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Abstract 

Background: The International Space Station (ISS) is a unique and complex built environment with the ISS surface 
microbiome originating from crew and cargo or from life support recirculation in an almost entirely closed system. 
The Microbial Tracking 1 (MT-1) project was the first ISS environmental surface study to report on the metagenome 
profiles without using whole-genome amplification. The study surveyed the microbial communities from eight sur-
faces over a 14-month period. The Microbial Tracking 2 (MT-2) project aimed to continue the work of MT-1, sampling 
an additional four flights from the same locations, over another 14 months.

Methods: Eight surfaces across the ISS were sampled with sterile wipes and processed upon return to Earth. DNA 
extracted from the processed samples (and controls) were treated with propidium monoazide (PMA) to detect intact/
viable cells or left untreated and to detect the total DNA population (free DNA/compromised cells/intact cells/viable 
cells). DNA extracted from PMA-treated and untreated samples were analyzed using shotgun metagenomics. Samples 
were cultured for bacteria and fungi to supplement the above results.

Results: Staphylococcus sp. and Malassezia sp. were the most represented bacterial and fungal species, respectively, 
on the ISS. Overall, the ISS surface microbiome was dominated by organisms associated with the human skin. Multi-
dimensional scaling and differential abundance analysis showed significant temporal changes in the microbial popu-
lation but no spatial differences. The ISS antimicrobial resistance gene profiles were however more stable over time, 
with no differences over the 5-year span of the MT-1 and MT-2 studies. Twenty-nine antimicrobial resistance genes 
were detected across all samples, with macrolide/lincosamide/streptogramin resistance being the most widespread. 
Metagenomic assembled genomes were reconstructed from the dataset, resulting in 82 MAGs. Functional assessment 
of the collective MAGs showed a propensity for amino acid utilization over carbohydrate metabolism. Co-occurrence 
analyses showed strong associations between bacterial and fungal genera. Culture analysis showed the microbial 
load to be on average 3.0 ×  105 cfu/m2

Conclusions: Utilizing various metagenomics analyses and culture methods, we provided a comprehensive analysis 
of the ISS surface microbiome, showing microbial burden, bacterial and fungal species prevalence, changes in the 
microbiome, and resistome over time and space, as well as the functional capabilities and microbial interactions of 
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Introduction
The microbiome of the built environment has been 
increasingly linked to human health and disease. The 
composition of built environments is largely influenced 
by its occupants [1–4] but can also be affected by external 
features such as seasonal variations [5, 6], architectural 
design [7], and level of urbanization [8]. The Interna-
tional Space Station (ISS) is a unique hermetically sealed 
built environment and being one of the most isolated 
inhabited built environments; access to it is highly con-
trolled and limited. In between the routine arrival of new 
supplies and crew members, the ISS is completely iso-
lated from external microbial sources. The arrival of new 
crew members and supplies is therefore the only source 
for introducing new micro-organisms to the ISS. These 
isolated conditions have raised concerns about the intro-
duction and proliferation of potentially harmful micro-
organisms into the microbial communities of piloted 
spaceflight and how this could affect human health.

For decades, space-faring nations were interested in 
the influence of microgravity, radiation, and other space-
flight conditions on the survival and proliferation of 
microorganisms. During the Apollo program, NASA col-
lected pre- and post-flight samples from locations within 
the Command Module as part of a program to identify 
medically relevant microbes and to elucidate changes in 
the crew microflora [9]. Subsequently, Skylab surfaces 
were swabbed pre-launch and periodically throughout 
the three manned missions to characterize the bacterial 
exchange between the crew and internal surfaces [10]. 
The Soviet Union regularly monitored the microflora of 
Salyut 6, 7, and Mir during their operation. Onboard sta-
tion Mir, air samples were collected approximately once 
a month, and surface samples from various locations 
throughout the spacecraft were collected at the end of 
each mission [11–13]. Thorough monitoring onboard 
Mir revealed potential health and equipment risks from 
the bacteria and fungi that colonized the interior surfaces 
[14]. These culture-based surveillance procedures were 
instrumental in developing the microbial surveillance 
standards for the ISS [15, 16].

Since inception, to maintain the cleanliness of ISS, tra-
ditional culture-based approaches are being used and 
microbial burden measured. However, research activi-
ties are being conducted to characterize the microbiome 
of ISS surfaces and air using state-of-the-art molecular 

techniques. Air, water, and surface samples were col-
lected during the initial stage of habitation of the ISS to 
identify the baseline microbiota [17]. Since then, several 
studies have investigated the microbial population of ISS 
dust [18–20], surfaces [21, 22], and water [23]. In addi-
tion to cataloging the microbial population of the ISS, 
studies have also focused on the persistence of antimi-
crobial resistance (AMR) genes [24] and pathogens [25] 
onboard the ISS. These investigations provide important 
information for the long-term health and safety of crew 
members.

The previous Microbial Tracking-1 (MT-1) study [26] 
examined the community structure and function of eight 
ISS surfaces over a period of 14 months, during three 
sampling sessions. The Microbial Tracking-2 (MT-2) 
study continued this objective and further sampled the 
same surface locations over the course of 1.5 years, dur-
ing four additional flight sessions. In this paper, the MT-2 
samples were analyzed for species presence and stability 
of the entire microbial community. The microbial diver-
sity and composition for each location and time point 
were characterized to reveal how the microbial popula-
tion was changing over time. The persistence of antimi-
crobial resistance genes was also analyzed to evaluate the 
stability of the ISS resistome in a changing microbiome. 
Co-occurrence analysis between bacterial and fungal 
species was analyzed to gain insight into the microbial 
associations in this unique built environment. Genomes 
were assembled from the metagenome reads (referred 
to as metagenome-assembled genomes, or MAGs) with 
taxonomy and functional assessment analyses performed 
on these MAGs. This paper also compared the results 
obtained during the previous MT-1 study. Together, these 
studies provide snapshots of the microbial population on 
the ISS across 5 years, allowing for dynamics and stability 
patterns of the surface microbiome to be evaluated.

Results
Thirty-two surface samples were collected over the 
course of 14 months (2017–2018) from the ISS. The loca-
tions sampled are listed in Table  1 and correspond to 
the same eight locations that were sampled during the 
MT-1 study that ran from 2015 to 2016 [26]. In addition 
to the sampling wipes, wipes that were taken out of the 
kits and exposed to the ISS environment (but not used 
for sampling) were designated as controls and processed 

this unique built microbiome. Data from this study may help to inform policies for future space missions to ensure an 
ISS surface microbiome that promotes astronaut health and spacecraft integrity.

Keywords: International Space Station, Microbial monitoring, Microbiome, Metagenomics, Microbial tracking, Built 
environment
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alongside the samples. The flight sampling sessions are 
denoted as flights 4–7 (F4–F7), while the flight sampling 
sessions for the previously published MT-1 study are 
denoted as flights 1–3 (F1–F3).

Microbial burden
All microbial domains of life were detected on the ISS, 
with bacteria being the most represented (82%), fol-
lowed by fungi (10%), viruses (0.06%), and archaea 
(0.03%), along with reads that could not be identified 
(7%) (Dataset S1). Of the total population, 38% could be 
attributed to viable organisms, based on the read counts 
obtained from propidium monoazide (PMA)-treated 

samples (which measures viable/intact organisms), with 
bacteria still being the most dominant group [bacteria 
(58%), fungi (37%), viruses (0.01%), archaea (0.004%), 
unclassified (4%)] (Dataset S1).

The viable bacterial and fungal load was compared 
between F4 to F7. The average bacterial read count 
across all four flights was 7 ×  105 counts/m2, with 
no statistically significant differences between them 
(Fig.  1A). This contrasts with the fungal read counts 
which did differ between flights, with F6 having the 
highest average sequence reads at 7.0 ×  105 counts/m2 
(Fig. 1B).

Table 1 Locations sampled across the International Space Station. All eight 8 locations were sampled over the course of four 
different flights—flight 4 (F4), flight 5 (F5), flight 6 (F6), and flight 7 (F7). Flight 4 was sampled in 2017, and F5, F6, and F7 were sampled 
throughout 2018

Location number Location description ISS module

L1 Port panel next to the cupola Node 3

L2 Waste and hygiene compartment Node 3

L3 Advanced resistive exercise device (ARED) foot platform Node 3

L4 Dining table Node 1

L5 Overhead 4 Node 1

L6 Permanent multipurpose module (PMM) Port 1 PMM

L7 Lab 3 overhead LAB

L8 Port crew quarters, bump out exterior aft wall Node 2

Fig. 1 Metagenomic read counts obtained from surface wipes sampled during flights 4–7. Each dot of the graph represents a location sampled on 
the ISS. The line represents the average read count for a specific flight from all eight locations. PMA-treated samples were analyzed which measures 
viable/intact cells. A Read counts of the bacterial population. B Read counts of the fungal population. The Kruskal–Wallis one-way analysis of 
variance test, followed by the post hoc false discovery rate was used to compare the read counts between flights
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Plate count assays were also performed. The cultivable 
bacterial burden was highest at F6, with an average of 2.7 
×  106 cfu/m2, and lowest at F7, with 1.0 ×  102 cfu/m2 
(Fig. S1A). F6 also had the highest cultivable fungal bur-
den at 1.1 ×  104 cfu/m2, with F7 having below detectable 
fungal counts (Fig. S1A).

Microbial diversity
Alpha diversity
Three alpha diversity indices were used to measure the 
microbial diversity within each sample: observed richness 
(Fig. 2, top panel), exponentiated Shannon index (Fig. 2, 
middle), and reciprocal Simpson index (Fig.  2, bottom). 
Included for comparison were also the MT-1 samples 
from F1–F3. The Kruskal-Wallis statistical test was used 
to determine the differences between flights, and no sig-
nificant differences were observed across any of the seven 
flights. There were also no differences across any of the 
eight locations sampled (Fig. S2).

Beta diversity
Comparison between surface samples was visual-
ized using principal coordinates analysis (PCoA) using 
Euclidean distances (Fig.  3) and organized by location 
(Fig. 3A) and flight (Fig. 3B) to identify possible trends. 
No apparent microbiome differences were observed 
between locations; however, samples did appear to clus-
ter by flight group. These observations were supported by 
PERMANOVA analysis of the Euclidean distances which 
found a significant difference between centroids and dis-
persions of the flight groups (P < 0.001) but not between 
the locations (P = 0.229). Surface samples were also vis-
ualized and analyzed by non-metric multidimensional 
scaling (NMDS) using Jaccard distances (Fig. S3), and the 
same trends were noted as with the PCoA data above.

Taxonomic profile of ISS microbial community
The top 12 most abundant bacterial species across all 
surface samples are shown in Fig. 4 with all but one being 

Fig. 2 Alpha diversity metrics for MT-1 and MT-2 samples. The species richness (top row), exponentiated Shannon index (middle row), and inverse 
Simpson index (bottom row) are shown for each sample. Samples are grouped by flight group and colored by surface location
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Fig. 3 PCoA plot of MT-1 and MT-2 surface samples. Samples were colored by surface location (A) and flight group (B) to visualize the sample 
clustering. The distance between the samples was determined using the Euclidean distance
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associated with the human microbiome. Propionibac-
terium acnes and the six Staphylococcus spp.: Staphylo-
coccus aureus, Staphylococcus capitis, Staphylococcus 
epidermidis, Staphylococcus hominis, Staphylococcus 
saprophyticus, and Staphylococcus sp. AL1, reside on the 
skin and mucous membranes of humans. Haemophilus 
parainfluenzae, Rothia mucilaginosa, and Streptococcus 
mitis are part of the normal oral microbiome. Corynebac-
terium sp. GD7 (reclassified as Corynebacterium ihumii) 
was first isolated from a fecal sample. Lactococcus lactis 
is used in the dairy industry for the production of various 
cheeses and buttermilk. The read counts for the top 12 
bacteria, organized by flight and location (including con-
trols), are shown in Fig. S4.

The top 12 most abundant fungal species across 
all surface samples are shown in Fig.  5. These include 
Malassezia globose, Malassezia restricta, and Malasse-
zia sympodialis which are part of the healthy skin 
microflora. The Malassezia species constitute the 

majority of fungal reads in most surface samples 
regardless of location. Rhodotorula glutinis and Yar-
rowia lipolytica are common environmental fungi, 
and Aspergillus kawachii, Cyberlindnera jadinii, and 
Debaryomyces hansenii are used in the food industry. 
Blumeria graminis (barley powdery mildew), Penicil-
lium aurantiogriseum (asparagus and strawberry path-
ogen), Puccinia striiformis (Stripe rust), and Puccinia 
triticina (wheat leaf rust) are all associated with plant 
diseases but pose no known harm to human health. The 
read counts for the top 12 fungi, organized by flight and 
location (including controls), are shown in Fig. S5.

Differential abundance analysis of taxa was per-
formed at the species level. Samples were grouped by 
flight group (i.e., F4, F5, F6, and F7) or location (i.e., 
dining table, crew quarters, etc.) for analysis. While 
there were no differentially abundant species across 
locations (P < 0.05), there were 20 differentially abun-
dant species across flights (P < 0.05) (Table 2).

Fig. 4 Top 12 most abundant bacterial species across all surface samples. The percent of mapped reads for each species in each sample. Samples 
were grouped in columns by surface location and arranged in order by flight group. “Other” refers to those bacterial species detected that were not 
in the top 12
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Functional analyses
Co‑occurrence of microbial taxa
Inference of microbial ecological interactions was 
obtained from patterns of occurrence of the genera 
present in the samples. PMA-treated samples were ana-
lyzed to determine which viable bacterial and fungal 
genera were found to co-associate with each other. The 
top 50 most abundant bacteria and fungi were included 
in the analysis. As seen from the genus association pro-
file in Fig. S6, Aspergillus had the most co-associations, 
with other fungi and bacteria while Pseudomonas did 
not have any. The gene association matrix in Fig.  6 
shows which bacteria and fungi co-occurred with each 
other. Of the bacteria and fungi that were included in 
the analysis, the associations were all positive (i.e., 
presence of one likely means the presence of another) 
with no negative associations (i.e., presence of one 
likely means the absence of another).

Antimicrobial resistance profiles
Twenty-nine AMR categories were detected in the 
metagenomics dataset with multidrug and macrolide/
lincosamide/streptogramin (MLS) resistance having the 
highest read counts and found in all 32 samples (Fig. 
S7). Bacitracin, beta-lactam, diaminopyrimidine, and 
tetracycline resistance were also found across all sam-
ples, except from F6_1S (surface location # 1 [cupola], 
F6; Fig. S7). The “unclassified” category was also found 
in all samples (except F6_1S), and the genes that were 
grouped into this category were all DNA-binding regu-
latory proteins involved in the stress response.

Of the 29 AMR categories detected above, 17 were 
detected in the PMA-treated group. Multidrug and 
MLS resistance genes still had the highest counts, 
though were not found in every sample, as in the non-
PMA group (Fig. 7).

Fig. 5 Top 12 most abundant fungal species across all surface samples. The percent of mapped reads for each species in each sample. Samples 
were grouped in columns by surface location and arranged in order by flight group. “Other” refers to those fungal species detected that were not in 
the top 12
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Multi-dimensional scaling analysis comparing MT-2 and 
MT-1 samples (both PMA and non-PMA treated) showed 
no differences in the AMR profiles between the two studies, 
suggesting that the ISS resistome is relatively stable (Fig. 8).

Metagenome‑assembled genomes
Metagenomic-assembled genomes (MAGs) were con-
structed from the 32 samples collected during flights 
4–7, with 82 MAGs able to be assembled using a 50% 
minimum completion cutoff. Of those 82, 15 had over 
90% completion. The percent completion, contamina-
tion, GC content, taxonomy, N50 (a measure of assembly 
quality), and genome size are summarized in Dataset S2. 
The heatmap in Fig. 9 shows the distribution and abun-
dance of each MAG across all samples.

To extract functional information from these MAGs, 
annotation was performed on each MAG. Clusters of 
orthologous groups (COG) information was extracted from 
each annotated MAG and compiled together to provide a 
functional assessment of the collective microbial commu-
nity, with the complete list of each COG ID presented in 
Dataset S3. Each annotated gene with a COG ID was then 
grouped together based on COG functional categories and 
the proportion of each functional category represented in 
the pie chart in Fig.  10. The most represented functional 
groups were amino acid transport and metabolism (12%); 
translation, ribosomal structure, and biogenesis (11%); and 

carbohydrate transport and metabolism (9%). Genes/pro-
teins involved in the defense mechanisms and the exchange 
of genetic material (i.e., mobilome) had a relatively small 
representation (3% and 0.1%, respectively).

We decided to examine MAG Pseudomonas granaden-
sis (bin.33, 99.38% completion) in further detail because 
it was 99.97% similar (compared by average nucleotide 
identity) to the whole-genome sequences of P. granadensis 
isolates, cultured during this study (flight 4, dining table) 
[27]. In addition, P. granadensis belongs to the P. fluores-
cens group which has many biologically relevant proper-
ties. While generally considered a BSL-1 organism, it can 
cause severe diseases in people who are immunocompro-
mised and can lead to the spoilage of milk. It also exhibits 
biocontrol properties through its protection of plant roots 
from plant pathogens. Examination of MAG P. granaden-
sis (bin.33) showed 17 genomic islands, which is indica-
tive of horizontal gene transfer (HGT) events. Functional 
analysis showed that 3% of its genome was made up of 
virulence and defense genes specifically related to toler-
ance/resistance of fluroquinolones, beta-lactams, copper, 
cobalt-zinc-cadmium, streptothricin, chromium, and coli-
cin E2, as well as having multi-drug efflux pumps (Fig. S8). 
The genome also carried genes that could increase sur-
vival under unfavorable conditions, such as those involved 
in biofilm formation; osmotic, periplasmic, and oxidative 
stress; and dormancy and sporulation (Fig. S8).

Table 2 Species identified as differentially abundant between the sampling flight groups. Kruskal-Wallis (KW) and general linear 
model (GLM) raw P values and Benjamini and Hochberg adjusted P values (Q values) are shown for each species

Species P value (KW) Q value (KW) P value (GLM) Q value (GLM)

Thiobacillus thioparus 1.36E−04 2.11E−01 9.60E−09 1.17E−05

Magnetospirillum magnetotacticum 2.31E−04 2.13E−01 1.98E−08 3.01E−05

Yarrowia lipolytica 1.70E−04 2.09E−01 8.49E−07 4.04E−04

Tetragenococcus halophilus 1.79E−04 2.11E−01 8.25E−07 7.28E−04

Ralstonia pickettii 3.87E−04 2.20E−01 5.01E−06 1.31E−03

Methyloversatilis universalis 7.02E−04 2.36E−01 1.81E−05 5.07E−03

Acidovorax sp. CF316 4.65E−04 2.25E−01 1.74E−05 5.47E−03

Lactococcus raffinolactis 7.31E−03 4.10E−01 4.83E−05 1.22E−02

Thiobacillus denitrificans 4.39E−04 2.22E−01 1.54E−04 1.43E−02

Nevskia ramosa 2.04E−04 2.13E−01 1.14E−04 1.49E−02

Leuconostoc lactis 8.67E−04 2.45E−01 1.26E−04 2.04E−02

Sphingobium sp. Ant17 8.20E−04 2.47E−01 3.02E−04 2.55E−02

Leuconostoc mesenteroides 2.65E−03 3.25E−01 1.79E−04 2.60E−02

Cellvibrio sp. BR 1.04E−03 2.54E−01 5.15E−04 3.29E−02

Bradyrhizobium japonicum 5.11E−03 3.85E−01 3.15E−04 3.53E−02

Emiliania huxleyi 2.54E−03 3.12E−01 3.86E−04 4.08E−02

Herbaspirillum huttiense 1.27E−03 2.64E−01 7.49E−04 4.27E−02

Bacillus subtilis 1.85E−03 2.99E−01 7.69E−04 4.39E−02

Pectobacterium carotovorum 4.04E−03 3.45E−01 4.60E−04 4.64E−02

Chloroflexi bacterium JGI 0002000-F10 7.12E−04 2.36E−01 5.80E−04 4.79E−02
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Discussion
The microbiome of eight surfaces from across the ISS 
was sampled during four separate sampling sessions 
(F4–F7). The viable microbiome was assessed with shot-
gun metagenomic sequencing of samples that had been 

treated with PMA, as well as with plate count assays. 
Both techniques were consistent in their results, show-
ing that the microbiome was similar across all eight loca-
tions for a given flight and validates what was previously 
published for MT-1 [26, 28] and with other ISS surface 

Fig. 6 Co-occurrence analysis. The co-occurrence analysis was performed using the 50 most abundant genera to determine the associations 
among organisms. The matrix shows which genera co-occurred with each other. Blue shows the positive co-occurrences (i.e., if you find one in 
the community, it is likely you will find another—for example, Aspergillus and Fusarium), yellow shows the negative co-occurrences (i.e., if you find 
one, it is likely the other will be absent), and gray shows the random occurrences that are most likely due to random chance alone—for example, 
Cladosporium and Fusarium 

Fig. 7 Heat map of the ISS viable resistome. The metagenomic dataset was analyzed with DeepARG to look for anti-microbial resistance genes. The 
genes were then grouped into classes of resistance (i.e., “beta-lactam”), which is displayed in this heatmap (y-axis). The heatmap shows the relative 
abundance of each resistance class in each sample collected, with red being the most abundant and green the least. Gray indicates zero counts 
detected in that sample. The samples analyzed (x-axis) are from the PMA-treated samples which detect viable/intact cells. x-axis naming: Fx_xS_P, 
with F referring to the flight (i.e., F4) and S referring to the location of the surface sampled (i.e., 1S is location 1, the port panel next to the cupola). 
The AMR counts were normalized based on the 16S rRNA counts

(See figure on next page.)
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Fig. 7 (See legend on previous page.)
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microbiome studies [29]. The spatial uniformity in this 
hermetically sealed, closed habitat suggests that micro-
bial movement occurs readily, which should be taken into 
consideration if a situation arises that requires microbial 
sequestration.

While no spatial differences were found, temporal dif-
ferences did exist, with different microbial profiles and 
microbial loads observed among the various flights, 

consistent with our previous analyses [26, 28]. One influ-
ence driving these temporal differences could be the dif-
ferent cohorts of astronauts onboard the ISS during each 
sampling session. Two recent studies have noted that 
the crew microbiome may shape microbial composition 
on ISS habitable surfaces [29, 30], and in this study, the 
majority of bacteria and fungi that were detected from 
surfaces were human-associated, such as Staphylococcus, 

Fig. 8 Comparison of ISS viable resistome among flights. NMDS plot comparing the antimicrobial resistance profile of the ISS community. 
Metagenomic data collected from the PMA-treated samples (viable/intact cells) during each of the flight sampling sessions for both the current 
MT-2 study (F4–F7) and the previous MT-1 study (F1–F3) was analyzed by DeepARG. Each dot represents a sample and takes into account the 
presence of an antimicrobial resistance gene and its abundance. Locations are depicted by colors and MT-1 vs MT-2 study, by symbols

Fig. 9 MAG abundance heatmap. Genomes were assembled from the metagenomics reads and placed into “bins,” with each “bin” representing one 
metagenomic assembled genome (“MAG”). These bins were generated from the metagenomic data consisting of the 32 samples collected during 
the course of the study. Each bin is shown on the y-axis. The abundances are expressed as genome copies per million reads and presented, with the 
log10 values plotted. Red represents a high relative abundance and blue a low relative abundance. The white color represents the absence of that 
bin in the sample. The bin numbers were highlighted based on the phylum it was assigned to, with yellow = Actinobacteria, green = Firmicutes, 
blue = Bacteroidetes, and purple = Proteobacteria. Full taxonomic info for each bin can be found in Dataset S2. The x-axis shows the sample that 
was analyzed and the relative abundance of that bin (i.e., MAG) in that sample. x-axis naming: Fx_xS, with F referring to the flight (i.e., F4) and S 
referring to the location of the surface sampled (i.e., 1S is location 1, the port panel next to the cupola)

(See figure on next page.)
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Fig. 9 (See legend on previous page.)
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Propionibacterium, Streptococcus, Haemophilus, and 
Malassezia or those related to food products that are 
ingested by humans, such as Aspergillus kawachii and 
Lactococcus lactis. Astronaut-ISS surface exchange would 
parallel what has been found with Earth-based built envi-
ronment studies, where human occupation significantly 
impacts a given indoor environment [2, 31, 32]. To garner 
a better understanding of just how significant human-
environment interactions are in shaping the microbiomes 
of the ISS and the astronauts residing there, ongoing 
analyses by the MT-2 project team are examining astro-
naut data at pre-flight, in-flight, and post-flight time 
points and examining their microbiomes in conjunction 
with the ISS surface microbiome.

Staphylococcus sp. and Malassezia sp. were the most 
represented bacterial and fungal species, respectively, 
on the ISS. While bacteria dominated the ISS micro-
biome in both the PMA and non-PMA samples, it is 
worth noting that the proportion of fungi increased 
from 10% in the total population (viable/dead) to 37% 
in the viable population, while bacteria decreased from 
82% (total) to 58% (viable). This would suggest that via-
ble/intact fungal cells are more readily captured when 
ISS surfaces are sampled, compared to bacteria. This 
could be because these fungi are able to withstand the 
routine cleaning regimes on the ISS or the conditions 
surrounding the sample storage/descent to Earth/sam-
ple processing, better than those bacteria.

In addition to examining which microbes were pre-
sent, we also examined their properties, which may 
help inform policies and practices to mitigate harmful 

effects on astronauts and the spacecraft. One such 
functional examination was that of the ISS “viable 
resistome” which is the composition of antimicrobial 
resistance genes within the PMA-treated metagen-
omic dataset. We found a genetic composition that 
could provide resistance against 17 classes of drugs, 
many of which were broad-spectrum antibiotics, such 
as aminoglycosides, beta-lactams, fluoroquinolones, 
and tetracycline, all of which are part of the medical 
toolkit onboard the ISS. The most prevalent resist-
ance genes were against macrolide, lincosamide, and 
streptogramin (MLS) antibiotics and those involved in 
multidrug resistance, such as outer membrane porins, 
efflux pumps, and ABC transporters. MLS antibiotics 
occupy one of the leading positions among antibiotics 
used in outpatient treatment [33] and are used to treat 
a range of bacterial infections, especially methicillin-
resistant staphylococcal skin and soft tissue infections 
[34, 35], thus making it a very important drug on the 
ISS. Genetic resistance to MLS was found in every 
single sample in the total metagenomic dataset (non-
PMA-treated), and in 17 out of 32 PMA-treated sam-
ples, making MLS resistance widespread across the ISS.

The AMR resistance profiles did not differ across all 
seven flights, suggesting that even amidst changes in 
community composition (which we observed among 
the seven flights), the resistome of this microbial com-
munity is relatively stable and alludes to genetic redun-
dancy. Functional redundancy has been documented in 
other microbial systems such as in plants [36], human 
gut [37], oceans [38], and soil [39]. One study has shown 

Fig. 10 Pie chart of the cluster of orthologous groups. Functional assessment was performed by comparing the annotated MAGs against the COG 
database and assigning each COG ID to a category. The counts from each category are displayed as a percentage of the total counts in the pie chart



Page 14 of 19Urbaniak et al. Microbiome          (2022) 10:100 

that HGT plays a substantial role in maintaining redun-
dancy, and when HGT rates were high, the functional 
profile of the microbiome was very stable and recalcitrant 
to change, even when taxonomy was variable [40]. Our 
results emphasize the importance of deciphering micro-
bial behavior and community interactions for better 
approaches to safety and health, since removing or pre-
venting the growth of one or two species may not amelio-
rate any negative functional effects.

Strong microbial interactions were observed in this 
study through a co-occurrence analysis used to predict 
the likelihood of genera to co-inhabit a particular niche, 
either through positive associations or through negative 
ones. While many positive associations were calculated, 
no negative associations were accounted for. The genus 
that exhibited the most positive associations was Asper-
gillus and co-occurred with both bacteria and fungi, 
while at the other “end” of the spectrum, Pseudomonas 
had no associations and exhibited only random occur-
rences. While wet lab studies would need to be con-
ducted to make an accurate assessment of the impact of 
these ISS polymicrobial community interactions on the 
surrounding environment and astronaut health, some 
inferences can be made from the literature. In our study, 
Aspergillus and Fusarium formed a strong association. 
Co-infection studies of A. flavus with F. graminearum or 
F. verticillioides in maize have shown that the presence 
of these Fusarium species leads to enhanced aflatoxin B1 
(AFB1) production by A. flavus, even in the absence of 
any changes in growth, probably due to a stress response 
caused by fungal competition [41, 42]. AFB1 is a second-
ary metabolite produced by A. flavus and A. parasiticus 
and is a very potent carcinogen that can cause hepato-
cellular carcinoma in humans when ingested or when it 
permeates the skin [43]. While reads for A. flavus were 
extremely low on ISS surfaces, the species is naturally 
found in foods, such as grains, cereal, corn, and pea-
nuts. In light of the co-occurrence interactions described 
above and the known fact that the ISS is a stressed envi-
ronment for microbes, which could increase AFB1 pro-
duction as well as other mycotoxins, it may be necessary 
to pay close attention to microbial monitoring of food 
sources destined for space.

Aspergillus and Staphylococcus were another positive 
association found in the dataset and may prove to be 
beneficial for both crew and the ISS. In an in vitro study 
analyzing mixed A. fumigatus-S. aureus biofilms, it was 
shown that S. aureus strongly inhibited the development 
of A. fumigatus biofilms [44]. The antibiofilm effects of S. 
aureus on A. fumigatus were a lack of extracellular matrix 
(ECM) disorganized fungal structures, abortive hyphae, 
and limited hyphal growth [44]. Conidia were also scarce, 
had modifications on their surface, and showed lysis 

[44]. In contrast, A. fumigatus single culture biofilms 
showed extremely organized structures, abundant hyphal 
growth, hyphal anastomosis, and channels, as well as 
some conidia and ECM [44]. Aspergillus biofilms (i) cause 
aspergillosis, an infection causing allergic reactions, lung 
disease, and infections in other organs [45, 46]; (ii) have 
been implicated in microbially induced corrosion of 
bronze and copper [47]; and (iii) have been found in tap 
water in private homes, hospitals, and industrial prem-
ises, resulting in altered taste, odor, the production of 
allergenic compounds, and mycotoxins [48, 49]. Aspergil-
lus biofilms are difficult to eradicate once formed, so pre-
venting their formation, possibly with mixed microbial 
communities of the “right” organisms, may be the best 
way to combat its effects on the ISS.

Functional assessment was also performed by assem-
bling reads into contigs to obtain metagenome-associ-
ated genomes or “MAGs.” Across the samples collected, 
82 MAGs were able to be constructed and annotated 
with 15 having over 90% completeness, and comprising 
environmental, human-associated, and probiotic bacte-
ria. The functional profile of the collective MAGs showed 
the highest representation of (i) amino acid transport 
and metabolism and (ii) translation, ribosomal structure, 
and biogenesis. While these two pathways are among 
the main metabolic pathways in bacteria and fungi, their 
relative abundances were higher than carbohydrate uti-
lization pathways. This may be significant in the context 
of a recent study comparing “unrestricted” built environ-
ments (public houses, public buildings, private houses) 
with “confined” built environments (intensive care units 
(ICU), cleanrooms, cleanroom gowning areas) where 
it was shown that each of the three “confined” environ-
ments had a considerably higher representation of amino 
acid utilization compared to carbohydrate utilization, 
with the opposite being true for the “unrestricted” envi-
ronments (higher carbohydrate utilization compared to 
amino acids) [50]. While there are too few comparative 
studies to make any assumptions, it does raise the ques-
tion as to whether organisms in more extreme built envi-
ronments such as the ISS, ICU, and cleanrooms rely on 
different metabolic processes to survive and/or prolifer-
ate. The ability to generate good-quality MAGs from this 
dataset will allow us to better understand the dynamics 
of exchange across the ISS. For example, future analyses 
by the MT-2 project team will compare the ISS surface 
MAGs and astronaut MAGs (who were onboard the ISS 
at the time of collection) to track the movement of strains 
across ISS locations and across astronauts. Questions we 
hope to address in the forthcoming work are what factors 
contribute to the spread of certain organisms from one 
location to another, how long does a strain persist once 
deposited on a surface and after cleaning, and whether 
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there is an exchange between astronauts even if they 
were not on board at the same time.

Conclusion
Utilizing various metagenomics analyses as well as cul-
ture, this paper has provided a comprehensive analysis of 
the ISS surface microbiome, showing microbial burden, 
bacterial and fungal species prevalence, how the microbi-
ome and resistome changes over time and space, and the 
functional capabilities and microbial interactions of this 
unique built environment. Data from this study may help 
to inform policies for future space missions to ensure an 
ISS surface microbiome that promotes astronaut health 
and spacecraft integrity.

Methods
Sample kit preparation and sample collection
Sampling wipes were prepared at the Jet Propulsion 
Laboratory (JPL; Pasadena, CA) by moistening polyester 
wipes (9″ × 9″; ITW Texwipe, Mahwah, NJ), each with 
15 mL of sterile molecular grade water (Sigma-Aldrich, 
St. Louis, MO). Moistened wipes were aseptically trans-
ferred to a sterile zip lock bag and then assembled into 
the ISS sampling kit (at NASA Ames Research Center 
(ARC)), which also contained sterile gloves (KIMTEC 
Pure G3 White; Nitrile Clean-room Certified; Cat. 
HC61190), benzalkonium chloride wipes (Hygea®, 
PDI-BZK D35185), and sterile bitran bags (VWR, Cat. 
4742-S) for return. The implementation team at NASA 
ARC delivered the kit to the Cargo Mission Contract 
at Johnson Space Center (Texas) which was then trans-
ferred to Kennedy Space Center (Florida) in order to be 
loaded into the Space Exploration Technologies (SpaceX) 
Dragon spacecraft prior to launch. Eight different loca-
tions were sampled on the ISS using the premoistened 
polyester wipes which were the same locations as those 
sampled during the previous microbial tracking study 
(MT-1). The list of locations sampled is presented in 
Table 1. Flight 4 sampling occurred in 2017, and flight 5, 
6, and 7 sampling occurred in 2018. A diagram of loca-
tions can be found in Figure  1 of the MT-1 published 
manuscript [26].

As per the study requirements, there was no cleaning at 
least 4 days prior to sampling. Cleaning outside that time 
frame was conducted as per routine ISS activities and 
was performed with disinfectant wipes containing octyl 
decyl dimethyl ammonium chloride (0.0399%), dioctyl 
dimethyl ammonium chloride (0.01995%), didecyl dime-
thyl ammonium chloride (0.01995%), alkyl (50% C14, 
40% C12, 10% C16) dimethylbenzylammonium chloride, 
and dimethylbenzylammonium chloride (0.0532%).

During each flight sampling session, the same crew 
member sampled each of the eight locations. Using the 

sterile gloves from the sampling kit, he/she sampled 1  m2 
with the pre-moistened polyester wipes and donned a 
new pair of individually packed sterile gloves before sam-
pling the next location. A control wipe (environmental 
control) was taken out from the zip lock bag, unfolded, 
waved for 30 s, and packed back inside a new sterile zip 
lock. One control wipe was included for each flight ses-
sion. Similarly, an unused wipe that was flown to the ISS 
and brought back to Earth along with the samples served 
as a negative control for sterility testing. After sample 
collection, the samples were stored at 4 °C in orbit and 
then returned to Earth after 10 days for flight 4, 8 days 
for flight 5, 22 days for flight 6, and 11 days for flight 7. 
The kits were delivered to JPL immediately after arrival to 
Earth at 4 °C with processing at JPL commencing within 
2 h of receipt.

Sample processing
Sample processing took place in a cleanroom at JPL. In 
a certified biosafety cabinet, each wipe was aseptically 
removed from the zip lock bag and transferred to a 500-
mL bottle containing 200 mL of molecular grade ster-
ile phosphate-buffered saline (PBS; pH 7.4, Sigma). The 
wipe inside the bottle was shaken vigorously for 2 min 
followed by concentration with a Concentrating Pipette 
using 0.22-μm Hollow Fiber Polysulfone tips (Innova 
Prep, Drexel, MO). The captured microbes were released 
from the concentrating pipette using 1 mL of Inno-
vaPrep’s elution fluid containing PBS with 0.075% Tween. 
The concentrate was topped up to 5 mL using sterile, 
molecular grade 1× PBS (pH 7.4, Sigma).

DNA extraction
The concentrate, from above, was split into two 1.5-mL 
aliquots. One aliquot was treated with PMA (18.25 μL 
of 2 mM, resulting in a final concentration of 25 μM) to 
assess cells that were viable or had an intact cell mem-
brane [51], while the second aliquot was handled in a 
similar manner but without the addition of PMA. The 
PMA- and non-PMA-treated aliquots were incubated in 
the dark at RT for 5 min, followed by 15 min of photo-
activation using the PMA-Lite™ LED Photolysis Device, 
specifically designed for photoactivation of PMA (Bio-
tium, Hayward, CA). The PMA- and non-PMA-treated 
aliquots were split into two 0.75-mL aliquots. One aliquot 
was transferred to bead beating tubes containing Lysing 
Matrix E (MP Biomedicals, Santa Ana, CA), followed by 
bead beating for 60 s using the vortex sample holder (MO 
Bio, Carlsbad, CA). The bead-beaten aliquot and the ali-
quot without bead beating were combined for their cor-
responding PMA-treated and non-treated samples. DNA 
extraction was performed with the Maxwell 16 auto-
mated system (Promega, Madison, WI), in accordance 
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with the manufacturer’s instructions using the Maxwell 
16 Tissue LEV Total RNA purification kit. A Maxwell 
control without any sample added in its cartridge was 
run concurrently with the samples. The extracted DNA 
was eluted in 50 μL of water and stored at − 20 °C until 
further analysis.

Culture analysis
One hundred microliters, in duplicate, of the concen-
trate, was plated on Reasoner’s 2A agar (R2A) (for envi-
ronmental bacteria), blood agar (for pathogenic bacteria), 
and potato dextrose agar (PDA) supplemented with 100 
μg/mL of chloramphenicol (for fungi). All plates were 
purchased from Hardy Diagnostics (Santa Maria, CA). 
R2A and PDA plates were incubated at room tempera-
ture for 7 days, while blood agar plates were incubated at 
37 °C for 1–2 days (depending on growth). Colonies were 
counted and the colony-forming units per  m2 calculated. 
After colony counting, single colonies were re-streaked 
on fresh plates to ensure pure culture and incubated at 
the appropriate temperature and time, and the biomass 
was then archived in 30% glycerol and stored at − 80 °C.

Shotgun metagenomics sequencing and taxonomic 
classification
Metagenomics sequencing and taxonomic classification 
were performed as described previously [30]. Briefly, DNA 
libraries were prepared for sequencing using the Nextera 
DNA Library Preparation Kit (Illumina, Inc., San Diego, 
CA). Quality and fragment size were assessed on the Agi-
lent Tapestation 4200 (Agilent Technologies, Santa Clara, 
CA). Libraries were quantitated using the Qubit fluorim-
eter (Thermo Fisher Scientific, Waltham, MA) and nor-
malized to equivalent DNA quantities, pooled, and diluted 
according to the manufacturer’s standard recommenda-
tions. Shotgun metagenomic sequencing was performed 
using an Illumina NextSeq 500 with the NextSeq Series 
High Output Kit v2 (Illumina Inc., San Diego, CA), using 
150 base pair paired-end reads. Taxonomic classification 
of the metagenomic reads was accomplished using the 
Livermore Metagenomics Analysis Toolkit (LMAT ver-
sion 1.2.4b with the “April 4, 2014, LMAT Grand” refer-
ence database [lmat-4-14.20mer.db]) [52]. Reads mapping 
to genus Homo or below were removed from the analysis. 
The raw sequencing data has been deposited in NASA’s 
GeneLab Database accession number GLDS-252. A list of 
read counts for all species detected from each sample and 
control wipe is shown in Dataset S4.

Contamination control
The total number of reads and the number of reads 
annotated at the genus and species level are shown in 

Table S1. The F4–F7 negative control wipe flown to the 
ISS had fewer total reads compared to their correspond-
ing flight group wipes used to sample the ISS surfaces. 
The microbial composition of the control samples was 
determined the same way as the surface samples, and 
the top species detected among the control samples is 
shown by read number (Fig. S9). The control samples 
showed no indication of contamination or microbial 
read counts that could alter the microbial profiles identi-
fied in the surface samples.

Alpha diversity
The alpha diversity of each sample was calculated at the 
genus and species level using the “renyi” and “estimateR” 
functions available through the vegan package (v.2.5-5) 
[24]. The Renyi entropy of each sample was calculated 
for orders 0, 1, and 2, some things referred to as the 
Hill numbers [25], representing the sample’s observed 
richness, exponentiated Shannon index, and recipro-
cal Simpson index, respectively. We compared the alpha 
diversity estimations between locations and flight groups 
to track the changes between the sampling locations and 
across all flight groups. Statistical testing was done using 
Student’s t-test and Kruskal-Wallis test.

Beta diversity and ordination
The ecological distance between the surface samples was 
measured using the “distance” function and visualized 
using the “ordinate” function from the phyloseq pack-
age (v.1.24.3) [26]. Non-metric and classical multidimen-
sional scaling was used to visualize the similarity between 
the surface samples using the Jaccard and Euclidean 
distance, respectively. The Jaccard distance was used to 
measure the difference in taxon presence-absence pro-
files, and the Euclidean distance was used to measure 
the difference in taxon abundance profiles between sam-
ples. Prior to measuring the Euclidean distance between 
each sample, the taxon read counts were transformed 
into Euclidean space using the center-log ratio (clr) [27]. 
To determine if the centroid and dispersion between 
the locations and flight groups were different, a PER-
MANOVA test was performed using the “adonis2” func-
tion available through the vegan package (v.2.5-6) [24].

Differential abundant analysis
Genus and species level read counts were transformed 
using the clr method prior to testing for differentially 
abundant taxa. We performed two separate differential 
abundance analyses. The first analysis looked at the dif-
ferences in taxon abundance between the surface loca-
tions, and the second analysis looked at the differences 
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in taxon abundance between the flight groups. Differen-
tial abundance analysis on the clr-transformed reads was 
performed using the ALDEx2 package (v.1.16.0) using the 
“aldex.kw” function [53]. Taxa with P values < 0.05 were 
considered differentially abundant, and all P values were 
adjusted for multiple testing using the Benjamini and 
Hochberg method [29].

Antimicrobial resistance profiles
The raw metagenomic sequences were analyzed with 
DeepARG: a deep learning approach for predicting anti-
biotic resistance genes from metagenomic data which 
uses the CARD and ARDB databases for classification 
using the DIAMOND aligner [54]. Briefly, the pipeline 
first removes low-quality reads using TRIMMOMATIC, 
then merges the reads into one big file (VSEARCH) 
which are then classified with the deepARG algorithm, 
and the results are normalized to the 16S rRNA abun-
dance in the sample. The parameters used to predict the 
AMR genes from our metagenomics dataset were based 
on 80% coverage, 50% homology, a minimum probability 
of 0.8, and an E-value of 1e−10.

Co‑occurrence analysis of viable organisms
Genus co-occurrence from the PMA-treated samples 
was examined using the “cooccur” R package. This pack-
age applied the probabilistic model of genus co-occur-
rence [55] to a set of genera distributed among the 32 
samples (8 locations, 4 flights). The algorithm calculated 
the observed and expected frequencies of co-occurrence 
between each pair of genera. The expected frequency was 
based on the distribution of each genus being random 
and independent of the other genera. The package also 
includes functions for visualizing co-occurrence results 
and was used to prepare Figs. 8 and 9.

Functional profiles
Metagenome assembled genomes were constructed from 
the 32 samples (F4–F7, non-PMA-treated samples) using 
the MetaWRAP pipeline (https:// github. com/ bxlab/ 
metaW RAP) [56] which performed read quality control, 
assembly, visualization, taxonomic profiling, extract-
ing draft genomes (binning), and functional annotation. 
Assembly was performed with MegaHit (due to the large 
dataset) and the bin_refinement cutoff set to minimum 
completion of 50% and maximum contamination of 10%. 
Taxonomy was assigned using NCBI_nt and NCBI_tax 
databases and verified with CheckM. The abundances 
of each bin (i.e., MAG) in each sample was expressed as 
genome copies per million reads using Salmon. Func-
tional analysis of the annotated genomes was performed 
by extracting the cluster of orthologous group (COG) 

IDs from the annotated gff files generated by MetaW-
RAP and assigning each ID to a COG category (https:// 
www. ncbi. nlm. nih. gov/ resea rch/ cog/). The draft genome 
of Pseudomonas granadensis was analyzed by SEED and 
the Rapid Annotation of microbial genomes using Sub-
systems Technology (RAST) [57] and genomic islands 
assessed with IslandViewer 4 [58].

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40168- 022- 01293-0.

Additional file 1: Figure S1. Microbial burden assessment using culture. 
Bacteria were grown on R2A and blood agar plates and the cfu/m2 aver-
aged from each type of plate and then plotted. Fungi were grown on 
PDA plates. Each dot and corresponding number represents one of the 
eight surface locations sampled. X-axis labels: “BAC” refers to the bacte-
rial load and “PDA” to the fungal load. Fx refers to one of the four flight 
sampling events. Figure S2. Alpha diversity metrics for surface samples. 
The species richness (top row), exponentiated Shannon index (middle 
row), and inverse Simpson Index (bottom row) are shown for each sample. 
F4 (green), F5 (yellow), F6 (purple), and F7 (red) samples are grouped by 
surface location. Figure S3. NMDS plot of MT-1 and MT-2 surface samples. 
Samples were colored by surface location (A) and flight group (B) to visu-
alize samples clustering. The distance between samples was determined 
using the Jaccard dissimilarity. Figure S4. Top 12 most abundant bacterial 
species by flight group. The top 12 most abundance fungal species for 
F4 (A), F5 (B), F6 (C), and F7 (D) were determined separately. The read 
counts for each species are shown by surface location. “Other” refers to 
those bacterial species detected that were not in the top 12. Figure S5. 
Top 12 most abundant fungal species by flight group. The top 12 most 
abundance fungal species for F4 (A), F5 (B), F6 (C), and F7 (D) were deter-
mined separately. The read counts for each species are shown by surface 
location. “Other” refers to those fungal species detected that were not in 
the top 12. Figure S6. Co-occurrence analysis. Co-occurrence analysis was 
performed using the 50 most abundant genera to determine associations 
amongst organisms. The x-axis shows the organisms that were included in 
the analysis and the y-axis shows the percent of either negative, positive 
or random associations. Gray bars represent random associations, blue 
bars represent positive associations and yellow bars represent negative 
associations. The genera are listed in order of least occurrences (left) 
to most occurrences (right). Figure S7. Heat map of ISS resistome. The 
metagenomic dataset was analyzed with DeepARG to look for anti-
microbial resistance genes. The genes were then grouped into classes of 
resistance (i.e “beta-lactam”), which is displayed in this heatmap (y-axis). 
The heat-map shows the relative abundance of each resistance class in 
each sample collected, with red being the most abundant and green the 
least. Gray indicates zero counts detected in that sample The samples 
analyzed (x-axis) are from the non-PMA treated samples. x-axis naming: 
Fx_xS, with F referring to the flight (i.e., F4) and S referring to the location 
of the surface sampled (i.e., 1S is location 1, the port panel next to cupola). 
The AMR counts were normalized based on the 16S rRNA counts. Figure 
S8. Subsystem category distribution of Pseudomonas fluroescens metagen-
ome assembled genome. The metaWRAP pipeline was used to assemble 
and annotate draft genomes constructed from the metagenomic data of 
32 samples (F4-F7), otherwise known as MAGs- metagenomic assembled 
genomes. The MAG of Pseudomonas fluorescens was further analyzed with 
SEED and RAST. Figure S9. Read counts for control samples. The top 12 
most abundance species across the control samples are colored. The read 
counts in the controls were significantly less than those detected in the 
samples and had different profiles.

Additional file 2: Table S1. List of reads obtained from sample and 
control wipes during each ISS flight.

Additional file 3: Dataset S1. Read counts by Kingdom.

https://github.com/bxlab/metaWRAP
https://github.com/bxlab/metaWRAP
https://www.ncbi.nlm.nih.gov/research/cog/
https://www.ncbi.nlm.nih.gov/research/cog/
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https://doi.org/10.1186/s40168-022-01293-0
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Additional file 4: Dataset S2. The percent completion, contamination, 
GC content, taxonomy, N50 (a measure of assembly quality) and genome 
size.

Additional file 5: Dataset S3. Complete list of each COG ID.

Additional file 6: Dataset S4. Read counts of detected species in each 
sample and control. Only those species with over 100 read counts across 
all samples/controls were included. “F” referes to flight group, xS referes 
to location. “P” refers to PMA treatment, “CTL” refers to control wipe fliown 
to ISS.
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