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Abstract 

Background: Antimicrobials are used in food-producing animals for purposes of preventing, controlling, and/or 
treating infections. In swine, a major driver of antimicrobial use is porcine reproductive and respiratory syndrome 
(PRRS), which is caused by a virus that predisposes infected animals to secondary bacterial infections. Numerous 
antimicrobial protocols are used to treat PRRS, but we have little insight into how these treatment schemes impact 
antimicrobial resistance (AMR) dynamics within the fecal microbiome of commercial swine. The aim of this study was 
to determine whether different PRRS-relevant antimicrobial treatment protocols were associated with differences in 
the fecal microbiome and resistome of growing pigs. To accomplish this, we used a metagenomics approach to char-
acterize and compare the longitudinal wean-to-market resistome and microbiome of pigs challenged with PRRS virus 
and then exposed to different antimicrobial treatments, and a group of control pigs not challenged with PRRS virus 
and having minimal antimicrobial exposure. Genomic DNA was extracted from pen-level composite fecal samples 
from each treatment group and subjected to metagenomic sequencing and microbiome-resistome bioinformatic 
and statistical analysis. Microbiome-resistome profiles were compared over time and between treatment groups.

Results: Fecal microbiome and resistome compositions both changed significantly over time, with a dramatic and 
stereotypic shift between weaning and 9 days post-weaning (dpw). Antimicrobial resistance gene (ARG) richness 
and diversity were significantly higher at earlier time points, while microbiome richness and diversity were signifi-
cantly lower. The post-weaning shift was characterized by transition from a Bacteroides-dominated enterotype to 
Lactobacillus- and Streptococcus-dominated enterotypes. Both the microbiome and resistome stabilized by 44 dpw, 
at which point the trajectory of microbiome-resistome maturation began to diverge slightly between the treatment 
groups, potentially due to physical clustering of the pigs. Challenge with PRRS virus seemed to correspond to the 
re-appearance of many very rare and low-abundance ARGs within the feces of challenged pigs. Despite very different 
antimicrobial exposures after challenge with PRRS virus, resistome composition remained largely similar between the 
treatment groups. Differences in ARG abundance between the groups were mostly driven by temporal changes in 
abundance that occurred prior to antimicrobial exposures, with the exception of ermG, which increased in the feces 
of treated pigs, and was significantly more abundant in the feces of these pigs compared to the pigs that did not 
receive post-PRRS antimicrobials.
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Background
Porcine reproductive and respiratory syndrome (PRRS) is 
the most economically significant disease of the US swine 
production, estimated to cost the industry $664 million 
annually [1]. Losses accrue primarily through production 
deficits related to decreased reproductive and growth 
performance, as well as morbidity and mortality impacts 
[2]. Pigs infected with PRRS virus (PRRSv) show clinical 
signs of respiratory disease, while sows used for breed-
ing may also exhibit reproductive failure. Additionally, 
PRRSv infections can increase susceptibility to bacterial 
infections [3–6], and co-infection with multiple bacterial 
pathogens is common in afflicted pigs [7, 8]. As a conse-
quence of such respiratory co-infections, antimicrobial 
treatments are crucial for reducing the severity of clini-
cal disease and minimizing morbidity and mortality [9]. 
Indeed, respiratory disease is the primary reason that 
the US swine producers utilize injectable, in-water and 
in-feed antimicrobials [10], and in particular critically 
important antimicrobials [11].

While critical for animal health, antimicrobial use can 
have unintended consequences, including alterations to 
the microbiome. In-feed antimicrobials and metals have 
been associated with differences in the fecal microbial 
community of commercial swine [12], although other 
reports showed no difference in the microbiomes of 
swine raised under organic versus conventional settings 
[13]. Early-life injection with tulathromycin has been 
shown to alter piglets’ gut microbiome composition and 
diversity in the short-term [14], but results from longi-
tudinal studies have reported relatively minor long-term 
effects of antimicrobials on the swine microbiome [15–
17]. These heterogeneous findings from the published 
literature could be due to the highly dynamic nature of 
the microbiome in growing swine [18–20], as well as the 
many confounding factors that can significantly shape 
host-associated microbiomes [21].

Antimicrobial use can also have the negative conse-
quence of selecting for AMR bacteria within the gut of 
the exposed pigs. Again, the evidence for this is mixed. 
Multi-year observations of phenotypic AMR in Escheri-
chia coli isolates obtained from diseased pigs in Germany 

demonstrated some correlation between reductions in 
use and prevalence of some (but not all) AMR pheno-
types [22]. Farm-level swine studies have shown asso-
ciations between antimicrobial use and increases in 
phenotypically resistant E. coli, but only for specific 
antimicrobials and specific resistance patterns [23]. Dif-
ferences in antimicrobial dosage, duration, and route 
did not significantly alter AMR levels in fecal E. coli in 
nursery pigs with diarrhea [24]. Systematic reviews of 
this topic report a high level of between-study heteroge-
neity and overall low study quality [25, 26]. Furthermore, 
antimicrobial treatment protocols for PRRS-afflicted pigs 
vary widely within the USA, and there is very little litera-
ture regarding how different protocols may impact AMR 
in the swine population.

The vast majority of reports about use-resistance asso-
ciations in swine utilize indicator bacteria such as E. coli 
or Enterococcus as a proxy for AMR dynamics within the 
bacterial population. However, AMR has been shown 
to be driven in large part by the underlying microbiome 
[27, 28], and AMR can emerge in pathogens via transfer 
from fecal commensals [29–31]. Another way to measure 
AMR is through the use of culture-independent meth-
ods such as PCR and/or metagenomic sequencing of the 
total DNA, both of which have been used to study use-
resistance associations in swine. Again, however, find-
ings are ambiguous. For example, antimicrobial use has 
been shown to significantly increase overall AMR gene 
(i.e., resistome) abundance in growing pigs [32]; however, 
other studies reported no such effect [33, 34]. These con-
flicting observations may be driven by the confounding 
impact of the underlying microbiome, which has been 
strongly correlated with resistome abundance and com-
position in growing pigs [12].

While PRRS is a viral disease, it has been shown to 
impact the fecal bacterial population of infected pigs, and 
these impacts seem to be strain- and severity-dependent 
[35]. PRRSv infection has been associated with a less 
diverse fecal microbiome [7], and pigs with the worst 
clinical outcomes due to PRRSv exhibited lower post-
infection fecal microbiome diversity (i.e., a lower number 
of unique microbial families) compared to pigs with the 

Conclusions: The fecal microbiome-resistome of growing pigs exhibited a stereotypic trajectory driven largely by 
weaning and physiologic aging of the pigs. Events such as viral illness, antimicrobial exposures, and physical grouping 
of the pigs exerted significant yet relatively minor influence over this trajectory. Therefore, the AMR profile of market-
age pigs is the culmination of the life history of the individual pigs and the populations to which they belong. Disease 
status alone may be a significant driver of AMR in market-age pigs, and understanding the interaction between 
disease processes and antimicrobial exposures on the swine microbiome-resistome is crucial to developing effective, 
robust, and reproducible interventions to control AMR.
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best clinical outcomes [36]. Conversely, pigs with higher 
microbiome diversity at the time of PRRSv infection had 
better clinical outcomes compared to pigs with lower 
microbiome diversity [37]. The impact of PRRSv infec-
tion on the fecal microbiome has been reported to be 
stronger than the impact of other factors such as dietary 
levels of soy isoflavones [38]. However, these results were 
based on sequencing and analysis of the 16S rRNA gene 
and thus were restricted to describing the taxonomic 
classification of bacteria and archaea.

Given increasing evidence that PRRS drives both anti-
microbial use and host-associated microbiome dynam-
ics, it is important to better understand how PRRS and 
subsequent antimicrobial exposures may impact bacte-
rial populations and AMR in afflicted pigs. Despite the 
importance of these four interrelated factors (i.e., PRRSv 
infection, antimicrobial exposures, AMR, and microbial 
shifts), there is scant literature to support a theoretical 
framework for how they may interact within commercial 
pig populations. Therefore, the objective of this longitu-
dinal viral challenge study was to characterize and com-
pare the wean-to-finish fecal microbiome-resistome of 
pigs with and without PRRS and subsequently exposed 
to two different antimicrobial treatment protocols. We 
hypothesized that (1) challenge with PRRSv would induce 
a change in the fecal microbiome of infected pigs and (2) 
different post-PRRS antimicrobial treatments would be 
associated with differences in the fecal resistome.

Methods
Study population and facilities
This study was approved by the Institutional Animal Care 
and Use Committee (IACUC) of Pipestone Veterinary 
Services, number 2018-2. Study piglets were sourced 
from a single high-health commercial sow facility with 
confirmed negative status for PRRSv, influenza A virus 
of swine, and porcine epidemic diarrhea virus. Piglets 
did not receive any antimicrobials while in the sow facil-
ity, and the piglets’ sows had not received any antimicro-
bial treatment after placement in the farrowing rooms 
prior to parturition and lactation. Selected piglets had 
remained with their dam from farrowing through wean-
ing, and no piglets were fostered onto those dams.

At weaning (23 days of age), three piglets from each 
of 36 litters were haphazardly selected for enrollment in 
the study, with care taken to avoid low-viability piglets. 
The three enrolled piglets within each litter were ran-
domly assigned to one of three treatment groups using 
a random number generator, with the treatment group 
designated by colored ear tags. A total of 108 weaned 
pigs (N=36 per treatment group) were included in the 
study. On weaning day, all enrolled piglets were commin-
gled and transported into a newly built Biosafety-level 

2 research facility located in southwestern Minnesota, 
which had not previously housed any animals. On arrival 
at the facility, all piglets were weighed, visually assessed 
for clinical signs of illness by a veterinarian and animal 
health personnel, and then moved into one of three dif-
ferent rooms, based on treatment group assignment. 
Each room contained 12 pens, separated by solid walls to 
prevent cross-contamination of solid material between 
the pens. Three pigs were placed into each pen, for a total 
of 12 pens and 36 pigs per treatment group. Each room in 
the facility was equipped with negative pressure ventila-
tion with mechanical filters (minimum efficiency report-
ing value of 16, Camfil-Farr, Stockholm, Sweden) to filter 
all incoming and outgoing air. All study personnel and pig 
caretakers followed strict biosecurity measures, includ-
ing showering and changing of all clothing when moving 
between rooms. When entering and exiting pens within a 
room, all study personnel and caretakers changed boots 
and gloves.

All pigs in all treatment groups were fed the same diets, 
which included zinc at 3000 ppm for the first 11 days 
post weaning (dpw), then at 2250 ppm from 12 to 20 dpw, 
and finally at 100 ppm for the remainder of the study to 
meet nutritional needs. Copper was included at 225 ppm 
for the first 21 dpw, then at 162 ppm for the remainder of 
the study. All pigs were individually identified and treat-
ments were recorded throughout the trial. Individual Pig 
Care (IPC) scoring was conducted by trained personnel 
as a measure of morbidity and animal welfare status [39]. 
IPC scores were calculated using an A-B-C scoring sys-
tem previously described by Zoetis where the scores refer 
to severity and duration of disease [40]. For all pigs in all 
treatment groups, IPC scoring was done every 3 days for 
the first 21 days after weaning, 3 times weekly for 4 weeks 
after the PRRSV challenge, then once weekly until the 
end of the trial. All mortality was documented, and dead 
pigs were weighed. All surviving pigs were weighed on 
the day of marketing.

Treatment groups
After a 10-day acclimation period in the research facil-
ity, all study pigs (N=108) received modified live PRRSv 
vaccine (Ingelvac PRRS® MLV, Boehringer Ingelheim 
Vetmedica Inc., 2 mL/pig) 10 days post-weaning (dpw) 
to reduce the severity of clinical illness in the pigs sub-
sequently challenged with PRRSv. If individual pigs pre-
sented with non-PRRS-related clinical disease warranting 
antimicrobial treatment at any point during the trial, they 
were administered either penicillin G procaine (PPG) or 
lincomycin HCl via intramuscular injection.

The 36 pigs in room A (“Minimal” group) were con-
sidered the control group. This group was not chal-
lenged with PRRSv and did not receive any antimicrobial 
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treatments other than by injection of individual pigs as 
described above. The 72 pigs in rooms B and C were chal-
lenged with 2×10^3.5 TCID50 of PRRSv 1-7-4 field iso-
late via the intramuscular route at 44 dpw, as previously 
described [9]. On days 49–53 dpw, pigs in rooms B and C 
were administered tilmicosin phosphate (Pulmotil® AC, 
250 mg/mL, Elanco) in the drinking water via a water 
medication device, with a target concentration of 200 
parts per million (ppm). At 51 dpw, all 36 pigs in room 
C (“Intensive” group) were administered 5.0 mg/kg of 
ceftiofur crystalline free acid (EXCEDE® for Swine, Zoe-
tis) via intramuscular injection. In room B (“Moderate” 
group), pigs were administered 5.0 mg/kg of ceftiofur 
crystalline free acid via intramuscular injection if indi-
cated based on clinical signs. On days 57–70 dpw, all pigs 
in the “Intensive” group were administered chlortetracy-
cline (400 g/ton to deliver 22mg/kg body weight) in com-
bination with tiamulin (35 g/ton to deliver 2mg/kg body 
weight) in the feed for 14 days per label requirements. 
The details of experimental design and treatment proto-
cols are presented in Table  1, with further details avail-
able at [41]. Average daily gain of pigs in each treatment 
group was also recorded and analyzed to test for differ-
ences among treatment groups using one-way analysis of 
variance (ANOVA).

Sample collection 
Fecal samples were collected from individual pigs per 
rectum using a gloved finger. Gloves were changed 
between pigs. Fecal samples were collected from each 
pig at 6 time points: (1) just prior to weaning and trans-
port to the BSL-2 facility (0 dpw, “weaning/transport”), 
(2) the day before PPRSv vaccination (9 dpw, “pre-PRRSv 
vaccine”), (3) the day prior to PPRSv challenge (44 dpw, 
“pre-PRRSv challenge”), (4) 5 days after PPRSv challenge 
and prior to antimicrobial exposures (49 dpw, “pre-AMU 

start”), (5) after all antimicrobial exposure had ended (79 
dpw, “AMU end”), and (6) just prior to marketing (149 
dpw, “market”). Individual fecal samples were placed into 
a sterile Whirl-Pak bag and stored immediately on ice for 
transport to the laboratory, where they were stored at 
−80°C until further processing.

Pooling and processing of fecal samples
Individual fecal samples were thawed on ice and then 
combined by pen within each time point (N=216 com-
posite samples total). To achieve equivalent input 
amounts of raw feces, total composite sample weight was 
targeted at 0.30 g using an electronic balance. Therefore, 
if 2 pigs were in a pen on a given sample collection day 
(i.e., if a pig had died), 0.15 g of each sample was mixed; 
if all 3 pigs were sampled on a given collection day, then 
0.10 g of feces from each pig was mixed. The PowerSoil 
Pro kit (Qiagen, Germany, Catalog number 47014) was 
used to extract DNA from each composited sample, 
using the QiaCube Connect (Qiagen, Germany) accord-
ing to the manufacturer’s protocol. Briefly, fecal samples 
were placed into PowerBead Pro tubes containing 800 
uL of CD1 solution. Then, tubes containing the fecal 
material were vortexed using the Mini  BeadbeaterTM 
(2200 rpm, 20 s per cycle) three times, with a 30-s pause 
in-between each beating interval to prevent overheat-
ing. After centrifugation at 16,000 g for 2 min, 600 μL of 
supernatant was transferred into the second position of 
the rotor adapter and further steps were performed in 
the automated method on the Qiacube Connect, with 12 
composite samples extracted per run. DNA concentra-
tion was determined fluorometrically on the Qubit® 4.0 
(Thermo Fisher Scientific, Germany). From each com-
posite sample of extracted DNA, 100 ng was used for 
library preparation with Qiaseq FX DNA Library Kit 
(Qiagen, Germany, Catalog number 180475), following 

Table 1 Experimental design of control and treatment protocols for PRRSv challenge and antimicrobial treatments

a All groups received modified live PRRSv vaccine (Ingelvac PRRS® MLV, Boehringer Ingelheim Vetmedica Inc., 2mL/pig) 10 days post-weaning
b Used daily doses were calculated as the total number of pig-days of treatment summed across all active ingredients; chlortetracycline and tiamulin were defined as 
a combined product as one of the treatments [41]

Treatment  groupa PRRSv challenge Antimicrobial exposures

Individual pigs In-water In-feed UDDb

Minimal (N=36) None/negative As-needed to treat disease 
(penicillin G procaine or 
lincomycin HCl)

None None 15

Moderate (N=36) Experimentally-infected 
(2×10^3.5 TCID50 of a PRRSv 
1-7-4 field isolate, intramus-
cularly)

As-needed to treat disease 
(penicillin G procaine or 
ceftiofur crystalline free acid)

Pulmotil® AC (tilmicosin 
phosphate, 250 mg/mL) for 
5 days, starting 5 days post-
PRRSv challenge

None 238

Intensive (N=36) Experimentally infected 
(2×10^3.5 TCID50 of a PRRSv 
1-7-4 field isolate, intramus-
cularly)

EXCEDE® (ceftiofur crystal-
line free acid, 5 mg/mL) to 
every pig, starting 7 days 
post-PRRSv challenge

Pulmotil® AC (tilmicosin 
phosphate, 250 mg/mL) for 
5 days, starting 5 days post-
PRRSv challenge

Chlortetracycline (400g/
ton) and tiamulin, (35g/ton) 
for 14 days, starting 13 days 
post-PRRSv challenge

946
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manufacturer instructions. Quality and quantity of 
libraries were assessed using TapeStation (Agilent Tech-
nologies 4200) and the Qubit® 4.0, respectively. Librar-
ies were pooled and sequenced on 5 lanes of the Illumina 
NovaSeq 6000 with S4 cell chemistry, targeting a depth of 
50M 2×150bp paired-end reads per library.

Sequencing and data processing
To perform resistome analysis, sequencing reads were 
aligned to the MEGARes v2.0.0 ARG database using the 
default settings of AmrPlusPlus v2.0 [42]. Briefly, low-
quality and adapter-contaminated reads were removed 
using Trimmomatic [43], and host-associated sequences 
were removed by aligning the trimmed sequences to the 
reference Sus scrofa genome using Burrows-Wheeler-
Alignment (BWA) version 0.6.2 [44]. Non-host reads 
were then aligned to MEGARes using BWA, and the 
resulting SAM file was parsed with both Samtools [45] 
and the ResistomeAnalyzer. Low-coverage ARGs were 
removed by imposing a minimum gene fraction of 80%, 
i.e., 80% of the nucleotides within each gene had to be 
covered by at least one read in order to be included in 
downstream analyses. Microbiome taxonomic composi-
tion was determined by classifying high-quality, non-host 
sequences using the Kraken 2 standard database [46], 
with default settings as implemented in the AMRPlus-
Plus pipeline. Prior to descriptive and statistical analyses, 
both ARG and microbial counts were normalized using 
cumulative sum scaling (CSS) with a default percentile of 
0.5 [47] to account for potential differences in sequencing 
depth. Normalized counts at the gene and species levels 
were aggregated to higher levels of the MEGARes and 
Kraken 2 hierarchical ontologies, respectively. The MEG-
ARes hierarchy includes the group, mechanism, class and 
type levels, while Kraken 2 uses Linnean hierarchy, i.e., 
phylum, class, order, family, genus, and species levels.

Statistical analysis of read depth and host DNA abundance
To assess differences in sequencing depth, we used lin-
ear mixed multivariable models to assess the number of 
raw and non-host reads as a function of sequencing pool 
(1-5), treatment group (minimal, moderate, and inten-
sive), and time point (weaning/transport, pre-PRRSv vac-
cine, pre-PRRSv challenge, pre-AMU start, AMU end, 
and market).

Resistome and microbiome diversity analysis
Analyses were performed to compare the composite fecal 
microbiome and resistome dynamics between treatment 
groups and time points. Sequence features (i.e., ARGs or 
microbial taxa) present in <1% of samples were discarded 
prior to estimating alpha and beta diversity and prior to 
statistical testing.

Alpha diversity metrics including richness (observed 
number of features), Shannon’s diversity, and Pieulou’s 
evenness [48] were calculated at the phylum, class, and 
genus levels for the microbiome, and at the class, mecha-
nism and group levels for the resistome. Subsequently, 
mixed-effects linear models as implemented in lme4 
within the lmer package were constructed to test for dif-
ferences in alpha-diversity indices by treatment group 
and time point and their interaction, with pen ID as a 
random effect. The same model specifications were also 
used to test for associations between the study variables 
and resistome count as an outcome (i.e., number of reads 
aligned to ARGs).

Bray-Curtis (BC) dissimilarity distances were calcu-
lated from CSS normalized counts [49] and then used to 
perform non-metric multidimensional scaling (NMDS) 
for both the microbiome and resistome, using the “meta-
MDS” function in the vegan R package (Jari Oksanen, 
2019). Ordination fit was assessed using stress values, and 
in cases in which stress was ≥0.2, NMDS was repeated 
by increasing the trymax parameter, i.e., the maximum 
number of random starts used to search for a stable solu-
tion, until a stress value of <0.2 was obtained. Differences 
in NMDS ordination between treatment groups and time 
points were tested by permutational multivariate analy-
sis of variance (PERMANOVA) as implemented in the 
“adonis” function in vegan, using 999 permutations [50]. 
The significance of sample grouping was also evaluated 
using analysis of similarities (ANOSIM) [51]. The sta-
tistical significance was considered at an alpha of 0.05, 
and in the case of statistical significance at the omnibus 
level, post hoc pairwise comparisons were conducted 
using the pairwise.adonis function. To test for homo-
geneity of multivariate dispersion between treatment 
groups and time points (i.e., as measured using deviation 
from the centroids), the betadisper function was utilized. 
Post hoc ANOVA was performed when the dispersions 
were significantly different between the groups. Ordina-
tion results were visualized using ggplot2 [52]. A circular 
dendrogram of resistome composition based on BC dis-
tances was generated and annotated using the Interactive 
Tree of Life tool [53].

Procrustes analysis
In order to measure the correlation between ARG-level 
resistome composition and genus-level microbiome com-
position between treatment groups, we performed Pro-
crustes analysis using the vegan package in R. Principal 
coordinates analysis (PCoA) was performed on Euclid-
ean distances, and the symmetric Procrustes correlation 
coefficients, and corresponding P values, were obtained 
using the protest and procrustes functions in vegan.
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Log-fold change in feature abundance
In order to identify features with differential abundance 
between treatment groups and time points, we utilized 
multivariate zero-inflated Gaussian mixture models as 
implemented in the fitZig function metagenomeSeq. 
PenID was entered into all models as a random effect 
using the useMixedModel flag. To reduce spurious find-
ings due to very low-prevalence features, we restricted 
differential abundant testing to only features that had at 
least 50% prevalence within each time point-treatment 
group combination, i.e., a feature had to be present in 
at least 6 of 12 composite fecal samples from each treat-
ment group at each time point in order to be included 
in differential abundance testing. Pairwise differences in 
abundance of features between treatment groups were 
measured as log-fold changes using the makeContrasts 
function in the limma package, with Benjamini-Hoch-
berg adjustment for multiple comparisons. Differential 
abundance testing was performed at multiple levels of 
the MEGARes and Kraken 2 hierarchies for resistome 
and microbiome analysis, respectively.

Analysis of enterotypes and resistotypes based on Dirichlet 
multinomial mixtures
To identify entero- and resisto-types based on microbi-
ome and resistome distributions at the group and genus 
levels, respectively, we utilized Dirichlet-multinomial 
mixtures (DMMs) as implemented in the DirichletMulti-
nomial package [54]. The Laplace appropriation (i.e., low-
est Laplace score) [55] was used to calculate model fit and 
determine the optimal number of components (i.e., clus-
ters). The proportion of samples occupying a DMM clus-
ter by time point and treatment group was determined, 
and the progression of samples through each DMM per 
time point was determined using DMM transition mod-
els [56] and visualized using plot.igraph (igraph package, 
R). A chi-square test was performed to determine rela-
tionships between enterotypes and resistotypes.

Results
Morbidity, mortality, and antimicrobial treatments
All study pigs were assessed for clinical signs of illness 
throughout the study, using a standardized Individual 
Pig Care (IPC) scoring system. Of the 108 study pigs, 
98.1% (106/108) completed the study, with two pigs in 
the intensive group euthanized due to severe clinical 
signs at 8 and 13 days post-PRRSv challenge (IPC score 
“C”). Results of the clinical observations were reported 
in detail in a companion study and were consistent with 
the occurrence of mild PRRSv disease in the challenged 
pigs [41]. Briefly, mild (IPC score A) and moderate (IPC 
score B) signs of clinical disease were more common in 
the challenged groups, which also had a slower average 

daily gain (0.93 versus 0.89 g per day, respectively, P = 
0.05) than did the unchallenged control pigs.

In the minimal treatment group (i.e., the group not 
challenged with PRRSv), over the course of the study a 
total of 5 pigs required individual antimicrobial treat-
ments based on clinical illness. Specifically, 4 pigs 
received intramuscular (IM) penicillin G procaine at a 
dose of 33,000 IU/kg, once per day for 3 days, and 1 pig 
received IM lincomycin HCl at a dose of 11 mg/kg once 
daily for 3 days. No in-feed or in-water antimicrobials 
were administered to any pigs in the minimal group. In 
addition to the predetermined post-PRRSv antimicro-
bial protocols described in the “Methods” section, some 
pigs in the moderate and intensive groups needed non-
PRRSv-related individual antimicrobial treatments due 
to clinical indications. In the moderate and intensive 
groups, respectively, 3 pigs and 1 pig received IM peni-
cillin G procaine at a dose of 33,000 IU/kg, once per day 
for 3 days. In the moderate group, 7 pigs necessitated 
individualized treatment with IM ceftiofur crystalline 
free acid after the PRRSv challenge, based on clinical 
signs. Details of treatments are presented in Table 1 and 
described elsewhere [41].

Sequencing depth and quality 
Shotgun metagenomic sequencing generated a total of 
13.9B paired-end reads with an average of 64.5M per 
sample (range: 67.1K–127.6M) (Additional file  1: Figure 
S1, Additional file  2: Dataset S1) across all composite 
fecal samples (N=216). To evaluate potential differences 
in sequencing depth, we used linear mixed models that 
included sequencing pool, time point, and treatment 
group and their interaction, with pen ID as a random 
effect. Based on model results, the interaction of time 
point and the treatment group was significantly associ-
ated with differences in raw read count (P = 0.01). Spe-
cifically, raw read counts for the intensive group samples 
collected at the end of AMU were significantly higher 
than raw read counts for the moderate group samples 
collected just prior to PRRSv challenge (P=0.02) as well 
as prior to AMU (P=0.03). There was no statistically 
significant difference in the number of reads between 
sequencing pools.

Across all samples, <1% of reads (mean: 0.25%, range: 
0.13–3.5%) were filtered due to low quality, and the mean 
per-sample Phred score for raw reads was 35.7 (range: 
34.1–36.0). The proportion of host (i.e., Sus scrofa) DNA 
in each sample was variable with a mean of 36% (range: 
10–67% with the exception of one sample that yielded 
~97% host DNA) (Additional file  1: Figure S2). As with 
raw read count, the non-host read counts also varied sig-
nificantly by the interaction of time point and treatment 
group (P= 0.008). Specifically, non-host read counts were 
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significantly higher in the minimal group samples col-
lected at pre-PRRSv vaccination than the read counts 
obtained from both the moderate and intensive group 
samples collected at weaning/transport (P = 0.0004 
and P=0.007, respectively) and pre-PRRSv challenge 
(P=0.003 and P=0.04, respectively) and from the moder-
ate group samples collected at pre-AMU and AMU-end 
(P=0.0003 and P=0.032, respectively). In addition, the 
non-host read counts in the samples collected from the 
minimal group at pre-PRRSv vaccination were signifi-
cantly higher than the counts obtained from the minimal 
group samples collected at pre-AMU start (P=0.004) and 
at market (P=0.012). Based on these results, we used CSS 
normalization to account for differences in read depth.

Overall microbiome-resistome composition
Non-host reads were aligned to the MEGAres 2.0 and 
Kraken 2.0 databases for resistome and microbiome anal-
ysis, respectively. Across all samples, ~0.23% of non-host 
reads aligned to ARGs within the MEGARes database. 
We identified 331 unique ARGs across all 216 fecal sam-
ples, which represented 88 AMR mechanisms known to 
confer resistance to 35 different classes of antimicrobials. 
Across all samples, the most abundant resistance type 
was drug resistance (93.8% of all ARG sequences), and 
only 3.0% and 2.4% of sequences originated from ARGs 
that confer resistance to metals and multiple compounds, 
respectively (Additional file 1: Figure S3). Across all treat-
ment groups, the most abundant AMR classes were tet-
racycline (64.80%), followed by macrolide, lincosamide, 
and streptogramin B (MLS) (14.80%), and aminoglyco-
side (11.37%) (Fig. 1A). Tetracycline resistance ribosomal 
protection proteins were the most abundant AMR mech-
anism type (59.6% of all ARG-aligned reads), followed 
by 23S rRNA methyltransferases (5.88%), aminoglyco-
side O-phosphotransferases (5.54%), aminoglycoside 
O-nucleotidyltransferases (5.11%), tetracycline resistance 
MFS efflux pumps (4.58%), lincosamide nucleotidyltrans-
ferases (4.27%), and MLS resistance MFS efflux pumps 
(3.83%). Class A β-lactamase ARGs were relatively rare 
(0.88%). Within the tetracycline class, the most abun-
dant ARG groups were tet(W), tet(Q), tet(O), and tet(40); 
within the MLS class, mef(A), lnu(C), erm(F), and erm(B); 
and within the aminoglycoside class, ant(6), aph(2)-d-
prime, aph(3)-d-prime, and ant(9) groups.

Of all non-host reads across all samples, an average 
of 12.75% were classified taxonomically using Kraken 2 
(range 10.44–17.71%). We identified 10,967 taxa across 
all 216 composite fecal samples. The vast majority of 
classified reads originated from bacteria (96.40%). After 
filtering sparsely represented taxa, 8528 taxa remained, 
comprising 41 phyla, 79 classes,179 orders, 472 fami-
lies, 1642 genera, and 6784 microbial species. Of the 

total non-host reads across all fecal samples, 13.0%, 
12.01%, 11.92%, 11.31%, 11.10%, and 10.30% were clas-
sified at the phylum, class, order, family, genus, and spe-
cies levels, respectively. For the reads that mapped to the 
Kraken 2 database, 3.47%, 5.82%, 6.53%, 11.29%, 12.24%, 
and 19.80% were unclassified at the phylum, class, order, 
family, genus, and species level, respectively. Overall, 
bacteria from the phylum Firmicutes comprised the larg-
est proportion of classified reads (58.49%), followed by 
Proteobacteria (12.82%) and Bacteroidetes (12.39%), and 
Actinobacteria (6.59%) (Fig. 1B). Bacilli, Clostridia, Bac-
teroidia, Gammaproteobacteria, and Actinobacteria were 
the most abundant classes. Similarly, at the genus level, 
Lactobacillus, Streptococcus, Clostridium, Bacteroides, 
Faecalibacterium, and Prevotella were the most abun-
dant across all fecal samples. Lactobacillus amylovorus, 
Lactobacillus reuteri, Faecalibacterium prausnitzii, Meg-
asphaera elsdenii, and Lactobacillus johnsonii were the 
most abundant species detected across all samples.

The fecal microbiome-resistome shifted rapidly 
and consistently after weaning and then largely stabilized 
by 44 dpw
Both the microbiome and resistome shifted significantly 
between weaning and 9 dpw, as measured using nearly all 
ecological metrics. Non-metric multidimensional scaling 
(NMDS) analysis showed that the overall microbial com-
munity composition of the wean/transport samples clus-
tered separately from all subsequent time points (Fig. 2D, 
Additional file 1: Figure S4), and PERMANOVA statisti-
cal testing revealed a significant difference in the micro-
biome of samples collected at weaning versus 9 days later 
(pairwise PERMANOVA P < 0.001). The alpha-diversity 
of the fecal microbiome also shifted rapidly, character-
ized by significantly increased richness by day 9 (pairwise 
P < 0.0001), and significantly increased Shannon’s diver-
sity and Pielou’s evenness by day 44 (both pairwise P < 
0.001, Fig. 3A–C). Thus, the rapid post-weaning shift was 
characterized by the addition of unique taxa in the first 9 
days, followed by a more even distribution of those taxa 
by day 44.

Over 80% of the fecal microbiome in pre-weaning 
samples was comprised of Proteobacteria, Firmicutes, 
Bacteroidetes, and Actinobacteria phyla. After weaning 
and transport to the research facility, the relative abun-
dance of these taxa showed marked deviation with sharp 
decreases in the relative abundance of Bacteroidetes (~21 
to 8%) and Proteobacteria (~19 to 11%), and a nearly 
2-fold increase in the relative abundance of Firmicutes 
(35 to 67%) (Fig.  1B). Results of differential abundance 
testing on a phylum-by-phylum basis across all samples 
confirmed these observations. In total, 15 phyla (mean 
abundance ≥ 3, log fold change—LogFC ≥ ± 1) were 
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found to be significantly differentially abundant between 
the samples collected at weaning and the samples col-
lected 9 days later, i.e., prior to PRRSv vaccination. Of 
these 15 differentially abundant phyla, 11 had higher 
abundance in the samples taken at 9 dpw while 3 phyla 

(i.e., Bacteroidetes, Synergistetes, and Lentisphaerae) had 
lower abundance. After these first two time points, the 
microbiome largely stabilized and there were relatively 
few significant differences in abundance of phyla over 
time. These results remained largely consistent when we 

Fig. 1 100% stacked graphs depicting a relative abundance of antimicrobial resistance (AMR) classes (A) and microbial genera (B), grouped by 
time point and treatment group (Min = Minimal; Mod = Moderate; Int = Intensive). AMR classes with <0.1% relative abundance and taxa phyla 
with <5% relative abundance across all samples were grouped as “Others”. Relative abundance was based on alignment counts normalized using 
cumulative sum scaling (CSS)
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Fig. 2 Sampling time point is associated with significant differences in fecal resistome and microbiome composition. A Dendrogram showing 
linkage clustering of Bray-Curtis (BC) dis(similarities) of fecal resistome composition at the ARG level, colored by time point and treatment group. 
Non-metric multidimensional scaling (NMDS) ordination based on BC (dis)similarities (stress=0.076) by B time point (ANOSIM—analysis of 
similarities P=0.001, PERMANOVA—permutational multivariate analysis of variance R2=53.9%, P=0.001) and C treatment group (ANOSIM P=0.07, 
PERMANOVA R2<1%, P=0.22). NMDS ordination based on BC (dis)similarities (stress=0.10) of microbial genera by D time point (ANOSIM P=0.001, 
PERMANOVA R2=42.6%, P=0.001) and E treatment group (ANOSIM, P=0.32, PERMANOVA R2<1%, P=0.11). Ellipses indicate the 95% confidence 
interval for distance from the centroids of each respective group of samples
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investigated time-dependent dynamics for each treat-
ment group separately. In the minimal, moderate, and 
intensive groups, 7, 11, and 10 phyla were significantly 
differentially abundant between weaning and 9 dpw, 
respectively; and this was the largest time-dependent 
shift observed for each treatment group (Additional 

file 1: Figure S5A, Additional file 2: Dataset S2). The rela-
tive abundance of the Synergistetes phylum decreased in 
all treatment groups during the first 9 days of the trial. 
After the 9 dpw time point, the abundance of most 
phyla remained stable in all treatment groups, with the 
exception of some minor shifts in the moderate group 

Fig. 3 Resistome and microbiome alpha-diversity. Genus-level Shannon’s diversity (A), Pielou’s evenness (B), and richness (C). ARG group-level 
Shannon’s diversity (D), Pielou’s evenness (E), and richness (F). Horizontal black lines indicate pairwise comparisons between timepoints with 
statistically significant differences at the P < 0.01 (*), P < 0.001 (**), and P < 0.0001 (***), based on generalized linear mixed modeling
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after PRRSv challenge and after antimicrobial exposures 
(Additional file  1: Figure S5A, Additional file  2: Dataset 
S2).

When comparing abundances of bacterial taxa between 
treatment groups at each time point, there were relatively 
few statistically significant differences. For example, at 
weaning, there was no significant difference in abundance 
of any phyla between the moderate and minimal groups, 
and only the abundance of Lentisphaerae and Syner-
gistetes phyla were significantly lower in the intensive 
group than minimal and moderate groups, respectively. 
At pre-PRRSv vaccination, 3 phyla were significantly dif-
ferentially abundant, with all three significantly lower 
in the moderate versus the minimal group. Following 
PRRSv vaccination, there was no significant difference 
in abundance of phyla between treatment groups at any 
time point with the exception of Lentisphaerae, which 
was in lower abundance in the moderate versus the mini-
mal group at the pre-PRRSv challenge time point (Addi-
tional file  1: Figure S5B, Additional file  2: Dataset S3). 
This pattern of between-group taxa-level abundance was 
also reflected in genus-level analysis (Additional file  1: 
Figure S6A-B, Additional file  2: Dataset S3). Together, 
these results demonstrated that the most dramatic and 
consistent microbiome shift occurred in the 9 days after 
weaning and transport.

To further investigate microbiome transitions from 
weaning to market, we applied Dirichlet multinomial 
mixture (DMM) modeling to the microbiome count 
matrices at the genus level. Across all samples, eight 
clusters (i.e., enterotypes) were identified as the opti-
mal number based on the lowest Laplace approximation 
(Additional file 1: Figure S7A). Stratifying the samples by 
enterotype assignment over time, we observed that all 36 
composite samples collected at the pre-wean time point 
belonged to enterotype 1 (Fig. 4A), which was character-
ized by a dominance of the genus Bacteroides (Additional 
file  1: Figure S8). By the second sampling time point (9 
dpw), all composite samples had transitioned to entero-
types 6 and 7, characterized by a dominance of Lactoba-
cillus and Streptococcus, and a much smaller proportion 
of Bacteroides. This shift was observed for samples taken 
from all treatment groups (Fig. 4B).

A similar rapid and dramatic shift was observed in the 
resistome data, with clear differences in ARG composi-
tion of wean/transport samples compared to all other 
time points (Fig. 2A–C; class and mechanism level Addi-
tional file  1: Figure S9). However, the alpha-diversity 
shifts were opposite in direction from the microbiome 
shifts. Specifically, resistome richness, evenness, and 
Shannon’s diversity all decreased after the first time point 
(Fig.  3D–F), whereas in the microbiome data all of the 

indices increased during the same time period. Addition-
ally, the resistome shift was completed more quickly than 
the microbiome shift, with significant differences in all 
metrics occurring between days 0 and 9 post-weaning 
(Fig.  3D–F). In addition to the progressive change in 
resistome diversity and composition, the number of reads 
aligning to ARGs dropped significantly between day 0 
samples and day 44 samples (P=0.03 based on linear 
mixed modeling, Additional file 1: Figure S10). However, 
there was no significant association between resistome 
counts and treatment group or the interaction of treat-
ment group and time point.

Weaning- and transport-associated shifts in the 
resistome were characterized by a relative increase in 
the dominance of tetracycline ARGs, with concomi-
tant decreases in the relative abundance of ARGs that 
confer resistance to multiple metals and to both antimi-
crobial drugs and biocides (Fig.  1A). Additionally, the 
pre-weaning resistome contained a relatively high pro-
portion of diverse yet low-abundance ARGs, which were 
absent from the resistome data by day 44 post-weaning 
(Fig. 1). These shifts were observed in differential abun-
dance analysis, which showed a significant increase in 
abundance of tet(W) (a tetracycline resistance ribo-
somal protection protein) from day 0 to day 9 samples, 
accompanied by significant decreases for 15 unique 
AMR classes, 24 unique mechanisms, and 12 unique 
ARGs (Fig.  5A, Additional file  2: Dataset S5). As with 
the microbiome, the vast majority of statistically signifi-
cant changes in ARG abundance occurred from day 0 to 
day 9 post-weaning (Additional file 2: Dataset S5), again 
reflecting the rapid and dramatic shift that occurred 
immediately after weaning and transport of the pigs.

Considering the stereotypic progression of micro-
biome enterotypes that we observed (Fig.  4), we per-
formed DMM on the ARG group-level count matrices. 
In contrast to the microbiome, the ARG data from the 
216 composite fecal samples were best clustered into 3 
distinct resistotypes based on lowest Laplace approxi-
mation (Additional file 1: Figure S7B). Resistotype 1 was 
the most prevalent and represented nearly ~60% of the 
samples, while resistotypes 2 and 3 represented 23% and 
16%, respectively. While resistotype 1 and 2 both con-
tained relatively high representation of tet(W), tet(O), 
tet(40), and tet(Q), resistotype 1 also contained relatively 
high abundance of tet(L), tet(44), lnu(A), tet(B), tet(32), 
and sat, which were all virtually lacking in resistotype 2 
(Fig. 6A). Nearly all of the samples obtained at weaning 
belonged to resistotype 2, while nearly all of the sam-
ples had transitioned to resistotype 1 by 44 dpw (i.e., just 
prior to PRRSv challenge in the moderate and intensive 
groups, Fig. 6B, C).
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Temporal shifts in the microbiome and resistome 
far outweighed the impacts of viral challenge 
and antimicrobial exposures
The impact of time point consistently outweighed 
the impact of treatment group across all compari-
sons made. PERMANOVA statistical testing demon-
strated that time point explained the majority of the 
observed variation in the microbiome and resistome 
(R2 = 42% and 54%, both P = 0.001), while treatment 

group explained less than 1% of the variation in both 
the microbiome and resistome, and this was not sta-
tistically significant (P = 0.11 and 0.20, respectively). 
Treatment group was not significantly associated with 
differences in richness, Shannon’s diversity or Pielou’s 
evenness in either the microbiome or the resistome 
data.

Feature-by-feature differential abundance testing dem-
onstrated that the vast majority of changes in abundance 

Fig. 4 Enterotype dynamics over time and between treatment groups. Dirichlet multinomial mixture (DMM) models of genus-level microbiome 
alignments were used to assign samples into one of eight clusters based on the lowest Laplace approximation. A Transitional model showing 
assignment of fecal samples to DMM cluster (y-axis) and stratified by time point (x-axis). The size of circles is proportional to the number of samples 
contained in each DMM cluster, and edges are weighted by transition frequency. B Stack bar of cluster stratified by the treatment group (colored)

(See figure on next page.)
Fig. 5 Log-fold change (logFC, x-axes) of ARG features A each treatment group (minimal, moderate, and intensive) comparing sequential sampling 
time points (i.e., positive logFC values indicate higher abundance in the later time point compared to the earlier time point) and B between 
treatment groups (minimal, moderate, and intensive) for each time point. Each dot represents the ARG feature in the group, and red dots represent 
ARG that are significantly different between comparison groups (i.e., logFC≥±1, BH adjusted P< 0.05)



Page 13 of 25Gaire et al. Microbiome          (2022) 10:118  

Fig. 5 (See legend on previous page.)
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occurred over time (Additional file 1: Figure S6A, Addi-
tional file 2: Dataset S4 as opposed to between treatment 
groups Figure S6B). In total, the abundance of 317 gen-
era changed significantly over time, compared to only 67 
genera that exhibited significantly different abundance 
between the treatment groups at any time point (Addi-
tional file  2: Dataset S3, reporting genera with overall 
mean abundance >3 and logFC of ≥ ± 1). A similar pat-
tern was observed in the resistome, with 21 ARGs chang-
ing significantly in abundance over time, compared to 
only 11 exhibiting significant differences between the 
treatment groups at any time point (Additional file  2: 
Dataset S5-S7). These findings demonstrate the domi-
nance of temporally-driven microbiome-resistome 
dynamics, which far outweighed the impacts of viral 
infection and antimicrobial exposures.

Treatment group differences in the microbiome 
and resistome emerged prior to PRRSv challenge
The pigs in each treatment group were managed nearly 
identically until PRRSv challenge. Despite this consist-
ency in management, the fecal resistomes and micro-
biomes exhibited signals of divergence in the samples 
taken just prior to PRRSv challenge at 44 dpw. Up until 
this time point, there were no significant differences in 
differential abundance of any ARG groups between any 
of the treatment groups (Fig.  5B). However, in the 44 
dpw samples, there were several differences between the 
treatment groups, despite the fact that they had been 
managed nearly identically prior to this time point. Spe-
cifically, erm(T) was significantly more abundant in the 
moderate and intensive groups compared to the mini-
mal group (logFC= 1.9, adjusted P=0.001; logFC=2.7, 
P<0.001, respectively). erm(B) was significantly higher 
in the moderate compared to both the intensive and 
minimal groups (logFC=3.1, P=0.0001, LogFC=3.8, P 
<0.001, respectively). lnu(A) was significantly lower in 
the intensive compared to both the moderate and mini-
mal groups (logFC= -1.9, P<0.001, logFC= -1.4, P<0.001 
respectively). tet(L) was significantly lower in the Inten-
sive compared to the moderate group (logFC= −1.3, 
P=0.0004). And finally, mef(E) was significantly lower in 
the moderate compared to the minimal group (logFC= 
−1.1, P=0.0003). These differences were relatively small 
in magnitude compared to the total resistome composi-
tion and thus did not result in differences in resistotype 

between the treatment groups, i.e., all of the pens of pigs 
at 44 dpw belonged to resistotype 1 (Fig. 6B).

A similar pattern of divergence between treatment 
groups was seen in the microbiome comparisons. At 0 
and 9 dpw, there were barely any significant differences 
in genus abundance between any of the treatment groups 
(Additional file  1: Figure S6B). The lack of treatment 
group differences at these time points was particularly 
striking given the massive shift occurring in the popula-
tions during these time periods (Additional file 1: Figure 
S6A). This suggests that the impacts of weaning, trans-
port, maturation, and commingling that occurred were 
incredibly consistent between the treatment groups. 
However, by 44 dpw, numerous genera were differentially 
abundant between the groups (Additional file  1: Figure 
S6B). These feature-by-feature differences in abundance 
at 44 dpw contributed to differences in enterotype assign-
ment at the same time point, with pens distributed across 
enterotypes 4, 5, 6, and 8 (Fig.  4A). Most of the pigs in 
the moderate group belonged to enterotype 5, which was 
characterized by a relative predominance of Lactobacillus 
and Streptococcus. Pens in the minimal treatment group 
were distributed evenly between enterotypes 4, 5, and 8, 
while intensive pens belonged to enterotypes 4, 5, and 6. 
This differential distribution of enterotypes between the 
treatment groups at 44 dpw contrasted to the very con-
sistent and even distribution in the previous time points 
(i.e., 0 and 9 dpw, Fig. 4B), again indicating that the fecal 
microbiome shifted dramatically yet remarkably consist-
ently across all treatment groups between 0 and 9 dpw, 
but then started to diverge based on treatment group 
membership.

PRRSv infection was associated with an increase in rare 
yet diverse ARGs
Although time point dominated the patterns of micro-
biome and resistome change that were observed in this 
population, PRRSv infection was associated with some 
transient differences between the treatment groups. 
Specifically, fecal resistome richness 5 days after PRRSv 
challenge was higher for some of the pens in the mod-
erate and intensive groups, compared to all of the pens 
in the minimal group (Fig. 3F). This increase in richness 
was due primarily to the addition of numerous low-
abundance ARGs within the metagenomic data obtained 
from these pens (Fig.  7), which can also be seen in the 

Fig. 6 Dirichlet multinomial mixtures (DMM) samples into one of three clusters from the entire resistome composition at ARG level based on the 
lowest Laplace approximation. A Heat map showing the abundance (square root transformed) of the 30 most dominant ARG per DMM cluster, B 
transitional model showing the progressive change of sample through DMM cluster/resistotypes per each sampling point from wean-to-market 
across all treatments, and C clusters stratified by treatment group (colored). Time points are on the x-axis, and resistotype is represented on the 
y-axis. The size of the circle is proportional to the number of samples contained in each DMM cluster, and nodes are colored and edges are colored 
by transition frequency

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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decreased resistome evenness for many of the moder-
ate and intensive samples taken post-challenge (Fig. 3E). 
The increased resistome variability within the challenged 
groups was also observed in the distribution of beta-dis-
persion for the resistome ordination, which varied sig-
nificantly between time points, with higher dispersion 
being observed after the PRRSv challenge compared to 
the pre-PRRSv challenge (P<0.05) (Additional file 1: Fig-
ure S11A).

The rare and low-abundance ARGs that appeared in 
the resistome of the moderate and intensive groups 5 
days post-challenge included ARGs that confer resistance 
to metals including zinc, nickel, mercury, iron, copper, 
chromium, sodium, arsenic, and tellurium; resistance to 
biocides including phenolic compounds, peroxide, acids, 
and acetate; and resistance to antimicrobial drugs includ-
ing cationic antimicrobial peptides, trimethoprim, gly-
copeptides, betalactams, and bacitracin. For a full list of 
these ARGs, see Additional file 1: Table S2.

In addition to the between-treatment group dynamics 
of rare and low-abundance ARGs, there were several dif-
ferences observed for more abundant ARGs. There was 
a significantly lower abundance of erm(B) in the post-
PRRSv samples collected from the intensive group com-
pared to both the moderate and minimal groups (logFC 
= −2.7 and −2.6, adjusted P = 0.01 and 0.02, respec-
tively, Fig. 5B). This difference may have been driven by 
a temporal increase in the abundance of erm(B) within 
both the moderate and minimal groups that occurred 
prior to PRRSv challenge (Fig. 5B). Post-PRRSv samples 
from the moderate group also had significantly lower 
abundance of lnu(A) compared to samples from the 
minimal group. This difference was driven by a signifi-
cant decrease in the abundance of lnu(A) in the moder-
ate group that occurred during the 5 days post-PRRSv 
challenge (Fig. 5B). There were no other significant differ-
ences in the abundance of any ARGs between any of the 
treatment groups at 5 days post-challenge.

Fig. 7 Binary heatmap (red=present, gray=absent) of resistance mechanisms for each resistance class by treatment group for each sampling time 
point (list of each mechanism by AMR class is presented in Additional file 1: Table S1)
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Post-antimicrobial ARG differences between treatment 
groups were preceded by temporal changes in abundance 
that occurred independent of antimicrobial exposures
Fecal samples collected approximately 1 week after all 
antimicrobials had been discontinued exhibited several 
resistome patterns. In the moderate group, most of the 
rare ARGs that had appeared in the post-challenge data 
were no longer present, whereas they did persist in the 
data obtained from the intensive group (Fig.  7). This 
included ARGs for zinc resistance, sodium resistance, 
peroxide resistance, penicillin binding proteins, nickel 
resistance, multi-metal RND and ABC efflux pumps, 
multi-biocide resistance mechanisms, mercury resist-
ance, lipid A modification, multi-compounds resist-
ance mechanisms, copper resistance, arsenic, and acid 
resistance.

When investigating more prevalent ARGs (i.e., those 
with presence in at least 50% of samples from every 
treatment group at each time point, Fig.  5A), we found 
no statistically significant differences in abundance 
when comparing fecal samples taken from the moder-
ate and intensive pigs at the end of antimicrobial admin-
istrations (Fig.  5B). However, there were 7 differentially 
abundant ARGs when comparing the moderate and 
minimal groups and 11 when comparing the intensive 
and minimal groups. For the former group of 7 differen-
tially abundant ARGs, 6 were less abundant in the fecal 
samples collected from the moderate group compared 
to the minimal group (tet(BP), erm(Q), tet(A), tet(B), 
lnu(A), and lnu(P)), while erm(G) was significantly more 
abundant in the moderate group (logFC = 0.8, adjusted 
P = 0.009). Among the 11 differentially abundant ARGs 
between the intensive and minimal groups at the end of 
antimicrobial exposures, 6 were lower and 5 were higher 
in the intensive group compared to the minimal group. 
As with the pattern seen for the moderate group, tet(BP), 
erm(Q), tet(A), lsa(E), lnu(B), and lnu(P) were all signifi-
cantly lower in the intensive group compared to the min-
imal group. However, these differences were not driven 
by the antimicrobial exposures themselves. Rather, they 
were driven by temporal increases in the abundance of 
these ARGs within the minimal group, which occurred 
contemporaneously during the time period in which the 
moderate and intensive groups were receiving antimicro-
bials (Fig. 5A). In addition to these differences, the Inten-
sive group had significantly higher abundance of erm(G), 
erm(B), erm(F), cfr, and tet(L) after antimicrobial admin-
istration compared to the minimal group, with logFC 
values ranging from 0.5 for cfr to 1.7 for tet(L) (Fig.  5A 
and Additional file  2: Dataset S5). Again, some of these 
differences were not driven by increases in abundance 
within the intensive group during the period of antimi-
crobial exposures (Fig. 5A), but rather by preceding and/

or contemporaneous temporal decreases in abundance 
within the minimal group. For example, tet(L) signifi-
cantly decreased in abundance from 44 to 49 dpw in the 
minimal group, resulting in a relatively higher abun-
dance of this ARG within the intensive group in the 
post-antimicrobial samples. However, other differences 
in ARG abundance that we observed after antimicrobial 
administration were likely driven by significant increases 
that occurred within the intensive group during antimi-
crobial exposure. For example, erm(B) and erm(G) both 
increased significantly within the intensive group dur-
ing the period of antimicrobial administration (Fig. 5A), 
which likely resulted in the significantly higher abun-
dance of these ARGs in the intensive versus the minimal 
group at the 79 dpw time point (Fig. 5B).

The significantly increased abundance of erm(G) in 
the moderate compared to the minimal group persisted 
in the samples taken at market (logFC = 1.8, adjusted 
P < 0.001), and this was also significantly higher than 
the abundance in the Intensive group (logFC = 1.3, P < 
0.001). In addition, the market-age samples from the 
moderate group had a significantly higher abundance 
of erm(F) and aac(6’) compared to the minimal group 
(logFC = 0.8 and 1.3, adjusted P < 0.001 and 0.002, 
respectively). There were no other statistically significant 
differences between the moderate and minimal groups at 
a market age. When comparing the intensive and mini-
mal group at the same time point, we identified 9 ARGs 
that were significantly differentially abundant, and all 
of them had higher abundance in the intensive samples 
compared to the minimal samples, with logFC’s ranging 
from 0.4 for aph(2”) to 1.3 for erm(B). Finally, the inten-
sive samples contained significantly higher abundance of 
erm(T) and ant(9) compared to the moderate samples at 
marketing (logFC = 0.8 and 0.5, adjusted P = 0.03 and 
0.03, respectively).

We further evaluated the relationship between micro-
biome and resistome composition for each treatment 
group by a sampling point using Procrustes analysis. We 
did not observe significant correlations between fecal 
resistome and microbiome compositions with the excep-
tion of the intensive group at the pre-PRRSv challenge 
time point (M2=0.56, correlation=0.66, P=0.007) and at 
the end of antimicrobial administration (M2=0.49, cor-
relation=0.71, P=0.005). The resistotypes were found 
to be associated with enterotypes (chi-square test, P < 
0.001). Nearly 60% of the samples belonged to resisto-
type 1, which was represented within all enterotypes 
but observed most frequently in enterotypes 2, 3, 4, and 
5 (Additional file  1: Figure S12A). Resistotype 2 sam-
ples had higher ARG diversity than samples assigned to 
the other resistotypes (Additional file  1: Figure S12B), 
which was mostly associated with samples that were also 
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assigned to enterotype 1. Resistotype 3 never occurred 
in the same sample as enterotype 1 and was most com-
monly assigned to samples that also were assigned to 
enterotype 2.

Discussion
The swine fecal microbiome-resistome matures 
in a stereotypic manner, and pig grouping patterns can 
impact the maturation trajectory
We observed a rapid, consistent, and dramatic shift in the 
fecal microbiome of commercial pigs, which occurred 
within the week after they were weaned and transported 
to a new facility. The dramatic impact of weaning on the 
swine microbiome has been previously reported, and our 
results confirm that microbiome richness and diversity 
increase significantly post-weaning [57–61]. As with pre-
vious reports, we found that Bacteroides were predomi-
nant in the samples taken just prior to weaning [61, 62]. 
Using DMM enterotyping, we observed that pre-weaning 
samples were also characterized by a relative dominance 
of Alistipes, Cloacibacillus, Escherichia, and Intestini-
monas. Indeed, these four genera did not reach the top 10 
most prevalent genera in any of the post-weaning sam-
ples, suggesting that their relative abundance within the 
pre-weaning samples is a defining characteristic of the 
suckling piglet fecal microbiome. Previous studies of the 
peri-weaning microbiome also found a predominance of 
Alistipes [62].

Based on a metagenomic approach, we observed that 
the fecal resistome also experienced a dramatic, consist-
ent, and rapid shift after weaning, characterized by a loss 
of diversity and richness and an increased predominance 
of tetracycline ARGs such as tet(Q), tet(O), and tet(W), 
many of which have been previously reported as domi-
nant within the gut resistome of mature pigs raised with 
and without antibiotics [63], as well as in the feces of 
commercial pigs across 9 European countries [34]. The 
consistent impact of age on phenotypic and genotypic 
AMR in bacteria isolated from swine feces has been doc-
umented [64], although the temporal dynamics specifi-
cally around weaning have not been widely investigated. 
There is also very little literature regarding microbiome-
wide AMR profiles in weaning piglets. Piglets experi-
ence many changes during the weaning period, including 
transportation, exposure to a new environment and 
transition from a milk- to a solid-based diet. All of these 
factors can alter the gut microbiome composition [65] 
and immune function, which can negatively impact pigs 
health and growth performance [66]. More research is 
needed to understand how these microbiome alterations 
at weaning shape the resistome profile, especially because 
young animals and humans are known to harbor diverse 
ARG profiles [67]; our findings support that the early-life 

swine fecal resistome is similarly diverse. The piglets in 
this study were born to sows that did not receive anti-
microbials during lactation, and the piglets themselves 
did not receive antimicrobials prior to weaning. There-
fore, the composition of the resistome at weaning was 
not the direct result of contemporaneous antimicro-
bial exposures in the pigs or their dams. The source and 
establishment of early-life ARGs in neonates are not well 
characterized, but studies in humans have found that 
both the mother and the built environment contribute to 
the ARG colonization in neonates [68]. Further investi-
gation is needed to identify the definitive source of the 
diverse ARGs present in neonatal swine feces.

The juxtaposition of increasing microbiome diver-
sity and decreasing resistome diversity after weaning 
is intriguing. There is strong evidence to suggest that 
shifts in the fecal microbiome drive shifts in the fecal 
resistome of maturing hosts [69]. In human neonates, an 
inverse correlation has been observed between micro-
biome alpha diversity and overall resistome burden, i.e., 
lower microbiome diversity was associated with a higher 
ARG burden [70]. After the weaning transition, both 
the microbiome and the resistome profiles stabilized 
by 44 dpw, as indicated by very tight boxplots for rich-
ness, diversity, and evenness (Fig. 3) as well as very low 
betadispersion (i.e., mean distance to centroid) values 
(Additional file 1: Figure S11). The uniformity of the post-
weaning microbiome-resistome trajectory may have been 
driven by dietary shifts that were also uniform across 
the study pigs, which all received the same post-weaning 
diet. By day 44, most pens had transitioned to one of two 
dominant enterotypes and one dominant resistotype. The 
enterotypes at this stage were characterized by a pre-
dominance of Lactobacillus and Streptococcus, while the 
resistotype was characterized by a relative predominance 
of tet(L), tet(44), and tet(32). However, while the overall 
microbiome-resistome composition was largely stabilized 
by 44 dpw, it is also noteworthy that the abundances of 
numerous ARGs and genera were significantly different 
between the treatment groups (Fig. 5B, Additional file 1: 
Figure S6B), despite nearly identical management of the 
groups prior to this time point. These treatment group 
differences at 44 dpw contrasted markedly to the lack of 
differences at 0 and 9 dpw (Fig. 5B, Additional file 1: Fig-
ure S6B). Taken together, these patterns suggest that the 
fecal microbiome-resistome matured in a remarkably ste-
reotypic pattern across all pigs in the early post-weaning 
period, but this stereotypic progression began to diverge 
by 44 dpw, likely driven by the strict physical separation 
of the treatment groups. Previous studies have shown 
that the microbiomes of piglets housed in the same pen 
are more similar to each other than to the microbiomes 
of piglets from other pens [71, 72], suggesting that groups 
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of piglets develop a unique microbiome composition, 
presumably due to unique microbial, host, and environ-
mental factors within the group. As observed in this and 
other studies, these group-level differences are typically 
outweighed by factors such as piglet age, but neverthe-
less result in detectable and significant microbiome dif-
ferences between groups [73]. This dynamic may have 
important implications for microbiome-based interven-
tions in livestock populations because it suggests that the 
impact of such interventions may differ across groups 
of animals, even within the same farm. This finding also 
emphasizes the need to account for host grouping struc-
tures in the design and execution of microbiome studies.

PRRSv infection disrupted resistome stability 
and was associated with an increase in generalized stress 
response genes
The relative resistome stability observed at day 44 was 
disrupted by the PRRSv challenge, as evidenced by 
very wide boxplots for richness, diversity, and evenness 
within the challenged groups (Fig. 3D–F). The impact of 
the PRRSv challenge was especially notable given that 
all study pigs received PRRSv vaccination at 10 dpw, 
resulting in relatively mild post-challenge clinical dis-
ease; in naive animals with more severe clinical illness, 
resistome changes may be more dramatic. The increased 
variability that we observed in this study population 
indicates that the resistomes of some pens of pigs were 
detectably impacted by the PRRSv challenge, while oth-
ers maintained a resistome more similar to that of the 
non-challenged group. The high amount of between-pen 
variability may be due to differences in viral load, clini-
cal disease severity, or immune response to the viral chal-
lenge within individual pigs. However, we were unable 
to evaluate such associations due to the pooled nature of 
our fecal samples. An association between clinical out-
comes and microbiome diversity has been reported in 
pigs that were co-challenged with PRRSv and porcine cir-
covirus type 2 [36], but no literature exists regarding the 
mechanistic relationship between PRRSv and AMR.

The resistomes of pens that exhibited increased rich-
ness after the PRRSv challenge were characterized by 
numerous low-abundance ARGs that appeared within 
the metagenomic data. Because these ARGs were very 
low-abundance, we cannot discount the potential impact 
of sequencing depth on these results. For example, the 
“pre-AMU” and “AMU end” samples obtained from the 
Intensive group contained significantly higher numbers 
of raw reads compared to the other combinations of time 
point and treatment group. The use of CSS normaliza-
tion should account for this difference. Additionally, if 
sequencing depth were the sole driver of these results, 
we would expect to observe increased richness in the 

intensive group only. Instead, we observed this pattern in 
the moderate group as well. Finally, increased sequenc-
ing depth would also likely result in additional microbi-
ome richness due to the detection of very low-abundance 
taxa. However, we did not observe similar increased rich-
ness in the microbiome data obtained from post-PRRSv 
samples in the intensive group. Taken together, these 
considerations suggest that the resistome variability seen 
after PRRSv challenge stemmed from biological dynam-
ics, rather than measurement bias.

A related question is whether the appearance of these 
low-abundance ARGs within the post-PRRSv samples 
was due to acquisition of the ARGs in those pens of 
pigs or increased abundance of the ARGs to a level that 
exceeded the limit of detection of the metagenomic assay. 
Given that these pens of pigs had been in highly biose-
cure rooms for 49 days at the time of post-PRRSv sam-
ple collection, it is unlikely that these ARGs represent 
acquisition events; there was no other potential source 
from which to acquire new ARGs. A more supportable 
hypothesis is that we detected these ARGs because their 
abundance within the microbiome had increased suffi-
ciently to be detectable. The fact that these ARGs were 
present in the fecal metagenome of these pigs at weaning 
(Fig. 1) further suggests that their “re-appearance” within 
the data was due to increases in abundance rather than 
new acquisition events. ARGs can increase in abundance 
through several mechanisms, including replication of the 
bacterial genomes harboring them, and horizontal gene 
transfer (HGT) from donor to recipient bacterial cells. 
We were unable to confidently determine which pro-
cess may have been driving the post-PRRSv challenge 
resistome dynamics due to the fragmented nature of 
short-read metagenomic data and the resulting inability 
to accurately localize AMR genes with their proper hosts 
[74]. We did, however, observe that a number of pens in 
the moderate and intensive groups shifted to a new ente-
rotype after PRRSv infection (i.e., enterotype 8), which 
could indicate that underlying microbiome dynamics 
were driving resistome changes.

The primary ARGs that appeared within the metagen-
omic data of the moderate and intensive groups post-
challenge included mechanisms for zinc, arsenic, and 
multi-metal resistance (i.e., RND and MFS efflux pumps, 
respectively, Fig. 7). These genes were included in the lat-
est version of MEGARes as resistance mechanisms [42], 
yet they can also be characterized as acquisition-toler-
ance mechanisms, i.e., they allow bacteria to regulate 
acquisition of metals, while also increasing tolerance for 
excessive metal levels in the microbe’s environment [75]. 
The role of host-versus-pathogen metal nutrient seques-
tration and acquisition during pathogenic infection 
has been extensively studied and is known to influence 
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pathogenicity [76]. Less is known about how commen-
sal gut microbes regulate metals during infection events. 
The other ARGs that appeared within the fecal resistome 
of PRRSv-infected pens included mechanisms of perox-
ide, acetate, acid, and multi-biocide resistance. These 
mechanisms of resistance have primarily been studied 
in relation to pathogens and their ability to cause clini-
cal disease [77, 78], and little is known about their func-
tional or ecological role within commensal microbiomes. 
However, all of these ARGs could broadly be termed 
bacterial “stress response” mechanisms, and host infec-
tion is known to induce pathogen stress responses via 
changes in the physicochemical properties of the host 
environment [79, 80]. Therefore, one hypothesis for our 
resistome observations is that the PRRS viral infection 
caused systemic immune and inflammatory activation in 
the pig, which changed the microenvironment of the gut, 
prompting increased abundance of these stress response 
ARGs within the commensal microbiome.

Exposure to high levels of antimicrobials had 
variable impacts on ARGs from relevant antimicrobial 
classes, with no evidence of large or persistent 
microbiome-resistome changes
We hypothesized that feces from pigs in the moderate 
and intensive groups would exhibit increases in MLS 
ARGs compared to feces from the minimal group, due to 
exposure to therapeutic doses of oral tilmicosin via their 
drinking water. Indeed, we observed significantly higher 
abundance of erm(G) in post-AMU and market samples 
obtained from both the moderative and intensive groups 
compared to the minimal group. Additionally, erm(F) had 
higher abundance in the post-AMU intensive samples 
and the market-age intensive and moderate samples com-
pared to the minimal samples at the same time points. 
These differences were modest in magnitude, i.e., typi-
cally less than two log-fold difference in sequence counts. 
In a recent extensive analysis of erm genes, erm(F), and 
erm(G) were found solely in genomes from the phylum 
Bacteroidetes, and erm(G) was the second-most com-
mon erm gene obtained from metagenomic fecal sam-
ples of swine [81]. erm(G) has been previously associated 
with phenotypic resistance to macrolides in Clostridium 
isolates obtained from swine feces and is thought to be 
associated with mobile genetic elements that can transfer 
between gram-positive and gram-negative bacteria [82, 
83]. This genomic plasticity may account for the increases 
seen in erm(G) after macrolide administration in this 
study. erm(B) and erm(T) were also higher in the Inten-
sive group samples collected at market-age compared to 
the minimal market-age samples. However, erm(Q) was 
lower in the intensive and moderate groups compared to 

the minimal group after antimicrobial exposures. erm(Q) 
is not widely reported in the literature but has been char-
acterized as the most common macrolide resistance gene 
in Clostridium perfringens [84]. Of note, an analysis of 
fecal Enterococcus isolates obtained from the pigs in this 
study did not identify significant differences between 
treatment groups in resistance to macrolide antibiot-
ics, suggesting that the ARG-level differences identified 
here did not notably impact phenotypic resistance in 
this important group of bacteria [41]. These companion 
results demonstrate the different types of information 
that can be gleaned from culture versus metagenomic 
approaches and suggest that both data sources could be 
used in tandem to gain a more complete understanding 
of AMR in livestock populations.

The pigs in the Intensive group all received therapeu-
tic doses of ceftiofur and oral chlortetracycline, and 
we hypothesized that this would cause increases in rel-
evant ARGs in the feces of exposed pigs. In line with 
this hypothesis, we observed a significantly higher abun-
dance of tet(L) in the post-AMU samples collected from 
the intensive group compared to the minimal group 
samples at the same time point, with a nearly 2-log-fold 
difference. tet(L) is a relatively under-described tetracy-
cline efflux pump that does not seem to share a common 
ancestral lineage with other tet genes [85]. Counterintui-
tively, we also detected a significantly lower abundance 
of tet(A) and tet(BP) when comparing the same sam-
ples, with ~1.5-log-fold lower abundance in the intensive 
compared to the minimal group. We observed the same 
pattern when comparing the moderate post-AMU sam-
ples to the minimal post-AMU samples. However, these 
post-AMU differences were likely caused by decreasing 
temporal abundance of tet(BP) and tet(A) in the minimal 
group during the period of antimicrobial administration 
(Fig. 5A), rather than temporal increases within the mod-
erate and intensive groups. These findings highlight the 
complexity of microbiome-resistome dynamics in rapidly 
growing animals and emphasize the need to account for 
underlying temporally driven changes in AMR.

The tet-ARG patterns observed after antimicrobial 
administration did not persist in the market-age sam-
ples. Instead, at marketing, the intensive group had 
significantly higher abundance of tet(X) and tet(Q) com-
pared to the moderate group, and there were no other 
significant differences in tet-ARG abundance between 
any of the groups. tet(X) homologs can inactive numer-
ous tetracycline formulations including tigecycline, but 
the level and spectrum of resistance is closely linked to 
single-nucleotide polymorphisms (SNPs), which are not 
robustly detectable in metagenomic data [86]. The distri-
bution of tet(X) across microbes is not well understood, 
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and a recent review of mobile ARGs concluded that there 
is not enough evidence to confidently determine the 
recent origin of tet(X) [87]. tet(Q) is a broadly distrib-
uted ARG identified in gram-positive and gram-negative 
bacteria that can competently transfer between diverse 
taxa [88]. The increased abundance of these ARGs in the 
market-age fecal samples of the intensive pigs could be 
due to the gradual or delayed impact of increased HGT 
caused by selective pressure from chlortetracycline expo-
sure, although further study is needed to reproduce these 
results. There were no significant differences in abun-
dance of any betalactam ARGs between any of the treat-
ment groups at any post-PRRSv time point. This could be 
the result of overall very low betalactam ARG abundance 
within this study population, which is consistent with 
previous resistome profiles of swine feces [34, 89].

In addition to group differences in tet ARG abundance 
after antimicrobial exposures, we found that the intensive 
and moderate groups had significantly lower abundance 
of lnu(B), lnu(A), and lnu(P) compared to the minimal 
group and significantly higher abundance of aac6’ in the 
market-age samples. These ARGs confer resistance to 
lincosamide and aminoglycoside antimicrobials, respec-
tively. Interestingly, we also observed phenotypic resist-
ance to streptomycin in fecal Escherichia coli isolates 
obtained from these same study pigs [41]. However, ami-
noglycosides were not used in this study population, and 
several pigs within each treatment group received linco-
mycin treatments prior to PRRSv challenge. Therefore, 
the differences in these ARGs do not relate directly or 
linearly to antimicrobial exposures in this study popula-
tion. Furthermore, the abundance of lnu(B), lnu(A), and 
lnu(P) decreased significantly over time in the minimal 
group, which likely resulted in the between-group differ-
ences at marketing. These results highlight the dynamic 
nature of the fecal resistome and the corresponding fact 
that associations between AMU and AMR are rarely 
straightforward. In order to truly understand the mecha-
nism by which antimicrobials impact AMR within micro-
bial populations, there is need for a more sophisticated 
framework that takes into account ecological and evo-
lutionary relationships, as well as common phenomena 
such as co-selection and HGT. Further metagenomic 
studies may wish to include complementary assays that 
can better elucidate these complex dynamics, including 
Hi-C [90].

An important component of this study was the sam-
pling of pigs at marketing, i.e., the day that they were sent 
for slaughter. These samples have particular relevance 
for food safety and public health because they repre-
sent the fecal resistome of the pigs just prior to entering 
the food chain. Additionally, the fecal microbiome is a 

primary source of contamination within slaughter plants 
(along with the hide), and therefore, fecal ARGs could 
be an important source of foodborne ARGs. We found 
that antimicrobial exposures did not appreciably alter 
the AMR fecal profile of market-ready pigs, despite the 
fact that some of the pigs were continuously exposed to 
oral tilmicosin and then chlortetracycline-tiamulin for 
a cumulative period of 19 days and received an injec-
tion of ceftiofur. This finding has implications for anti-
microbial use in the US swine herds experiencing a 
PRRSv challenge and suggests that antimicrobial proto-
cols commonly used in these scenarios may not cause 
significantly increased levels of fecal ARGs as measured 
using metagenomics. This conclusion is also supported 
by phenotypic antimicrobial susceptibility results from 
the same study population, wherein we observed minor 
differences in the likelihood of resistant fecal E. coli and 
Enterococcus spp. isolates obtained from pigs receiv-
ing different intensities of antimicrobial exposures [41]. 
Previous studies have identified significant associations 
between high levels of macrolide exposure and increased 
odds of sulfamethoxazole and chloramphenicol in E. coli 
[91] and between oxytetracycline exposure and tempo-
rary increases in tetracycline-resistant fecal coliforms 
[24]. These studies were based on phenotypic resistance 
in cultured bacteria. Studies using a genotypic assay have 
reported more mixed results, similar to what we observed 
in this study. For example, Birkegård et al. found incon-
sistent associations between antimicrobial exposures in 
swine and fecal ARG levels measured using qPCR and 
concluded that most of the variation in ARG abundance 
was due to factors other than antimicrobial exposures 
[92]. Looft et al. found associations between in-feed tylo-
sin and increased abundance of aminoglycoside ARGs 
in the feces of exposed pigs [93]. Other studies reported 
broader associations between antimicrobial use and 
resistome profiles; however, these studies were primarily 
ecological in nature, comparing samples across produc-
tion systems, countries and years without accounting for 
potential confounding by management practice, envi-
ronment, or host differences [34, 94]. A strength of our 
study was the use of identical environments and manage-
ment practices for the study pigs, thus removing these as 
potential confounders.

In previous studies, in-feed antimicrobials have been 
shown to significantly alter the fecal microbiome of 
swine managed under highly controlled conditions [93, 
95–97]. We did not observe similar changes in our study; 
however, it should be noted that previous studies uti-
lized a much lower dose of tilmicosin for a longer dura-
tion, which may account for these differences in results. 
Inconsistent findings between antimicrobial use studies 
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have been attributed to heterogeneous antimicrobial pro-
tocols and overall low study quality [26]. Recent reports 
of antimicrobial use patterns in the US swine operations 
also indicated a large amount of variability in protocols 
between systems and years, with oral tetracyclines com-
prising a majority of the use by weight [11]. A unique 
feature of the work reported here was the inclusion of 
antimicrobial treatment protocols that are commonly 
used by the US swine producers confronting respira-
tory health challenges, including in-water chlortetra-
cycline and injectable third-generation cephalosporins 
[10]. However, replication studies are needed to confirm 
our results, especially given the apparent importance 
of group-level dynamics and the fact that we had only 
one physical room per treatment group. Future stud-
ies should carefully consider group-level design, as well 
as how this design relates to the unit of sampling and 
analysis. Previous work in this area has focused largely 
on study outcomes related to individual pathogens or 
host factors [98, 99], and more work is needed to under-
stand how study design can be optimized to account for 
and elucidate interactions between microbial popula-
tions, their hosts, and the groups within which hosts live. 
Another limitation of our study was that we were not 
able to track AMR profiles beyond the lifecycle of a sin-
gle cohort of pigs and thus could not make observations 
about potential multi-generational impacts of the anti-
microbial exposures. Such exposures may be important 
in maintaining ARGs within a continuous flow of pigs 
[100]. Multi-generational studies would also help reveal 
the source and carryover of ARGs within neonatal pigs, 
which is an important component of understanding ARG 
ecology within swine herds.

Conclusions
The fecal microbiome-resistome of growing pigs under-
went a stereotypic shift driven primarily by weaning-
associated changes and pig age. Exposure to PRRSv 
corresponded with the (re)-appearance of rare and low 
abundance ARGs. Despite large differences in intensity of 
antimicrobial exposures after PRRSv challenge, resistome 
composition remained largely similar between the treat-
ment groups, with modest differences in the abundance 
of several ARGs, only some of which corresponded with 
antimicrobial exposures at the drug class level. Over-
all, these results suggest that viral disease itself may be a 
potential driver of AMR in the fecal microbiome, in addi-
tion to subsequent AMU. In order to disentangle these 
two potential AMR risk factors and develop targeted, evi-
dence-based guidance on AMU in livestock populations, 
it is critical to improve our understanding of the mecha-
nistic drivers of AMR in both diseased and healthy ani-
mals of various ages. Gaining this understanding requires 

a more detailed investigation of microbiome-wide eco-
logical and evolutionary dynamics at different stages of 
disease progression and different antimicrobial protocols.
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Additional file 1: Figure S1. Boxplots of the raw sequence read counts 
by time point and treatment group (Minimal—dark grey, Moderate—blue 
and Intensive—red color). Horizontal lines forming each box represent 
the first quartile, median and third quartile, while whiskers denote 1.5x 
the interquartile range. Figure S2. Proportion of host (Sus scrofa) to non-
host reads per sample (x-axis) by treatment groups for each time point. 
Figure S3. Relative abundance of resistance by type (drugs, biocides, 
multi-compounds and metals) in composite fecal samples, separated by 
treatment group (panels) and sampling time point (weaning/transport 
to market). Figure S4. Microbiome composition (NMDS—non metric 
multidimensional scaling, Bray-Curtis dissimilarity) at phylum level 
(stress=0.09) by A) sampling time point (ANOSIM—Analysis of similarities 
P=0.001, PERMANOVA—Permutational multivariate analysis of variance 
 R2=49%, P=0.001). B) by treatment (ANOSIM P=0.238, PERMANOVA  R2 
<1%, P=0.113). C) microbiome composition at class level (stress=0.10) by 
sampling time point (ANOSIM P=0.001, PERMANOVA  R2=47%, P=0.001). 
D) by treatment (ANOSIM P=0.388, PERMANOVA  R2 <1%, P=0.167). Ellipse 
indicates 95% confidence interval for distance around centroids of the 
group. Figure S5. Log-fold change (logFC, x-axes) of microbial phyla for 
A) each treatment group (Minimal, Moderate and Intensive) comparing 
sequential sampling time points (i.e., positive logFC values indicate higher 
abundance in the later time point compared to the earlier time point) and 
B) between treatment groups (Minimal, Moderate and Intensive) for each 
sampling time point. Each dot represents a microbial phylum in the group 
and red dots represent genera that are significantly different between 
comparison groups (i.e., logFC≥±1, mean abundance ≥ 3, BH adjusted 
P< 0.05). Figure S6. Log-fold change (logFC, x-axes) of microbial genera 
for A) each treatment group (Minimal, Moderate and Intensive) comparing 
sequential time points (i.e., positive logFC values indicate higher abun-
dance in the later time point compared to the earlier sampling time point) 
and B) between treatment groups (Minimal, Moderate and Intensive) for 
each time point. Each dot represents a microbial genera in the group 
and red dots represent genera that are significantly different between 
comparison groups (i.e., logFC≥±1, mean abundance ≥ 3, BH adjusted 
P< 0.05). Figure S7. Model fit for number of Dirichlet mixture components 
(DMM), K using the Laplace approximation, A) microbiome at genus level 
and B) resistome at ARG level. Figure S8. 100% stacked bar of top 10 taxa 
(microbial genera) within each DMM cluster. Figure S9. Resistome com-
position (NMDS, Bray-Curtis dissimilarity) at class level (stress=0.048) by A) 
sampling time point (ANOSIM P=0.001, PERMANOVA  R2=56%, P=0.001). 
B) by treatment (ANOSIM P=0.487, PERMANOVA  R2<1%, P=0.502). C) 
Resistome composition at mechanism level (stress=0.066) by sampling 
time point (ANOSIM P=0.001, PERMANOVA  R2=54.8%, P=0.001). D) by 
treatment (ANOSIM P=0.08, PERMANOVA  R2 <1%, P=0.344). Ellipse indi-
cates 95% confidence interval for distance around centroids of the group. 
Figure S10. Number of reads aligned to resistome (i.e ARGs) (cumulative 
sum scaling normalized) in the MEGARes database by time point and 
treatment group (represented by colored dots). Horizontal lines forming 
each box represent the first quartile, median and third quartile, while 
whiskers denote 1.5x the interquartile range. Each sample is represented 
by a dot with horizontal jitter. Figure S11. Effect of sampling time point 
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on the multivariate dispersion of A) resistome at ARG level and B) micro-
biome at genus level. Both resistome and microbiome beta-diversity are 
measured as the distance to their group centroid (using Bray-Curtis dis-
tance). Figure S12. Boxplot of A) Number of samples for each resistotype 
depicted as a function of enterotypes (microbiome DMM cluster), B) ARG 
diversity of treatment group for each time point according to the resisto-
types. Table S1. List of AMR mechanisms for each AMR class presented in 
heatmap Fig. 7. Table S2. List of low abundant ARGs that were detected 
post-PRRSv challenge in moderate and intensive treatment groups.

Additional file 2: Dataset S1. Metadata for all samples presented in this 
study. Dataset S2. Results from microbiome (phylum and genus level) 
differential abundance testing of each treatment group, by sampling 
time point. Dataset S3. Results from microbiome (phylum and genus 
level) differential abundance testing between treatment group, for each 
sampling time point. Dataset S4. Results from microbiome (phylum and 
genus level) differential abundance testing by sampling time point (ie. all 
treatment group samples together). Dataset S5. Results from resistome 
(ARG level ie. AMR gene group) differential abundance testing of each 
treatment group, by sampling time point. Dataset S6. Results from 
resistome (ARG level ie. AMR gene group) differential abundance between 
treatment group, for each sampling time point. Dataset S7. Results from 
resistome (ARG level ie. AMR gene group) differential abundance by sam-
pling time point (ie. all treatment group samples together).
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