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Abstract 

The measurement of uncharacterized pools of biological molecules through techniques such as metabarcoding, 
metagenomics, metatranscriptomics, metabolomics, and metaproteomics produces large, multivariate datasets. 
Analyses of these datasets have successfully been borrowed from community ecology to characterize the molecular 
diversity of samples (ɑ‑diversity) and to assess how these profiles change in response to experimental treatments or 
across gradients (β‑diversity). However, sample preparation and data collection methods generate biases and noise 
which confound molecular diversity estimates and require special attention. Here, we examine how technical biases 
and noise that are introduced into multivariate molecular data affect the estimation of the components of diversity 
(i.e., total number of different molecular species, or entities; total number of molecules; and the abundance distribu‑
tion of molecular entities). We then explore under which conditions these biases affect the measurement of ɑ‑ and 
β‑diversity and highlight how novel methods commonly used in community ecology can be adopted to improve the 
interpretation and integration of multivariate molecular data.
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One of the most fundamental patterns of scientific discov-
ery is the revolution in thought that accompanies a new 
body of data [1].

Introduction
The direct characterization and analysis of sampled pools 
of biomolecules, particularly DNA, RNA, proteins, and 
metabolites, has fundamentally altered the life sciences 
and specifically microbiology. Metagenomics and meta-
barcoding can identify organisms in a sample and detect 
inter- and intraspecific diversity, while (meta-)tran-
scriptomics, (meta-)proteomics, and metabolomics can 

characterize the functional responses of biological indi-
viduals, populations, or whole communities (Table  1). 
Despite their different targets, these techniques meas-
ure molecular entities in a high-throughput, high-data 
volume manner and produce similar multivariate data 
outputs, enabling multivariate, molecular ecology (here-
tofore MME).

MME techniques measure a wide range of molecular 
entities within a selected class of molecules. Being gen-
erally untargeted, they require less a priori knowledge 
about the biomolecules measured than targeted assays. 
Interest in MME techniques has grown rapidly over the 
past two decades, and their application has informed 
ecological and evolutionary theory. For example, meta-
barcoding has been used to show how dormancy affects 
the spatial distribution of microbes [11], and metatran-
scriptomic analyses have revealed that microbial niche 
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differentiation in the rhizosphere is both spatially and 
temporally regulated [12]. Similarly, a combination of 
proteomics and targeted metagenomics have been used 
to study adaptation in light of horizontal gene transfer 
[13].

MME data and conventional community ecology (CE) 
data are both multivariate and the sample × molecule 
matrices produced by MME techniques may be viewed 
as analogous to the plot × species matrices produced by 
community ecologists. Like in community ecology, stud-
ies in molecular and microbial ecology are often less 
concerned with the response of single molecular enti-
ties, especially when the identity and function of specific 
molecular entities are unknown. Rather, they focus on 
differences or changes in a whole profile or on emergent 
properties of the community (e.g., metabolic coopera-
tion). Similar to CE studies, MME data are often used to 
characterize molecular diversity and the relative abun-
dance of molecular entities within samples and across 
space, time, or experimental treatments.
ɑ-and β-diversity metrics, which describe species diver-

sity in a sample and the difference in diversity between 

samples, respectively, were developed by CE and are 
often used to describe changes in the molecular profiles 
of samples (e.g., Shannon diversity indices, Bray-Curtis 
dissimilarities; [14–16]). In CE, diversity metrics rely on 
three key measures [17, 18] (Fig. 1): the absolute numbers 
of individuals detected in a specific area (N), the total 
number of species in that area or species richness (S), 
and the relative abundances of community members (i.e., 
species abundance distributions, or SAD).

CE measures are affected by biases that are introduced 
during the molecular sample preparation, molecular anal-
yses, data collection, and processing  steps that generate 
MME data. The techniques that produce MME data are 
relatively new, and while much work has been devoted to 
identifying their biases and limitations, how these affect 
the applicability of CE measures to assess patterns of 
molecular diversity has received less attention. However, 
within the context of ecology, the biases and limitations 
of diversity data have been extensively discussed, result-
ing in various approaches to overcome them. For exam-
ple, issues related to detection limits given finite sample 
sizes are potentially the oldest analytical research topic in 

Table 1 MME techniques yield data sets with common structures, and often, limitations

For techniques with “no N,” the total number of molecular entities measured contains no biological information. For techniques that produce 0-inflated datasets, the 
data matrices contain more zeros than non-zero values, while for compositional datasets, the abundance of species is correlated to the technique and contains no 
biological information. For each limitation, whether it is an issue or a serious issue for each data type is indicated with + or ++, respectively. Data types that face a 
limitation but it seldom affects the scientific questions asked with these data are indicated with (+)

Common techniques 0-inflated No N Compositional

Genomics: The system‑wide identification and quantifi‑
cation of DNA sequences and the encoded functions in 
an organism or population [2].

High throughput sequencing (+)

Transcriptomics: The system‑wide identification and 
quantification of the RNA transcripts in an organism or 
population [3].

High throughput sequencing, microarrays + + +

Proteomics: The use of quantitative protein‑level meas‑
urements of gene translation to characterize biologi‑
cal processes and decipher the mechanisms of gene 
expression control [4].

Mass spectrometry + +

Metabolomics: The systematic identification and quan‑
tification of metabolites (small molecule substrates, 
intermediates, products of cell metabolism) in an 
organism or population [5]..

Nuclear magnetic resonance spectroscopy, mass 
spectrometry

+ (+)

Metabarcoding: The large‑scale identification and quan‑
tification of variation of diversity in an environmental 
sample in terms of a specific genomic region (DNA) [6].

High throughput amplicon sequencing ++ + +

Metagenomics: Large‑scale identification and quantifi‑
cation of all DNA in an environmental sample [7].

High throughput shotgun metagenomic sequencing ++ +

Metatranscriptomics: Large‑scale identification and 
quantification of all RNA transcripts in an environmental 
sample [8]

High throughput RNA sequencing, (microarrays) ++ +

Metaproteomics: Large‑scale identification and quan‑
tification of the entire protein complement from an 
environmental sample [9].

Mass spectrometry ++ +

Meta‑metabolomics: Large‑scale identification and 
quantification of small molecules from an environmen‑
tal sample [10].

Nuclear magnetic resonance spectroscopy, mass 
spectrometry

+ +
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ecology [21] and have led to the development of methods 
that can quantify sample completeness (i.e., rarefaction, 
diversity index estimators [22–24]). Importantly, meth-
ods from molecular data analysis and ecology can be used 
to analyze different kinds of MME data with their specific 
challenges (Table 1), but they make different assumptions 
about the underlying distribution of the data [25]. Conse-
quently, their applicability depends both on the raw data 
and the scientific questions [26].

 Here,  we explore how detection biases and technical 
limitations associated with MME data affect the calcula-
tion of N, S, and SAD, and how this, in turn, affects the 

determination of ɑ- and β-diversity. Finally, drawing par-
allels from other areas of community ecology, we indicate 
analytical approaches that allow for the robust estimation 
of diversity metrics for biased or limited MME data.

The components of biodiversity in the context 
of MME data
Selection of sampling scale and species definition
All components of biodiversity—and the patterns emerg-
ing from them—depend on the sampling scale [27, 28]. 
There is no single “perfect” scale which is optimal for 
measuring biodiversity, and the relative importance of 

Fig. 1 Sample collection and preparation, data collection, and post‑processing are inextricably linked in MME techniques and can all potentially 
affect estimates of diversity. The effect of researcher choices on S, N (middle row), and SAD (bottom row) during data generation is shown below 
each step. The true diversity in two samples is shown in red and blue, and the measured diversity is shown as dotted lines. Technical errors during 
sample collection and storage can increase S (e.g., due to non‑specific contamination [19]), resulting in higher estimates for S and steeper SAD 
(a). In contrast, sample preparation can reduce the detectability of certain molecular entities (e.g., during PCR amplification in metabarcoding 
[20]) resulting in a lower S and flatter SAD (b). Technical limitations on the number of observations are imposed by some of the data collection 
instruments used (e.g., sequencer), placing technical limits on N, and potentially resulting in more even communities (i.e., a flatter SAD) (c). During 
processing, applying a less stringent species definition can result in reduced S and a flatter SAD (d)
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different ecological processes is intricately linked to the 
scale of observation [29]. However, defining the scale 
of observation in MME analyses is not straightforward, 
and altering this scale is not always possible. First, the 
data collection method used (e.g., mass spectrometer, 
sequencer) dictates how samples must be prepared and 
indirectly sets limits on the scale of sampling. In low bio-
mass samples, the lower limits can be hard to achieve, 
leading to biases due to contaminants or artifacts [19]. 
On the other hand, upper limits can be very small (e.g., 
μL of a liquid or mg of a solid), so sample preparation 
must be adapted for the analytical sample to adequately 
represent the desired scale. Second, during each step of 
sample preparation, the substrate obtained in the previ-
ous procedure is often subsampled, which may further 
dissociate diversity assessments from the initial sam-
pling scale. Third, sampling strategies that are com-
mon in MME techniques can have poorly defined scales 
(e.g., filtrate, swabs), which complicates the comparison 
diversity in samples obtained with even slight variations 
in sampling approaches. Incomparability of sampling 
scales cannot always be avoided (e.g., if body sites or 
plant tissues are being compared [30, 31]). The mismatch 
between the scale of observation and the scale at which 
the target organisms perceive and function in their envi-
ronment has received substantial attention in ecology 
[28, 32] and has recently been discussed in the context of 
microbes [33], but further research into the spatial scale 
of influence on MME target molecules is necessary.

The spatial scaling of diversity has been explored in 
metabarcoding data [34–37], but further research is 
urgently needed to describe the spatial components 
of complex samples used for other kinds of  MME data, 
while explicitly acknowledging that scaling up observa-
tions is not always possible for MME data and may be 
constrained by the system of interest (e.g., host-associ-
ated systems) and by the technique used (i.e., the labo-
ratory protocols). Additional research is also needed to 
determine whether small sample sizes limit the ability 
to detect phenomena that occur at larger scales or that 
depend on larger organisms [38].

In order to capture microbial diversity at larger scales 
and reduce the effect of small-scale spatial variability, 
pooling (i.e., homogenizing multiple smaller samples 
from a larger area) is a common practice [39]. However, 
the universal distance decay relationship (DDR, [40]) pre-
dicts that samples taken further away from each other in 
space and time will have less overlap in species, and this 
is also likely the case for MME data (e.g., sequence-based 
omics [41, 42]). The spatial distribution of pooled sam-
ples can therefore greatly affect (and when unstandard-
ized, bias) diversity estimates [38], resulting in inflated 
diversity estimates for samples which were pooled from 

larger areas. Furthermore, MME techniques can target 
molecules from a wide range of organisms of varying 
body sizes, but body size affects the distribution of diver-
sity [43–45]. Further research is needed to determine to 
what extent the DDR applies to MME data (e.g. ecome-
tabolomics of larger organisms), and whether this has 
implications for sampling designs. For microbial com-
munities, the relative similarity of functional compared 
to taxonomic profile has been demonstrated [46, 47], but 
whether DDRs are observable in functional microbial 
MME data has not been analyzed to date.

While MME techniques often impose limits on the 
sampling scale, they generally require the researcher 
to explicitly select a definition of the units of diversity. 
These units can be species or molecular entities, such as 
ASVs or protein families. If the definition is not given (as 
it is, e.g., for identified metabolites), it is usually based on 
a threshold of molecular similarity of detected molecules 
to each other or to references. Definitions vary with e.g., 
97 to 100% similarity for metabarcoding [48], 95% aver-
age nucleotide identity for microbial genomes [49, 50], 
and a vast range of identity and expected value thresh-
olds for functional units, such as gene families. Impor-
tantly, the choice of units and definition directly affects 
biodiversity measurements (Fig.  1). Within the context 
of synthesis, archiving raw MME data allows data reus-
ers to reprocess datasets using a single-species definition, 
allowing cross-study comparisons.
The number of individuals (N)
In CE, for a given sampling scale, N measures the num-
ber of individuals in that space. However, MME tech-
niques measure molecules rather than individuals. The 
two are not always related) e.g., because of differences in 
cell or body sizes, or in copy numbers of marker genes). 
Furthermore, the number of detected molecules often 
reflects a machine’s throughput, rather than biological 
reality [51]. For example, in sequencing-based methods 
(i.e., (meta-)genomics and (meta-)transcriptomics), the 
number of observations or sequencing reads per sample 
(i.e., sequencing depth) reflects the choice of sequencer 
and the number of samples loaded, rather than the abun-
dance of organisms in the sample [52]. As a consequence 
for MME data, N often serves only as an indicator of 
observation effort (e.g., sequencing depth) and is other-
wise uninformative.

The decoupling of N and the abundance of molecules 
in  situ creates two limitations. First, it precludes the 
estimation of the true abundances of molecular enti-
ties. Second, uneven observation depths make changes 
in the abundances of molecular entities (i.e., differen-
tial detection) sensitive to the normalization method 
used [53]. Several statistical approaches have been 
developed to normalize before detecting changes in 
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molecular entities across samples through generalized 
linear models, including DESeq2 [54], metagenomeSeq 
[55], edgeR [56], LEfSE [57], and voom [58]. However, 
several normalization methods assume similar SADs 
and they can bias the comparison of abundances across 
samples (e.g., in transcriptomic data; [53]). Given the 
wide range of options, the development of novel tools 
for comparing workflows and the resulting MME data 
(e.g., ANPELA in proteomics [59]) and studies compar-
ing different approaches for differential detection [25, 60, 
61] are increasingly important. For example, in LC-MS 
and metabolomics data, spectral data are normalized by 
external standards, pooled samples, or total biomass [62].

Species richness (S)
CE’s species richness in an area (S) can be equated to the 
number of distinguishable molecular entities in a sam-
ple (i.e., molecular richness), which are often defined ad 
hoc, as discussed above. S can be influenced by the envi-
ronment, dispersal, interactions among organisms, or 
changes in organisms producing molecules of interest 
(as in [17]). Assessing the number of molecular entities 
present is often of interest, with multiple studies hav-
ing found connections between richness, mechanis-
tic processes, and ecological phenomena. For example, 
metabarcoding-based assessments of soil bacterial com-
munities revealed that bacterial richness was positively 
related to carbon decomposition and soil enzymatic 
activities [63]. Similarly, LC-MS-based assessments of 
the secondary metabolites of fungi revealed species-spe-
cific metabolic richness [64].

The detectability of molecular entities is not evenly 
distributed (Fig. 1), and this may negatively affect S (and 
SAD, see below). For all MME techniques, several hun-
dred to thousands of molecular entities may be present in 
concentrations that span multiple orders of magnitude, 
which complicates their measurement. Nonrandom dif-
ferences in the detectability of molecular entities may 
lead to the consistent underestimation of specific molec-
ular entities, as is the case with biases caused by different 
primer affinities in metabarcoding [65], or to the under-
estimation of molecular entities below a certain abun-
dance threshold. For example, the limited dynamic range 
of a mass spectrometer may cause rare molecular entities 
to fall below the limit of detection, while very abundant 
entities may saturate the detector, pushing them above 
the limit of quantification [66]. Differences in detectabil-
ity can also be random and result in lower signal-to-noise 
ratios (e.g., in proteomics data [67]). Mathematical mod-
eling of persistent detection biases has been proposed as 
a first step to identify where biases arise and to quantify 
them in metagenomic data [68], while latent variable 

modeling has been proposed for estimating missing val-
ues in proteomics data [69].

Species abundance distributions (SAD)
In CE, species abundance distributions (SAD) describe 
how abundances vary across species in a community 
(often expressed as “relative abundances,” standardized 
by total biomass or the total number of individuals in 
the community [70]). SAD of all ecological communities 
exhibit a hollow shape, as some species are more abun-
dant than others, but the shape can vary [70]. Flatter SAD 
indicate a more even community, while hollower SAD 
indicates strong dominance by certain species. Like com-
munity data, MME data generally have few very abun-
dant molecular entities and many with low abundances 
(e.g., in metabarcoding [71]).

Because SAD are distributions rather than a single 
metric, comparing SAD across multiple samples is not 
straightforward, as differences in the relative distribution 
of taxa (i.e., evenness) can result in different relationships 
between samples depending on N [72]. This is important 
for the analysis of SAD, since N in MME tends to relate 
to technical choices rather than biological reality, and the 
different numbers of molecules per molecular species 
further confound the estimation of the number of organ-
isms in the sample [38]. Nevertheless, N affects the other 
components of biodiversity: the greater the observation 
effort, the greater S will be, and the greater the number 
of rare molecular entities that will be found (i.e., a longer-
tailed SAD).

When the number of observations is artificially 
determined by the technique (i.e., uninformative N), 
an increase in one species may result in an observed 
decrease of another, even if the absolute abundance of 
the other molecular entity is unchanged [73]. This limita-
tion makes the data compositional [74], so the observed 
abundance of each species depends on the abundance of 
all other species in the sample [52], skewing SAD. Several 
methods to analyze compositional data [74–77], iden-
tify differentially abundant molecular entities [78, 79] or 
groups of molecular entities [51], and determine cau-
sality [80] have been proposed. In the most basic form, 
compositional analyses use log ratio transformations 
to individual values or the geometric mean of all values 
(clr). These were applied, for example, to metabarcoding 
and metalomic data [81]. However, MME data are often 
sparse (i.e., molecular entities appear seldom across sam-
ples) and zero-inflated (i.e., there are more zeros than 
expected from the distribution of the observed molecu-
lar entities in a sample, Table  1). Because of the large 
number of zeros, log transformations and ratios do not 
work [82]. Overcoming this limitation remains an area of 
active research: the simplest approach to removing zeros 
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is replacing zeros with fixed, low values that lie below the 
instrument’s detection limit. However, this skews sparse 
data further [73].  Alternatively,  methods that test pair-
wise ratios of specific molecular entities remove rare 
features (e.g., ANCOM [83], ANCOM-II [84]). More 
complex methods use Bayesian inference, but are com-
putationally expensive (i.e., ALDEX2 [85]). For metabo-
lomic data, testing the informative potential across all 
possible ratios of metabolite pairs is a common and 
statistically validated practice [86]. To model the rela-
tionship between molecular entities and environmental 
gradients, generalized joint attribute models adapt joint 
species distribution models to zero-inflated data [87] and 
are appropriate for MME data.

For many MME questions, rare molecular entities are 
uninformative, in addition to being more likely observed 
due to technical error, making them less quantifiable. 
MME fields have developed different approaches to 
remove such data. In untargeted metabolomics, molec-
ular entities that are detected in blanks or exhibit high 
variation across technical replicates are removed from 
the metabolomic profile [62, 88]. In most modern meta-
barcoding pipelines, molecules that appear only once 
are assumed to be indistinguishable from sequencing 
errors and are removed automatically [89–91], artificially 
shrinking S [92], N, and resulting in a flatter SAD. How-
ever, this may be preferable to including erroneous data. 
For example, one study found that at most, 40% of molec-
ular entities that appeared once (i.e., singletons) could 
potentially be artefactual, directly affecting species rich-
ness estimation [93]. In many analysis pipelines, rare taxa 
are commonly filtered to reduce the dimensionality of the 
data, regardless of the “correctness” of the observation. 
This is especially true for differential detection methods, 
which require a minimum abundance to detect differ-
ences among samples (e.g., ANCOM-II and DESeq2; [54, 
84]).

How SAD curves are used in CE to derive multiple 
diversity estimates, including evenness and ɑ-diversity 
for any N, as well as to compare abundance profiles 
across gradients [94] is discussed below.

Derived diversity components and diversity 
metrics for MME data
The challenge of analyzing “imperfect” MME data is mir-
rored by similar issues that commonly arise in CE studies 
[95]. For example, data from plant or intertidal rock com-
munities are often estimated in terms of “relative cover” 
(that is, the area covered by each species, divided by the 
total area covered by any organism). The resulting data 
are often subject to high error rates, risk undercounting 
the abundance of rare species, and introduce major sta-
tistical challenges like zero inflation [96, 97]. Historically, 

these problems have severely limited the kinds of analy-
ses that can be applied using cover data. Modern sta-
tistical methods partially address them, for example by 
separately tracking trends in abundance vs. presence/
absence data [98], or by modeling the sources of zeroes 
(e.g., “true” absences vs. “false” absences; [99]).

Estimating the true N, S, and SAD
Issues related to detection limits given finite sample sizes 
are one of the oldest analytical research topics in ecology 
[21]. Rarefaction or diversity index estimators can help 
quantify how complete a particular sample is likely to be 
and, in some cases, to standardize data across different 
samples [22, 23]. These are commonly applied to meta-
barcoding and other sequence-based MME data [100], 
especially when the aim is to quantify diversity profiles. 
However, data loss associated with rarefaction remains 
controversial [101]. More recent methods for extrapolat-
ing diversity estimates based on abundance or presence/
absence community data [24, 102] allow for the estima-
tion of diversity in MME data without massive losses in 
data.

In CE, detection errors that result in missing data are 
often estimated by revisiting a site (i.e., in vegetation 
surveys), with marked capture-recapture experimen-
tal designs, or with a posteriori modeling [103]. Sev-
eral approaches approximate the true S for DNA-based 
omics (reviewed in [104]), but such approximations 
have received less attention from other MME methods. 
Assuming that rare molecular entities (i.e., singletons) 
represent technical errors produced during sample pro-
cessing and data collection [105], targeted methods can 
estimate the true diversity of these  rare molecular enti-
ties based on the frequencies of more abundant entities 
[106, 107]. Similarly, diversity estimators such as the jack-
knife or Chao1 [108] derive an asymptotic diversity esti-
mate based on the number or of singleton or doubleton 
entities.

Species occupancy models may be used to correct for 
false positive and false negative errors [109–112] and 
approximate the true S and SAD, but when the probabil-
ity of detection is low, species occupancy models require 
large numbers of technical and biological replicates 
[113], which are often not possible. Approaches such as 
joint species distribution modeling and analyses of spe-
cies-environment associations [114, 115] can be applied 
to predict the identities of potential missing species and 
to introduce post hoc corrections to incomplete samples. 
However, this approach draws heavily on a priori under-
standing about species’ natural histories as well as his-
torical data from previous studies, and may become more 
prominent as the molecular world is increasingly well 
characterized.



Page 7 of 13Jurburg et al. Microbiome          (2022) 10:225  

For the estimation of SAD, parametric curves [70] can 
improve relative abundance estimates. From the histo-
gram of observed relative abundances, different classi-
cal models can be fit (reviewed in [70]). The best fitting 
model can be selected and then compared across sam-
ples. The parameters estimated from curve-fitting, such 
as Fisher’s ɑ, can serve as a diversity metric that reflects 
the imbalance between few dominant species versus 
many rare species. For example, a community with a few 
highly abundant species and many rare ones will show a 
low ɑ value compared to a similarly rich community with 
more even abundances. Fisher’s ɑ is more sensitive to 
species of medium abundances and thus more helpful in 
the context of incomplete sampling [116].

Due to the compositional nature of MME data, less 
abundant or less detectable components can be pushed 
below detection thresholds limits which is akin to the 
classic ecological notion of “veil lines” [21]. Post hoc sta-
tistical corrections such as species distribution models 
attempt to reconstruct information about missing molec-
ular entities based on the observed composition of local 
or regional species pools [117].

ɑ-diversity
Because of the long tail of rare molecular entities and 
the variable, uninformative N, computing a spectrum of 
diversity indices can provide a more complete picture of 
the diversity profile of a sample [118, 119]. In particular, 
Hill numbers go beyond single-point diversity estimators 
for fairer comparison between samples across different 

observation depths [120], leveraging the accumulation of 
individuals to produce standardized, continuous diver-
sity estimators (Fig.  2). This continuum of estimates is 
obtained by varying the exponent q (or order) of the Hill 
numbers. As q increases, the relative importance of abun-
dant species increases, providing information on whether 
common or rare species contribute most to ɑ-diversity. 
Hill numbers have been shown to be more robust diver-
sity estimators from molecular data, especially with q>1, 
as they are less sensitive to rare species and sparse data-
sets [121]. Importantly, because MME data processing 
and treatments disproportionately affect rare molecular 
entity, higher order Hill numbers can more robustly esti-
mate ɑ-diversity regardless of the researcher’s technical 
decision-making [122]. An added advantage of Hill num-
bers is that they can produce confidence intervals along 
the accumulation of samples, quantifying uncertainty 
clearly compared to point estimates [24]. Leveraging 
Hill numbers of q>1 is particularly useful for datasets in 
which there is a high variation in S across samples (e.g., 
metabarcoding, metagenomics) and in which the com-
munity is not fully characterized [119]. It is important 
to note, however, that the increased robustness of higher 
order Hill numbers does result in the loss of information 
about rare species.

β-diversity
β-diversity metrics are commonly used across MME data 
to quantify the extent to which the molecular entities 
observed differ between samples. In general, β-diversity 

Fig. 2 Measuring ɑ‑diversity with Hill numbers. ɑ‑diversity indices were first unified by ecologist Mark Hill as the inverse of mean proportional 
abundances in a community [123, 124]. The value of q (or order of diversity) describes how this mean is calculated, affecting the sensitivity of 
diversity indices to rare species. In a–c, Hill numbers are shown for a metabarcoding data obtained from the fecal sample of an Ecuadorian 
finch (publicly available in NCBI with accession number SRR6486665 [125]). When q=0, the weighted harmonic mean of species’ proportional 
abundances is measured, and richness is assessed (a). When q=1, the weighted geometric mean is measured, and Shannon’s entropy is assessed 
(b). When q=2, the weighted arithmetic mean is measured and inverse Simpson’s richness is assessed (c). All Hill numbers are expressed in units of 
effective numbers of species, or the number of species that would be expected in a community in which all species are equally abundant
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is assessed by using similarity or dissimilarity metrics, 
and the choice of metric depends on the data’s limitations 
as well as the research question of interest. For example, 
in the  commonly used metric Euclidean distances (e.g., 
in principal components analyses), species absences are 
equally as informative as presences, making them unsuit-
able for characteristically sparse MME datasets [126]. In 
contrast, the semimetric Bray-Curtis dissimilarities give 
more weight to mutual presences and do not consider 
mutual absences among two samples to be informative.

If the emphasis is on the presence and absence of 
molecular entities rather than on their relative abun-
dances, MME data can be converted into incidence data, 
and Sorensen dissimilarities can be calculated [126]. 
Importantly, incidence-based assessments are heavily 
affected by rare molecular entities, whose detection (or 
non-detection) may be artifactual in the case of MME 
data [127]. Filtering can also bias the measurement of 
β-diversity in molecular data. For example, in metabar-
coding, the practice of removing rare species has recently 
been shown to artificially decrease α- and increase 
β-diversity, while reducing the discriminatory power of 
β-diversity [128].

Similar to α-diversity, β-diversity indices based on 
Hill numbers have been developed [129, 130], and allow 
adjusting the relative importance of rare versus abun-
dant species when computing β-diversity through the 
q parameter. For example, when comparing the simi-
larity between two communities, it is possible to give 
more weight to shared abundant species than to shared 
rare species. By varying the value of q, these β-diversity 
assessments can draw continuous diversity profiles. As q 
increases, the removal of rare species becomes less cen-
tral to the calculation of β-diversity.

By permuting the available data to create a random or 
null expectation of the distributions of entities in a com-
munity, null modeling-based approaches can distinguish 
between changes in S and SAD for a wide range of dis-
similarity metrics [131, 132]. Incidence-based β-diversity 
metrics can be decomposed into nestedness, which quan-
tifies the extent to which samples with smaller numbers 
of species are subsets of more species-rich samples, and 
turnover, which quantifies the replacement, or difference 
of species between samples [133]. Partitioning β-diversity 
changes can shed light into the ecological processes driv-
ing molecular diversity (e.g., in metabarcoding [134]).

When hierarchical information on the similarity 
among molecular entities is available (e.g., in metabar-
coding [135] and proteomics data [136]), phylogenetic 
β-diversity indices can be used to estimate how the 
relatedness among molecular entities affects observed 
community changes [137, 138]. The interpretation of 
variation in phylogenetic diversity indices can help tease 

apart evolutionary mechanisms at play [139], reviewed 
in [140]. For example, phylogenetic clustering can be the 
result of habitat filtering or of a constrained regional spe-
cies pool [139]. Integrating phylogenetic β-diversity met-
rics can shed light into ecological processes (e.g., during 
secondary succession [141]). Null models can be further 
extended to account for phylogenetic relationships (i.e., 
Community Assembly Mechanisms by phylogenetic-bin-
based null model analyses or iCamps [142]).

Considering similarities between MME and CE data 
can provide further avenues of innovation for analysis of 
β-diversity. For example, the analysis of functional diver-
sity focuses on the diversity of characteristics or func-
tional traits of diversity components [143]. Functional 
diversity can be estimated either through a species-cen-
tered approach, where traits are associated with a specific 
taxon, or estimated at the community scale through com-
monly used methods in microbiology [144], providing 
flexibility in the analysis and interpretation of MME data, 
which are often associated to a host (e.g., metabolomics). 
Similar to taxonomic and phylogenetic facets, functional 
diversity can be estimated through derivations of Hill 
numbers that can account for possible data treatments 
[129, 130]. For MME data derived from spectra, extant 
methods for deriving functional diversity estimates from 
remote sensing data can be applied [145].

Conclusion: integrating MME data in multi‑omics 
research
The future of microbiome research will likely involve 
combining various MME techniques (i.e., multi-omics) 
to determine “who is doing what” [146]. Multi-omics 
research may also yield new insights that link molecular 
biology and ecology. For example, combining metatran-
scriptomics and metaproteomic measurements over time 
has revealed that on average, archaea produce more pro-
teins per RNA molecule than bacteria [147]. Exploring 
the gut microbiome of Crohn’s disease patients with both 
metabarcoding and metagenomics showed that meta-
barcoding data better predicted disease state, whereas 
metagenomics data were better at classifying treatment 
response [148]. In another study, combining metagen-
omic and metatranscriptomic techniques yielded novel 
insights into carbon cycling in soils [149].

Combining omics with other techniques can increase 
the specificity of the results and address complex eco-
logical questions, providing new insights into host-
microbiome interactions, revealing the trophic structure 
of a community, and shedding light on the metabolic 
pathways linking community members. For example, by 
combining stable isotope fingerprinting (SIF) with classic 
metaproteomics, direct protein-SIF, allows for the study 
of the individual physiology and metabolism of microbes 
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within a community [150]. In one case, transcriptom-
ics, metabolomics, proteomics, and metabarcoding were 
combined to study host-microbiome interactions in pre-
diabetic individuals, revealing distinct host-microbiome 
responses between insulin-resistant and insulin-sensitive 
subjects exposed to viral infections [151].

The greatest challenge to the future of multi-omics is 
arguably data interpretation [152], as the analyses which 
inform interpretation require the integration of MME 
datasets which may have multiple biases. To improve 
interpretation, it is necessary to consider how these 
biases arise throughout the data generation pipeline 
and address them. This includes finding a consensus in 
experimental design (especially one that allows for differ-
ent molecules to be extracted simultaneously [153, 154]), 
collecting necessary metadata, considering challenges in 
joint sampling and in storage of different molecules with 
different decay rates, acknowledging different coverage 
of reference databases [155], and explicitly selecting tools 
for data integration and interpretation [156]. Further 
research at fine spatial and temporal scales may improve 
the discrimination of technical noise and intrinsic vari-
ation across MME techniques and inform the develop-
ment of experimental designs that minimize this noise.

From an ecological standpoint, integrating MME data 
begins by studying whether different MME data behave 
similarly across an ecological gradient of interest. As 
MME data interpretation becomes more advanced and 
ecological questions become more sophisticated, the 
joint analysis of multiple MME data matrices will require 
more advanced statistical methods. Here, statistical 
advances related to the fourth corner problem, which 
refers to the difficulty of inferring trait-environment 
relationships directly from environmental, species abun-
dance, and trait data, may become instrumental [157, 
158]. As analytical frameworks increase in complexity to 
keep up with growing needs for data integration, under-
standing the limitations of MME data will continue to 
ensure that data interpretation also improves, both in the 
specificity and accuracy of conclusions.
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