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Sample collection
Samples used in the spike-in experiment (Fig.  2) were 
collected on 8 July 2019, from four separate computer 
screens, computer mice, soil environments, and human 
saliva. Each target was sampled using two replicates, 
one to be spiked with E. coli culture and the other as a 
control. The computer screens and computer mice were 
sampled using two FLOQSwabs (Copan) in parallel. The 
swabs were pre-moisturized in autoclaved 0.85% saline. 
The entire surface of each computer screen and each 
computer mouse was swabbed for 1 min and 30 s, respec-
tively. The saliva samples were collected as described pre-
viously [21]. Briefly, the subjects were asked to let saliva 
collect in their mouth for 1 min. Approximately, 1.5 mL 
saliva was collected into a labeled 2 mL sterile tube. The 
soil samples were collected from four flowerpots around 
the Harvard T.H. Chan School of Public Health (655 
Huntington Ave., Boston, MA, USA). Two vials of sam-
ples, each containing 0.2  g of soil, were obtained from 
each site.

To assess BE microbial communities (Fig.  3), we col-
lected 16 samples from the Massachusetts Bay Trans-
portation Authority (MBTA) Green Line E on 19 August 
2019, including four samples each from the seats, walls, 
grips, and touchscreens of the ticket machines, as pre-
viously described [22]. The MBTA approved all aspects 
of our transit system sampling and gave permission to 
the Harvard T.H. Chan School of Public Health to con-
duct this study (Supplementary Fig.  1). Sampling of the 
seats, grips, and walls was conducted in train cars as the 
train proceeded from the Longwood Station towards 
Park Street. Station samples were collected by swabbing 
the entire surface of touchscreens of ticket machines for 
1 min at the Park Street Station using one pre-moistur-
ized swab.

Swab samples were also collected from pure E. coli cul-
ture, blank culture broth, indoor and outdoor air, extrac-
tion reagent (EB buffer), water, and 0.85% saline in the lab 
space as negative controls for the environment (Supple-
mentary Fig. 2).

Fig. 3  16S-RNA-seq indicated subtle differentiation between DNA and RNA libraries in samples from the Boston (MBTA) subway system. a 
Relative abundances of the 15 taxa with the highest means across four sample types in DNA and RNA libraries indicated overall similar taxonomic 
compositions. Each column represents a biological replicate. b Bray–Curtis distance distributions between MBTA samples within/between DNA 
and RNA libraries. c Principal coordinate analysis (PCoA) of MBTA samples using Bray–Curtis distances. Sample type and library type are both 
drivers of overall community composition. d Four differentially abundant taxa that consistently enriched or depleted in RNA libraries across sample 
types. The Acetobacteraceae family and Solirubacter genus were consistently enriched in RNA libraries, while the Streptophyta order and the 
human commensal Prevotella genus were under quantified in RNA libraries (mixed-effects linear models, q-value = 0.002, 0.003, 0.002, and 0.012, 
respectively)
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DNA/RNA extraction and real‑time qPCR assay
Total DNA and RNA from synthetic communities and 
natural microbial communities were extracted using 
the AllPrep PowerFecal DNA/RNA Kit (Qiagen) follow-
ing the manufacturer’s instructions, with concentrations 
quantified using a Qubit 2.0 fluorometer (Invitrogen, 
Carlsbad, CA, USA). RNA samples were reverse tran-
scribed into cDNA using QuantiTect Reverse Transcrip-
tion Kit (Qiagen). Real-time quantitative polymerase 
chain reaction (qPCR) was performed using universal 
primers targeting a 466-bp region in 16S rRNA V4 region 
[23]. Each 20 μL reaction mixture consisted of 10 μL 
2 × KAPA SYBR FAST qPCR Master Mix (KAPA Biosys-
tems), 0.4 μL (a final concentration of 10  μM) forward 
and reverse primers, 8.2 μL PCR grade water and 1 μL 
of DNA template (for bacterial cultures, soil and saliva 
samples), or 4.2 μL PCR grade water and 5 μL of DNA 
template (for computer screen and computer mouse sur-
faces). The thermocycling program was as follows: (1) 
initial denaturation for 3 min at 95 °C, (2) 40 cycles of 3 s 
at 95 °C and 20 s at 60 °C, followed by (3) a melting curve 
in the range of 60 to 95 °C. Standard curve was generated 
in each batch of runs using serial dilutions of pSPIKE-P 
(Addgene Plasmid no. 101172) — a plasmid of known 
size and with 16S rRNA V4 region insertion.

16S rRNA amplicon sequencing
A modified protocol adapted from the Earth Microbiome 
Project [15] and the Human Microbiome Project [24] 
was applied on the synthetic community samples (part 
1), spiked experiments (part 2), and the samples from the 
MBTA system (part 3). In brief, DNA and cDNA were 
subjected to 16S amplification using primers incorporat-
ing the Illumina adapters and a sample barcode, allowing 
directional sequencing over the 16S rRNA gene variable 
region V4 (16S-RNA-seq). Each 25 μL PCR reaction con-
tained 10 μL of 2 × HotMasterMix with the HotMaster 
Taq DNA Polymerase and 5 μL of primer mix (2 μM of 
forward primer 515F and 2 μM barcoded reverse primer 
806R). The thermocycling conditions comprise an initial 
denaturation of 94 °C for 3 min, followed by 30 cycles of 
denaturation at 94 °C for 45 s, annealing at 50 °C for 60 s 
and extension at 72  °C for 90 s, and a final extension at 
72 °C for 10 min.

We followed the Illumina® (Illumina Inc., San Diego, 
CA, USA) 16S Metagenomic Library Preparation guide-
lines to create 16S rRNA amplicon libraries from key-
board and human fecal samples (part 4). Briefly, we 
amplified the 16S rRNA gene V4 region using primers 
with Illumina® sequencing adaptors and barcodes [25, 
26]. Three amplicon PCR replicates were performed for 
each sample to control for PCR bias [27, 28]. The initial 
amplicon PCR was performed in 25 μL reactions using 

2.5 μL (for stool) or 5 μL (for keyboard samples) of input 
DNA/cDNA, 1.0  μM forward and reverse primers, and 
12.5 μL of KAPA Taq HiFi HotStart High Fidelity ready 
mix (KAPA Biosystems, Woburn, MA, USA). Cycling 
conditions for the amplicon PCR started as 95  °C for 
3 min, followed by 25 cycles of 95 °C (30 s), 50 °C (30 s), 
and 72 °C (30 s), with a final extension at 72 °C for 5 min. 
Triplicate amplicon reactions originating from the same 
DNA/cDNA sample were pooled and cleaned using 
AMPure® XP beads (Agencourt Biosciences, Beverly, 
MA, USA) followed by an indexing PCR using Nextera 
XT Index Primer Set A (Illumina, Inc., San Diego, CA, 
USA). Cycling conditions for the indexing PCR were 
95 °C for 3 min, followed by eight cycles of 95 °C (30 s), 
55  °C (30  s), and 72  °C (30  s) with a final extension at 
72 °C for 5 min. Size and quality of all the indexed librar-
ies were checked. Libraries were quantified and pooled to 
a final concentration of 4 nM and then sequenced using 
Illumina MiSeq platform with addition of 15% PhiX and 
yielded paired-end reads of 150  bp in length in each 
direction.

Sequencing data analysis
Taxonomic profiles were generated with the bioBakery 
16S workflow [29] v0.12.1 (http://​hutte​nhower.​sph.​harva​
rd.​edu/​bioba​keryw​orkfl​ows). In brief, paired-end reads 
were demultiplexed using EA-Utils [30] and then fil-
tered, dereplicated, and clustered into referenced-based 
operational taxonomic units (OTUs) using USEARCH 
v7.0.1090 [31] at 97% similarity or the default settings. 
Taxonomic annotations were assigned using USEARCH 
algorithms against the Greengenes 13_8 database [32], 
and quantified hits were built into an OTU feature table 
(Supplementary files 2 and 5). Relative abundance was 
calculated per sample by taking each feature and dividing 
it by the total read counts.

Statistical analyses
An in-house R-script employing the libraries stringr, 
dplyr, matrixStats, vegan, ape, ggplot2 [33], phytools [34], 
scales, phyloseq [35], and GuniFrac [36] was used to com-
pare the outputs from bioBakery workflows. First, OTUs 
were condensed to the genus level if possible; when a 
genus was not assigned, a sum abundance was calculated 
at each OTU’s terminal taxonomic level. The resulting 
clades are referred to generally as taxa. Taxa were then 
passed through a filter of > 0.01% relative abundance in 
at least 10% of all samples. Principal coordinate analysis 
(PCoA) was performed using Bray–Curtis dissimilar-
ity based on these relative abundances. Univariate tests 
were performed using PERMANOVA with respect to 
sample types, library type, spike-in effect (for part 2), and 
studies (for part 4) (statistical results in Supplementary 

http://huttenhower.sph.harvard.edu/biobakeryworkflows
http://huttenhower.sph.harvard.edu/biobakeryworkflows
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file 3). In brief, Bray–Curtis dissimilarity was compared 
within communities from DNA or RNA (cDNA) librar-
ies (labeled as sample_DNA or sample_RNA in Fig.  2b 
and Fig. 3b) and in RNA (cDNA) and DNA pairs (labeled 
as sample_between). qPCR results on the ten synthetic 
communities were compared using paired t-test using 
GraphPad Prism (version 8). Multivariate tests for taxa 
associated with metadata (Supplementary files 1 and 4) 
were performed using MaAsLin2 (Microbiome Multi-
variable Association with Linear Models) with default 
settings [37]. For this analysis, we included three types of 
metadata as covariates: sample type, library type, spike-in 
effect (for part 2), and studies (for part 4).

Results
16S‑RNA‑seq successfully reconstructs the viable fraction 
in simple synthetic communities
As mentioned, several properties of the 16S rRNA gene 
have made it favorable but also potentially problem-
atic for activity assessment. To evaluate the degree of 
inherent biological and technical effects, we tested this 
methodology in ten synthetic communities composed 
of active and heat-killed Escherichia coli and Streptococ-
cus sanguinis mixed in known proportions (Fig. 1a). The 
active/overall bacterial load in each of the mixed cul-
tures was estimated by qPCR targeting the 16S rRNA V4 
gene region and then profiled using sequencing (Fig.  1 
b–c). Readouts from RNA (cDNA) samples would be 
expected to linearly correlate with the active proportions 
of microbes in each group, both in absolute quantifica-
tion (qPCR) and in compositional profiling (sequencing) 
results. Per this expectation, 16S-RNA-seq accurately 
profiled the active fraction in groups containing a mono-
culture of active cells (group 1: 100% live E. coli; group 3: 
100% live S. sanguinis; group 9: 50% live E. coli; and group 
10: 50% live S. sanguinis, Fig. 1 b–c). In cultures contain-
ing mostly dead cells (groups 2, 4, and 6), which would 
ideally result in “blank” sequencing results from RNA 
libraries, the small number of sequences still obtained 
was from E. coli or S. sanguinis, likely due to low-level 
contamination from persistent rRNA molecules or bleed-
through from other samples (as would occur in any near-
empty amplicon library, regardless of activity). Most 
importantly, the overall RNA amounts in these groups 
(2, 4, and 6) were supported by much lower RNA yields 
and qPCR signals (paired t-test, p-value = 0.0335, 0.0079, 
and 0.0142 for groups 2, 4, and 6 qPCR, respectively. 
Supplementary files 1 and 3). In mixed culture groups 
(group 5: 50% live E. coli and 50% live S. sanguinis; group 
7: 50% live E. coli and 25% live S. sanguinis; and group 8: 
25% live E. coli and 50% live S. sanguinis), the composi-
tion of the two microorganisms agreed with the known 

proportions, while the abundances differed slightly. 16S 
rRNA gene copies were higher in RNA (cDNA) samples 
compared to the DNA ones as detected by qPCR, except 
for the groups containing mostly “dead” cells (i.e., groups 
2, 4, and 6). This is concordant with the long half-life of 
ribosomal RNA molecules and their transcription dur-
ing normal growth in culture [12]. Overall, 16S-RNA-seq 
was able to semiquantitatively (and at least qualitatively) 
differentiate viable from nonviable microbes in extremely 
simple synthetic “communities.”

16S‑RNA‑seq was not able to differentiate the active 
fraction of microbial communities in spiked realistic 
communities
To validate the performance of 16S-RNA-seq in more 
complex communities, and to further explore its quan-
titative potential, we applied the assay on a collection of 
human and environmentally sourced microbiome sam-
ples. These included two high-biomass, high-complexity 
communities (i.e., soils and human saliva) and two rela-
tively low-biomass communities sourced from low-via-
bility environments (i.e., computer screens and computer 
mice). Each of these sample types were spiked with a 
1 mL E. coli culture in which live:dead cells were mixed 
at the ratio of 1:1. We intended to compare the absolute 
amount of known spike-in cultures in different panels 
by considering its relative abundance and the absolute 
quantification from qPCR (“Methods”) [6]. Similar to 
the mock communities, qPCR signals from RNA (cDNA) 
samples were higher compared to the DNA ones (Sup-
plementary Fig. 3, paired t-test, p-values = 0.0002, 0.0038, 
0.0014, and 0.0133 for computer screen, mouse, saliva, 
and soil, respectively), yet no apparent differences were 
observed between the samples with(out) spike-in cul-
tures (paired t-test, p-values in Supplementary file 3). The 
addition of E. coli controls into the spiked-in (“spike + ” 
vs. “spike − ”) groups increased the relative abundance of 
Enterobacteriaceae in computer screens, soil and human 
saliva (mixed-effects linear models, q-values: 0.02, 4.08E-
5, and 0.01 for computer screen, soil and saliva samples, 
respectively). However, the quantification using Entero-
bacteriaceae relative abundance and 16S rRNA qPCR in 
RNA vs. DNA samples did not reliably correlate the abso-
lute E. coli amounts with the actual live:dead proportion 
in spike-in cultures. No consistent increase (or decrease) 
of Enterobacteriaceae relative abundance was observed 
in RNA libraries vs. DNA ones within each environment 
(mixed-effects linear models, q = 0.64, 0.99, 0.97, and 0.87 
for computer screen, soil and saliva), much less cross the 
environments (mixed-effects linear models, q = 0.97). The 
absolute E. coli amounts were not significantly different 
in RNA vs. DNA samples (paired t test, p = 0.08, 0.14, 
0.09, and 0.16 for computer screen, mouse, human saliva, 
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and soil, respectively). These likely suggest that these 
environments are biologically different in terms of micro-
bial composition and activity, while 16S-RNA-seq is not 
able to profile such differences, let alone quantify them.

Within these spiked community samples, 16S-RNA-
seq produced almost no compositional differentiation 
between DNA vs. RNA libraries (Bray–Curtis dissimi-
larity median 0.28–0.33 within sample) (Fig. 2 a–b). The 
compositional differences across all samples were largely 
explained (R2 = 61.3%) by sample type (PERMANOVA 
FDR q = 0.0015), but not library type (R2 = 2.3%, FDR 
q = 0.254). This was also reflected in the principal coor-
dinate analysis (PCoA) plot, where samples were grouped 
by types but not by libraries (Fig.  2c). These results are 
suggestive that 16S-RNA-seq is not able to capture the 
truly active fraction of the whole microbial community in 
complex realistic samples.

These results suggest that the assumption that 16S 
rRNA amplicons are directly enriched for viable, actively 
growing microbes in complex communities is likely 
incorrect or at least highly context dependent. This is 
potentially due to the unusual properties of 16S rRNA 
genes as mentioned above (especially stability), in addi-
tion to further unique behaviors such as variable copy 
numbers of the rRNA gene across different microbial 
genomes, as well as variable transcription levels in dif-
ferent growth phases within single microbes [38, 39]. 
It is thus plausible that 16S rRNA abundance thus does 
not universally, quantitatively correlate with underlying 
microbial cell count by nature. The activity quantification 
is likely to be especially affected by the unique stability 
of this nonprotein-coding RNA, which has been reported 
detectable for days or even months after microbes’ death 
[12]. This would also be influenced by context-specific 
effects on 16S-RNA-seq, as more diverse microbial com-
munities (realistic BE communities vs. simple synthetic 
cultures) harbor more variation in terms of the genomic 
16S rRNA gene copies, growth status, and chemical influ-
ences on the transcripts’ stability. There are thus several 
reasons why 16S rRNA amplicons may not accurately 
reflect microbial activity outside of very simple, synthetic 
communities as initially expected.

Subtle differentiation between DNA and RNA libraries 
reflects RNA biochemistry rather than true activity
When 16S-RNA-seq was applied to the subway systems, 
distinct results were observed from those of more com-
plex compositions (e.g., saliva and soil in “Results” part 
2). Across BE sample types, the relative abundance of the 
more abundant taxa remained consistent in DNA and 
RNA libraries (Fig.  3a). Although the Bray–Curtis dis-
similarities between DNA and RNA libraries remained 
low (median: 0.34–0.49) (Fig. 3b), a significant difference 

between library types was observed (PERMANOVA 
FDR q = 0.005, R2 = 0.117). However, sample type still 
remained as the major (R2 = 34.2%) driving effect of the 
compositional differences in the BE communities (FDR 
q = 0.002). This was also reflected in the ordination 
analysis, where samples were differentiated by sample 
source as well as by library type (Fig.  3c). The differen-
tiation between RNA and DNA libraries, though subtle, 
indicated that the RNA-derived communities could be 
somewhat distinguished from the whole consortium in 
microbial samples of similar chemical or biological back-
grounds as identified by 16S-RNA-seq; whether or not 
such differences were indicative of true activity quantita-
tively remains unelucidated.

The compositional dissimilarity in DNA vs. RNA librar-
ies resulted from differentially abundant taxa, several 
of which increased (or decreased) consistently between 
DNA and RNA libraries across sample types despite the 
overall stability (Fig. 3d). Most of the taxa enriched sig-
nificantly in RNA communities were typically environ-
mentally sourced microbes that existed in relatively low 
abundance, such as the Acetobacteraceae family (mixed-
effects linear models, q-value = 0.002), the Solirubrobac-
ter genus (mixed-effects linear models, q-value = 0.003), 
and the Pilimelia genus (mixed-effects linear models, 
q-value = 0.039). Intriguingly, several highly abundant 
taxa commonly found in human or built environments 
(i.e., Streptophyta, Prevotella, Lactococcus, Corynebac-
terium, and Propionibacterium) were found depleted in 
RNA libraries across different sample types (Fig. 3d and 
Supplementary Fig. 4, mixed-effects linear models, q-val-
ues in Supplementary file 6). The decreased proportion 
of human commensals intuitively indicates compromised 
activity in the built environment. However, it is possible 
that these decreases simply indicate relative increases 
of the other taxa, considering that the environmental-
related taxa (such as Streptophyta) appeared enriched in 
the same way. Alternatively, this would suggest that some 
microbes are simply more or less visible in 16S rRNA vs. 
DNA amplicons due to the rRNA production rate, differ-
ences in DNA vs. cDNA amplification efficiency, rRNA 
molecules stability, or growth phase of the underlying 
microbes, regardless of their actual activity.

16S‑RNA‑seq suggests “relative activity” trends of several 
taxa across different sample types
Numerous factors are thought to account for compo-
sitional differences in RNA libraries in 16S-RNA-seq 
[12]. To assess consistency in community composition 
changes across different studies and sample types, we 
compared our results with previous 16S-RNA-seq stud-
ies from various sources (i.e., household surfaces [18], 
indoor air [40], oil production facilities [41], and human 
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stool [19]). We uniformly re-profiled each study’s raw 
data to ensure a consistent process of taxonomic assign-
ment and reduce bias (“Methods,” Supplementary file 
5 and Supplementary Fig.  5). The samples were clearly 
clustered by environmental sources in principal coordi-
nate analysis, suggesting that sample type remains the 
most important contribution to compositional differ-
ences (PERMANOVA FDR q = 0.001, R2 = 64.3%, Fig. 4a). 
Library type also exhibited small yet significant differ-
ences in samples from MBTA environments, indoor air, 
and stool samples, which agrees with above observation 
(Fig. 3c).

This joint ordination analysis suggested that 16S-RNA-
seq somewhat differentiated viable bacteria from whole 
communities in samples of similar origins. Particularly, 
samples from indoor air showed the highest composi-
tional dissimilarities between library types (Fig. 4b). This 
suggests that 16S-RNA-seq could potentially discrimi-
nate active from non-active communities in these abiotic 
environments where desiccation and limited nutrients 
impose selection. Contrarily, the dissimilarities between 
the RNA and DNA libraries were lower in communities 
with likely readily growing microbes (compared to air 
samples), including stool, bathroom and kitchen surfaces, 
computer mouses, and MBTA train walls. This indicated 
a potential lack of discriminatory ability of this meth-
odology in these environments, as we would still expect 
relic DNA from dead microbes. These differences reiter-
ated that 16S-RNA-seq results are likely influenced by 
factors such as biochemical characteristics of the sam-
ples, initial microbial compositions and growth, commu-
nity diversity, and bacterial load.

The above observations suggested that 16S-RNA-seq 
provides significant community differentiation in some 
cases, but not always. We next focused on taxa-wise 
characteristics, to understand which microbes were 
consistently differentiated by 16S-RNA-seq. We iden-
tified 197 differentially abundant taxa in DNA vs. RNA 
libraries using mixed-effects linear models [42] (FDR 
q < 0.25) (Supplementary file 6). Six prevalent families 
(Porphyromonadaceae, Lachnospiraceae, Enterobacte-
riaceae, Clostridiaceae, Comamonadaceae, and Tissiere-
llaceae) containing the greatest number of significantly 
differentiable genera were selected for further analysis 

of the relative abundance changes using the RNA/DNA 
abundance ratio between RNA and DNA libraries 
(“Methods”).

The RNA/DNA ratio (i.e., a measurement normalizing 
RNA abundance with underlying taxonomic abundance) 
was used as an index to infer the metabolic activity/via-
bility potential in previous studies [1, 40]. Although the 
majority of samples had approximately the same rela-
tive abundance in DNA and RNA libraries, 16S-RNA-
seq indicated the trend of the family’s potential activity 
across different sample types (Fig. 4c). For example, most 
genera in the Enterobacteriaceae family were more abun-
dant in RNA libraries than in DNA libraries, suggesting 
that they are more likely to be active compared to Por-
phyromonadaceae, where most genera were depleted 
in RNA libraries. Notably, RNA/DNA ratios are more 
reliably interpreted in taxa initially abundant in either 
DNA or RNA libraries (e.g., the low RNA abundances in 
Comamonadaceae and Tissierellaceae taxa in indoor air 
and oil facility samples indicated their being less active), 
given that the relative abundances are affected both bio-
logically and technically. The abundance changes of rare 
taxa are thus more likely to be exaggerated by sampling 
effects, insufficient sequencing depth, and underly-
ing taxa changes (i.e. DNA abundances). This partially 
explains the “phantom taxa” (taxa only found in RNA 
libraries while not DNA libraries) [20, 43] in each family 
across different samples (Fig. 4c).

Discussion
The role of rRNA as an indicator of microbial activ-
ity has long been scrutinized, with the concern that the 
correlation between real-time microbial activity and 
rRNA quantities in environmental samples is inherently 
inconsistent due to differences across microbes biologi-
cally and across environments [12, 44, 45]. Before this 
limitation could be addressed, 16S-RNA-seq became an 
established method for microbial community activity 
assessment and has been applied in various environments 
[11, 16–18]. The reliability of this technique remains to 
be tested across different applications and is especially 
needed in complex microbial communities. This study 
performed a systematic evaluation of 16S-RNA-seq using 
synthetic, spiked realistic communities, and environmen-
tal microbial communities and for the first time explored 

(See figure on next page.)
Fig. 4  16S-RNA-seq indicated that some taxa may be more or less viable depending on the environment types. a PCoA analysis using Bray–Curtis 
dissimilarities among filtered OTUs. Sample type is the major contribution to the overall compositional dissimilarities (R2 = 64.3%, FDR q = 0.001), 
while library type also drives compositional change in samples of similar sources (R2 = 2.0%, FDR q = 0.001), suggesting that 16S-RNA-seq provides 
some differentiation between DNA vs. RNA libraries in similar samples. b Bray–Curtis distance distributions within/between DNA and RNA libraries. 
Generally, BE samples tend to have higher dissimilarity; indoor air samples differ most between DNA and RNA libraries. c RNA/DNA relative 
abundance ratios of genus in Porphyromonadaceae, Lachnospiraceae, Enterobacteriaceae, Clostridiaceae, Comamonadaceae, and Tissierellaceae. 
Overall trends of “relative activity” were suggested in these families by 16S-RNA-seq
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Fig. 4  (See legend on previous page.)
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its quantitative potential. 16S-RNA-seq was qualitatively 
appropriate and provided at least semiquantitative evalu-
ation on active taxa in simple synthetic communities. 
However, this approach was unable to distinguish active 
microbes from relic DNA in complex realistic situations, 
with the differentiation most likely affected by the sus-
tainability of rRNA molecules of each taxon and under-
lying growth rates of the microbes rather than viability 
per se (e.g., higher transcription/translation rate during 
exponential growth period, more ribosomes and more 
lingering rRNA in actively reproducing microbes). On 
the other hand, while 16S-RNA-seq presented minimal 
differentiations in spiked realistic samples, it did pro-
vide some insight into the discriminative ability between 
DNA and RNA libraries in samples of similar origin in 
our study (Fig. 3) as well as in a previous study with low 
biomass built environment samples [40]. These findings 
highlight the need for alternative approaches that accu-
rately assess community activity in a way that allows us 
to further understand the basic biology of microbial com-
munities and human-microbiome interactions.

The performance of 16S-RNA-seq in real microbial 
communities varied by environment, likely as a result 
of both biological and technical factors, including the 
biochemical characteristics of each sample, the biol-
ogy of the microbes within communities (e.g., gene cop-
ies in the bacterial genomes, transcription rate, stability 
difference from microbe to microbe), and community 
composition (microbial diversity, viability, etc.). Previ-
ous reports have indicated that many biochemical fac-
tors can influence 16S-RNA-seq readouts [12]. Especially 
in non-host-associated contexts, moisture level, pH, 
light (UV) exposure, and the presence of nucleases can 
all vary dramatically among microenvironments, affect-
ing the longevity of rRNA molecules as well as their 
absorption to their matrices (dust and other small par-
ticles) [46–48]. This biochemical phenomenon may help 
explain the non-differentiable results in soil and some of 
the BE samples (Figs.  2 and  4a), where highly moistur-
ized (soil, bathroom), particle-rich (soil, outdoor/MBTA 
samples), and light (UV)-protected (bathroom, kitchen, 
and other indoor surfaces) environments tended to retain 
rRNA molecules longer, thus diminishing the differ-
ences between active vs. whole communities. The greater 
biochemical diversity and instability in such environ-
ments are usually also accompanied by greater microbial 
diversity and by more extensive differences in microbial 
activity, further affecting 16S-RNA-seq results. It should 
be noted that the physical and biochemical characteris-
tics of BEs also bring additional technical challenges to 
accurate interpretation of 16S-RNA-seq readouts, inas-
much as individual protocol steps can also be differen-
tially affected by different environmental conditions. 

Increasing this potential complexity, different microbial 
members of these communities may also be differen-
tially affected — DNA/RNA yields may not be compa-
rable directly after extraction, the efficiency of reverse 
transcription of RNA molecules can differ, and library 
construction may be variable among different environ-
ments. These technical factors also contribute to making 
16S-RNA-seq somewhat more consistent in lower diver-
sity, less biochemically complex environments, as also 
observed in this study [12, 38, 49].

Despite these potential limitations, ribosomal RNA has 
been widely used to investigate active microorganisms 
in human and environmental samples on the basis that 
they are relatively stable and accessible both inter- and 
intracellularly [12]. However, this raises the question of 
whether rRNA in microbial communities accurately rep-
resents which microorganisms are active in “real time.” 
The half-life of recently produced rRNA in soil bacterial 
communities was reported to have strong temperature 
dependency, which increased from days to over a year as 
the temperature decreased [50]. This suggests that rRNA 
may remain long after the microbe is dead and thus may 
not accurately indicate activity, especially when the sam-
ples are from chemically and geographically diverse back-
grounds. Aside from the persistence of rRNA molecules, 
the 16S rRNA gene is not linearly correlated with actual 
bacterial count by nature [12, 51]. Copy number of the 
16S rRNA gene varies greatly across microbial species. 
This does not even consider the gene’s transcription rate, 
which varies with factors such as growth rate, life stages, 
and exposure to stressors [12, 52]. Thus, 16S RNA/DNA 
abundance ratios vary between and within microbial 
communities. Particularly, some active, highly transcrib-
able taxa may look “dormant” within a mixed commu-
nity, as dormant cells may accumulate high numbers of 
ribosomes [1]. On the other hand, it is also possible that 
dead microorganisms or those with low metabolic output 
would appear as active, given the large amount and per-
sistence of rRNA molecules [44]. This is worth consider-
ing especially in BE samples, where desiccation, regular 
disinfection, and lack of nutrients contributed to a rela-
tively harsh environment and thus more microbes being 
dead or dormant [6]. The higher RNA/DNA ratios of 
the Lachnospiraceae and Tissierellaceae families in stool 
samples therefore do not necessarily indicate their being 
“more active” compared to BE or oil facilities (Fig.  4c) 
but a reiteration of the biological differences (i.e., life 
stages, microbial compositions) in the underlying micro-
bial communities. Quantitation of active microbes using 
ribosomal RNA transcripts would thus be affected by the 
community structure as well as environments biochemi-
cal background — e.g., the readouts from 16S-RNA-seq 
would not linearly reflect the active composition outside 
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very simple communities that contain mono- or closely 
related species and that are growing at a similar rate, 
which closely resembles our results (Fig. 1).

16S-RNA-seq was qualitatively and semiquantitatively 
informative in simple synthetic communities, but it is 
not always effective in complex communities and only 
indicates relative activity trends in BE samples. It is thus 
important to set proper criteria for better interpretation 
of 16S-RNA-seq results. This may be achieved by filter-
ing the taxa based on appropriate prevalence or abso-
lute abundance (read count) so that some systematic 
interference, such as contamination or taxa ubiquitous 
in those environments, may be minimized. This, how-
ever, risks losing information on rare taxa, which were 
reported being more differentially abundant in RNA 
vs. DNA libraries in BE samples [18, 40]. As in shot-
gun metagenomic sequencing, microbial community 
structure represented by 16S-RNA-seq is dependent on 
sampling effects and sequencing depth [7, 44, 53]. This 
is particularly true in activity assays in low biomass BE 
samples, where many rare taxa can only be detected in 
larger read libraries, and the differences between RNA 
and DNA libraries can be misrepresented due to the 
sampling stochasticity [12]. This explained some of the 
“phantom taxa” (taxa detected in RNA libraries by not 
the DNA libraries) [20] across various families (Fig. 4c) 
— the disproportionately high activity of those rare taxa 
is more likely a technical flaw than a real sign of activ-
ity. Therefore, it is important to consider the ceiling of 
sequencing technologies (depth, sampling statistics) 
when interpreting 16S-RNA-seq readouts in complex 
communities.

Another potentially helpful consideration is to include 
a threshold 16S abundance ratio to determine active taxa 
[54]. A ratio threshold of 0.1 to 10 might simply pro-
vide a conservative view of activity in microbial com-
munities (Supplementary Fig.  6). Additionally, ensuring 
that the average abundances of a taxon in both RNA 
and DNA libraries are sufficient for confident detection 
can help ameliorate the effects of sequencing depth. For 
example, we can be fairly confident that the Comamona-
daceae family is likely to be less active in indoor air sam-
ples given its high DNA/RNA abundance, which makes 
it less possible to be misrepresented by technical vari-
ance (sampling effect, sequencing depth, etc.). Similarly, 
the Tissierellaceae family, less active in oil facilities, is 
more transcriptionally active in stool samples and well-
detected as such (Fig. 4c). However, for the reasons intro-
duced above, it is not possible from sequencing alone to 
determine that these consistently enriched/depleted fam-
ilies simply have more/less persistent rRNA molecules 
within these particular environments. Overall, the results 

of 16S-RNA-seq may be better interpreted with the con-
sideration of proper filtration, sequencing parameters, 
and overall abundance of the taxa.

A comprehensive evaluation of 16S-RNA-seq in 
microbial communities would require extensive effort, 
and there are limitations of the current study as a result. 
Our synthetically co-cultured and spiked “communities” 
use only a very small number of representative microbes, 
if anything leading us to underestimate the variability 
of 16S-RNA-seq between protocols and settings. While 
it may be impossible to directly interpret 16S-RNA-
seq results for accurate viability quantifications, the 
thoughts here are promising in terms of qualitative 
assessment: determining which microbes are gener-
ally more active in a (or similar) environmental source. 
Other potential improvements might include the com-
bination of other microbiological experiments, such as 
metabolic capacity measurements that directly capture 
the metabolism activities [55–57], biochemical color-
imetry that based in the membrane integrity of viable 
cells [58], or to explore alternative activity markers from 
mRNA transcribed from protein-coding genes. A small 
number of protein coding genes have also been pro-
posed for microbial community viability profiling in pre-
vious work, such rpoB, gyrB, and cpn60 [59–61]. These 
housekeeping genes are potentially conserved enough 
to be detected and amplified using universal primers as 
with the 16S rRNA gene while similarly retaining vari-
able regions used to discriminate microbes at high reso-
lution. mRNAs from such functional genes have shorter 
half-life compared to ribosomal RNA and may thus bet-
ter represent currently active members of a community. 
Additionally, they present in one copy (or conserved 
copies) in bacterial genomes and are transcribed stably 
but exclusively in the active growth phase of the cellu-
lar life cycle, so that their copies directly correlate with 
the active bacterial amounts. If their transcripts could 
be targeted as universally and reliably as those of the 16S 
rRNA gene, this combination of properties would make 
these genes of potential interest for viability assess-
ment as well. Last but not least, activity assessment in 
microbial communities will benefit substantially from 
multiomic integration, e.g., combining 16S-RNA-seq 
with functional indicators such as metatranscriptomic 
or metaproteomic profiles. These somewhat circumvent 
the drawbacks of using 16S rRNA gene as activity mark-
ers, providing a complementary definition of viability, 
and directly observing activities such as virulence, path-
ogenicity, or antimicrobial resistance that are not cap-
tured by amplicon sequencing.
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Conclusions
In conclusion, our results found that while 16S-RNA-
seq alone may never fully quantify viability in micro-
bial communities, it can provide a qualitative profile of 
which community members are generally viable across 
similar environments and remain to be coupled with 
additional molecular approaches to understand the 
mechanisms of persistence, metabolism, and poten-
tial health consequences in the BE, environmental, and 
human microbiomes [62, 63].
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