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Abstract 

Background: Deep-sea hydrothermal vents represent unique ecosystems that redefine our understanding of the 
limits of life. They are widely distributed in deep oceans and typically form along mid-ocean ridges. To date, the hydro-
thermal systems in the Mid-Atlantic Ridge south of 14°S remain barely explored, limiting our understanding of the 
microbial community in this distinct ecosystem. The Deyin-1 is a newly discovered hydrothermal field in this area. By 
applying the metagenomic analysis, we aim at gaining much knowledge of the biodiversity and functional capability 
of microbial community inhabiting this field.

Results: In the current study, 219 metagenomic assembled genomes (MAGs) were reconstructed, unveiling a diverse 
and variable community dominated by Bacteroidetes, Nitrospirae, Alpha-, Delta-, and Gammaproteobacteria in the 
active and inactive chimney samples as well as hydrothermal oxide samples. Most of these major taxa were poten-
tially capable of using reduced sulfur and hydrogen as primary energy sources. Many members within the major taxa 
exhibited potentials of metabolic plasticity by possessing multiple energy metabolic pathways. Among these sam-
ples, different bacteria were found to be the major players of the same metabolic pathways, further supporting the 
variable and functionally redundant community in situ. In addition, a high proportion of MAGs harbored the genes of 
carbon fixation and extracellular carbohydrate-active enzymes, suggesting that both heterotrophic and autotrophic 
strategies could be essential for their survival. Notably, for the first time, the genus Candidatus Magnetobacterium was 
shown to potentially fix nitrogen, indicating its important role in the nitrogen cycle of inactive chimneys. Moreover, 
the metabolic plasticity of microbes, diverse and variable community composition, and functional redundancy of 
microbial communities may represent the adaptation strategies to the geochemically complex and fluctuating envi-
ronmental conditions in deep-sea hydrothermal fields.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  luozhuhua@tio.org.cn; limeng848@szu.edu.cn
†Jie Pan and Wei Xu contributed equally to this work.
1 Archaeal Biology Center, Institute for Advanced Study, Shenzhen 
University, Shenzhen, Guangdong, People’s Republic of China
2 Key Laboratory of Marine Biogenetic Resources, Third Institute 
of Oceanography, Ministry of Natural Resources, Fujian, Xiamen, People’s 
Republic of China
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-8675-0758
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-021-01202-x&domain=pdf


Page 2 of 20Pan et al. Microbiome            (2022) 10:8 

Background
Deep-sea hydrothermal vents are one of the most 
extreme environments on Earth, with temperatures rang-
ing from tens of degrees to more than 670 Kelvin (400°C) 
and water depths of ~200 to ~5000 m [1]. Since the first 
discovery of “thermal springs” on the Galapagos Ridge in 
1977 [2], the exploration of deep-sea hydrothermal vents 
has never ceased. Numerous studies have investigated 
microbial communities inhabiting deep-sea hydrother-
mal systems, elucidating the unique diversity and metab-
olism of microorganisms in the biogeochemical cycles of 
deep sea [3–9].

Deep-sea hydrothermal vents are energy hot spots in 
the ocean, supporting abundant chemolithoautotrophic 
microorganisms that fix inorganic carbon to organic 
carbon with the energy from redox chemical reactions 
[10–13]. By providing substantial primary production, 
these microorganisms transfer the chemical elements 
and energy from lithosphere to biosphere, sustaining 
large amounts of biomass, even beyond the hydrother-
mal fields [14–17]. As summarized in several reviews, the 
application of high-throughput sequencing technologies 
suggested that microorganisms in deep-sea hydrother-
mal ecosystems utilized all known biological carbon fixa-
tion pathways, including the Calvin-Benson (CBB) cycle, 
the reductive or reverse tricarboxylic acid (rTCA) cycle, 
the acetyl CoA pathway, the 3-hydroxypropionate bicy-
cle, the dicarboxylate/4-hydroxybutyrate cycle, and the 
3-hydroxypropionate/4-hydroxybutyrate cycle [18–20]. 
Also, these microorganisms have been proven to har-
ness energy by oxidizing chemically reduced compounds 
from vent fluids, such as sulfide, hydrogen, methane, 
and metal ions [21]. Hydrothermal fluids are enriched 
with reduced sulfur compounds, which are identified 
as a predominant energy source for hydrothermal sys-
tems [11]. Sulfide-oxidizing aerobes are indicated to be 
the key primary producers in deep-sea hydrothermal 
systems [22]. The genera Sulfurovum and Sulfurimonas 
within the class Epsilonproteobacteria and some gam-
maproteobacterial members are thought to be the major 
sulfide-oxidizing autotrophs [9, 20, 22, 23]. Genomic 
analyses of these bacteria suggested that they used two 
sulfide-oxidizing pathways, the sulfur oxidation complex 

(SOX) pathway and the reverse sulfate reduction path-
way to obtain energy for carbon fixation and other nec-
essary metabolic processes [20, 22], by utilizing oxygen 
or nitrate as electron acceptors [20, 24, 25]. In addition, 
some studies have shown that chemoautotrophs in deep-
sea hydrothermal vents can derive energy from hydrogen 
oxidation with oxygen [12, 20, 25, 26]. Thermodynamic 
models even estimate that hydrogen may provide more 
energy than sulfide in hydrogen-rich fluids [24, 27], 
indicating a significant role of hydrogen in the deep-sea 
hydrothermal ecosystems. Also, methane and iron are 
two available energy sources for chemoautotrophs, with 
representative utilizers including aerobic methanotrophs 
(Methylococcaceae and Methylocystaceae in the classes 
Gammaproteobacteria and Alphaproteobacteria, respec-
tively), anaerobic methanotrophs (ANME-1 group), and 
iron oxidizers (Mariprofundus ferrooxydan in the class 
Zetaproteobacteria) [28–30]. Although previous research 
provided glimpses into the metabolic potentials of bac-
teria in deep-sea hydrothermal systems, investigation of 
the metabolic network of the whole microbial commu-
nity in hydrothermal fields is lacking, limiting our under-
standing of the microbial element cycle in the deep-sea 
hydrothermal fields.

By the end of 2019, 718 hydrothermal vent fields had 
been identified along mid-ocean ridges (MORs), volcanic 
arcs, and back-arc spreading systems. More than half of 
them are located on MORs [31] (based on the InterRidge 
Vents Database, retrieved in December 2019 [1]). How-
ever, many MORs on Earth have rarely been explored 
for hydrothermalism [1]. For example, the MOR in the 
Atlantic Ocean south of 14°S remained unexplored until 
Cruise DY115-22 in 2011 [32] and Cruise MSM-25 of 
RV Maria S. Merian in 2013 [33]. During these cruises, 
14 new hydrothermal vent fields were discovered [34], 
among which the 15.2°S hydrothermal field, also named 
the Deyin-1 hydrothermal field, has been the best char-
acterized. This field was first discovered in 2011 [35], and 
its mineralogy and geochemistry were reported in 2017 
[36]. In the Deyin-1 hydrothermal field, a number of vio-
lently erupting black smokers grow on a pillow-shaped 
basalt covered by a small amount of sediment, indicating 
that the oceanic crust is newly formed. Massive sulfide 

Conclusions: This represents the first assembled-genome-based investigation into the microbial community and 
metabolism of a hydrothermal field in the Mid-Atlantic Ridge south of 14°S. The findings revealed that a high propor-
tion of microbes could benefit from simultaneous use of heterotrophic and autotrophic strategies in situ. It also pre-
sented novel members of potential diazotrophs and highlighted the metabolic plasticity and functional redundancy 
across deep-sea hydrothermal systems.

Keywords: Microbial community, Metabolisms, Nitrogen fixation, Functional redundancy, Deep-sea hydrothermal 
field, Metabolic plasticity, Deyin-1
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mineralization suggests that hydrothermal fluids mix 
with a significant amount of seawater during sulfide pre-
cipitation [36, 37]. In addition, the fungal, faunal, and 
ammonia oxidizer communities in this area were primar-
ily investigated by analyzing marker genes [38–40], fol-
lowed by the characterization of a new archaeal phylum 
(Hydrothermarchaeota) [41]. Collectively, these findings 
indicate a possible diverse microbial community in this 
field. However, little is known regarding the metabolic 
characteristics, element and energy transformations, and 
ecological adaptation strategies of the microbial commu-
nity in the Deyin-1 hydrothermal field. Therefore, in the 
current study, metagenomes of four different hydrother-
mal samples were sequenced and assembled. Genomic 
bins were reconstructed, and the biodiversity and poten-
tial physiological capabilities of the microbial communi-
ties were characterized. The results shed light on energy 
capture, carbon and nitrogen acquisition, and metabolic 
interconnectivity in the deep-sea hydrothermal fields of 
this relatively unexplored area.

Results
Diverse microbial community in the Deyin‑1 hydrothermal 
field
The sampling process has been described in previous 
mineralogical studies [36, 39]. In brief, four samples were 
obtained in the Deyin-1 hydrothermal field, including 
one sample composed of fragments of an active black 
smoker chimney (active chimney; TVG11), one sample 
with red-brown oxides obtained near an inactive chimney 
(hydrothermal oxide; TVG13), and two samples dredged 
from different inactive black smokers (inactive chimney; 
TVG10 and TVG12) [36, 39] (Figure S1 & Table S1). Dif-
ferences in chemical parameters were observed among 
them, even between the two inactive chimney samples. 
For example, pH values of TVG10 and TVG13 were neu-
tral, while those of TVG11 and TVG12 were more acidic; 
the total carbon and hydrogen content of TVG12 were 
lower than the other samples; and the total sulfur content 
of TVG13 was the lowest.

Metagenomic libraries of all four samples were con-
structed and sequenced, yielding more than 333 Gbp of 
DNA reads. After trimming, dereplication, and assem-
bling, more than 12 Gbp scaffolds were assembled and 
subsequently clustered into MAGs (the details of the 
samples, metagenomes, and assembly are provided in 
Table S1). Finally, 615 constructed MAGs were estimated 
to be >25% complete and <10% contaminated. Their aver-
age completeness was 57.0%, and the average contamina-
tion was 3.5% (Table  S2a). To enhance the reliability of 
this study, only 219 MAGs with estimated quality ≥ 50% 
(calculate as “completeness − 5 × contamination” [42]) 
were considered in the subsequent analyses. The average 

completeness of these 219 MAGs was 81.9%, and their 
average contamination was 2.9% (Table S2b).

To assess the taxonomic composition of the com-
munities in these samples, the taxonomic abun-
dance of 16S rRNA gene (16S), ribosomal protein S3 
(rpS3), and MAGs were considered. In total, 1743 16S 
sequences (length >700 bp) and 3291 rpS3 sequences 
were obtained from the scaffolds. All 16S rRNA gene 
sequences were clustered into operational taxonomic 
units (OTUs) with 95% similarity cutoff, and the rpS3 
sequences were clustered with 70% similarity. The phy-
logenies of these two marker genes were conducted 
with representative sequences of the OTUs, respec-
tively. The phylogeny of the 16S rRNA genes showed 
that these sequences were assigned to 52 phyla (45 
Bacteria and 7 Archaea). Most of 16S sequences were 
bacterial sequences (1631), and the three most abun-
dant sequences all belonged to Gammaproteobacte-
ria (Figure S2). The taxonomic assignments of rpS3 
sequences showed that at least 85 phyla (76 Bacte-
ria and 9 Archaea) exist in these samples. Also, most 
of rpS3 sequences belonged to Bacteria (3220). The 
phylogeny of the MAGs showed the same pattern, 
with 219 MAGs assigned to 26 phyla (24 Bacteria and 
2 Archaea), where 215 MAGs belonged to Bacteria 
(Fig.  1 & S3). The abundance of each MAG was cal-
culated with the mapped reads and normalized using 
“Reads per kilobase per million mapped reads” (RPKM) 
method [43]. The most abundant MAG (SZUA-60) was 
also affiliated with Gammaproteobacteria (RPKM value 
of 6.9), followed by SZUA-77, a member of the phylum 
Nitrospirae (RPKM value of 6.3) (Fig. 1). A summary of 
the taxonomic abundances based on 16S rRNA gene, 
rpS3, and MAGs is shown in Fig. 2–c. All these results 
reached an agreement that the abundance of Bacteria 
was much greater than that of Archaea (2.3, 3.3, and 
2.0% for 16S, rpS3, and MAGs). Gammaproteobac-
teria (20.6, 20.6, and 18.8% for 16S, rpS3, and MAGs) 
was the most abundant taxon in the Deyin-1 hydro-
thermal field, followed by Delta-, Alphaproteobacte-
ria, Bacteroidetes, and Nitrospirae (10.6, 7.8, 8.6, and 
6.2% for 16S; 9.7, 8.7, 6.5, and 4.4% for rpS3; 7.3, 8.2, 
10.9, and 7.4% for MAGs). It should be mentioned that 
Candidate Phyla Radiation (CPR) was highly abundant 
in the results of rpS3 (8.9%), but it was not detected in 
the results of 16S rRNA genes. This difference may be 
caused by the limitation of metagenome assembly for 
16S rRNA genes, as the sequences of 16S rRNA gene 
are highly conserved [44]. Also, the intron inserted in 
the 16S rRNA genes of CPR may be another barrier for 
assembling them [45]. To further elucidate the taxo-
nomic position of the MAGs within these five major 
taxa, phylogenetic analyses were performed, indicating 
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a great diversity within these taxa (Figs.  3, S4, S5, & 
S6). Notably, the two most abundant MAGs, SZUA-60, 
and SZUA-77, phylogenetically belonged to Acidiferro-
bacter and Candidatus Magnetobacterium (within the 
family Nitrospiraceae), respectively (Figs. 3 & S5). Both 
groups were also the two most abundant genera in the 

Deyin-1 hydrothermal field (10.2 and 5.5% for MAGs, 
respectively).

From a taxonomic perspective, marked differences in 
the microbial community composition were observed 
across samples, even between two inactive chimney 
samples. For instance, Gammaproteobacteria was the 

Fig. 1 Phylogenetic tree and relative abundances of bacterial (a) and archaeal (b) MAGs in the current study. The maximum likelihood phylogenetic 
tree was constructed based on 120 bacterial and 122 archaeal marker genes. The scale bar represents 0.1 amino acid substitutions per sequence 
position. The bar plots are based on the relative abundance of each MAG in each sample, and the color of the bars represents the taxonomy of the 
MAG. The two most abundant MAGs (SZUA-60 and SZUA-77) are labeled. The full phylogenetic tree is available in Supplementary Data 1 (bacterial) 
and 2 (archaeal), and the details of MAG abundance are available in Table S2
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most abundant taxon in samples TVG10 and TVG13 
(25.1 and 26.5% for 16S, 14.2 and 37.4% for rpS3, and 
43.0 and 43.8% for MAGs), while Deltaproteobacteria 
was the most abundant taxon in samples TVG11 and 
TVG12 (19.3 and 16.3% for 16S, 15.1 and 18.9% for rpS3, 
and 15.3 and 10.6% for MAGs). In addition, the relative 
abundances of some phyla were greater than 5% in only 
one of the four samples (called “abundant” below). Spe-
cifically, Nitrospirae was only abundant in TVG10 (17.5, 
12.2, and 22.6% for 16S, rpS3, and MAGs). Chloroflexi 
and Gemmatimonas were only abundant in TVG11 (11.3, 
10.1, and 22.6%; 3.1, 6.2, and 5.5% for 16S, rpS3, and 
MAGs). And Firmicutes was only abundant in TVG12 
(8.9, 9.2, and 8.9% for 16S, rpS3, and MAGs) (Fig.  2). 
Besides, the Venn diagram of the 16S rRNA gene OTUs 
and multidimensional scaling (MDS) analysis of the 
taxonomic abundance showed the distinction of these 
four microbial communities. According to the Venn dia-
gram, only 1.5% of OTUs were shared by all samples. The 
shared OTUs between two inactive chimney samples 
accounted for merely 3.4%. More than half of the OTUs 

were exclusive to specific samples (Figure S7a). The MDS 
results revealed that the distance between two inactive 
chimney samples TVG10 and TVG12 was larger than 
that between TVG12 and active chimney sample TVG11, 
suggesting great distinctions of the microbial composi-
tion among these samples (Figure S7b). Meanwhile, the 
rarefaction curves showed that the observed OTUs of 
16S rRNA gene in samples TVG10, TVG11, and TVG13 
plateaued at 10000-sequence level (Figure S8a). Similarly, 
for the sample TVG12, the rarefaction curve of chao1 
index plateaued at 10000-sequence level (Figure S8b), 
indicating adequate sampling of major prokaryotic com-
munities for all samples. With these considered, the sub-
stantially distinct microbial communities across these 
samples are possibly shaped by fluctuating environmental 
conditions in the hydrothermal systems, such as pH, total 
hydrogen, and total sulfur.

Energy acquisition and electron acceptors
All the MAGs were annotated and analyzed for genes 
involved in energy acquisition and electron-accepting 

Fig. 2 Microbial composition of each sample based on 16S rRNA genes (a), ribosomal protein S3 (b) and MAGs (c). The taxonomy of 16S rRNA 
genes was determined by comparing with SILVA database; the taxonomy of ribosomal protein S3 was determined by comparing with NR database; 
the taxonomy of MAGs was determined by considering the results of 16S rRNA genes and genomic phylogeny
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pathways. Several pathways were predicted in all four 
samples, including those for sulfur, hydrogen, nitrogen, 
and aerobic metabolisms (Table S3).

As for the metabolic pathways related to energy acqui-
sition, many MAGs had both sulfur and hydrogen oxi-
dation capabilities. In the samples TVG10 and 13, the 
number of MAGs containing genes of sulfur oxidation 
was higher than the number of those harboring genes 
of hydrogen oxidation, while the results were opposite 
in TVG11 and 12 (Fig. 4). Thus, both metabolisms were 
important energy sources in the hydrothermal fields. 
However, the relative abundance of MAGs with the 
potential for sulfur oxidation (RPKM value of 19.8) was 

higher than that for hydrogen oxidation (RPKM values of 
8.3; Fig. 4). The difference in these gene abundances sug-
gested that sulfur oxidation might be the major energy 
source and hydrogen oxidation might be a minor source 
in the hydrothermal fields. It should be noted that this 
inference from metagenomic study needs to be further 
verified by gene activities. Taxonomically, the orders 
Rhizobiales and Rhodobacterales within Alphaproteo-
bacteria together with gammaproteobacterial members 
may be the major microbial groups for oxidizing sulfur in 
the hydrothermal field, reflected by the sulfur-oxidizing 
genes (including rdsrAB-aprAB-sat and SOX complex) 
detected in a high abundance of their MAGs in all four 

Fig. 3 Phylogenetic tree, relative abundance, and functional potentials of Nitrospirae and Deltaproteobacteria MAGs. The maximum likelihood 
phylogenetic tree was constructed based on 120 bacterial marker genes. The scale bar represents 0.1 amino acid substitutions per sequence 
position. RPKM value is the relative abundance of each MAG, calculated by number of mapped reads/(sequence length × metagenomic size)
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samples (Figure S9) (RPKM values of 0.6, 1.5, and 14.7 
for Rhizobiales, Rhodobacterales, and Gammaproteobac-
teria, respectively; Figures S4 & S5). On the other hand, 
Nitrospirae and Deltaproteobacteria were likely the major 
microbial groups for oxidizing hydrogen, as the relative 
abundance of their MAGs harboring genes related to 
this process were 6.7 and 0.8 (RPKM value), respectively 
(Fig.  3). In addition, the genes for methane production 
(mcrABC) were only observed in euryarchaeotal MAG 
SZUA-459 with low abundance (Table S3), and those for 
methane oxidation were only observed in a low-quality 
gammaproteobacterial MAG SZUA-363, indicating that 
methane should be a less important energy source for the 
microbial community in the Deyin-1 hydrothermal field.

Furthermore, the high abundance of genes related to 
sulfur reduction, denitrification, and aerobic respiration 
suggested that oxidized sulfur, nitrite, and oxygen may 
be the most common electron acceptors for microbial 
community in the Deyin-1 hydrothermal field. Among 
these pathways, denitrification and aerobic respiration 
were the most widespread, and the relative abundance 
of MAGs harboring the key genes involved in these two 

pathways were 33.7 and 44.0 (RPKM value), respectively 
(Fig.  4). With respect to aerobic respiration, cbb3-type 
terminal cytochrome c oxidase (ccoNOP) was the most 
common genes (present in the MAGs with RPKM values 
of 15.8–60.7), followed by cytochrome d oxidase (cydAB) 
(present in the MAGs with RPKM values of 0.8–26.5). 
In comparison, the MAGs with relative abundance of 
only 0.6–2.8 (RPKM value) had cytochrome o (cyoAB-
CDE), and cytochrome c oxidase (coxABC) was only 
found in members of Bacteroidetes and Deltaproteobac-
teria (Table S3). In terms of sulfate reduction, Candida-
tus Magnetobacterium within the phylum Nitrospirae, 
abundantly present in TVG10, contained a large number 
of related genes for this process (Fig. 3), suggesting that 
Nitrospirae may be a major sulfate reducer in TVG10. In 
contrast, in samples TVG11 and TVG12, the abundance 
of sulfate reducers within the class Deltaproteobacteria, 
including Desulfovibrionales, Desulfobacterales, and 
Syntrophobacterales, was high rather than those within 
Nitrospirae (Fig.  3). Thus, unlike TVG10, deltaproteo-
bacterial members are likely the major sulfate reduc-
ing taxa in TVG11 and TVG12. In addition, the gene of 

Fig. 4 Relative abundance of MAGs, numbers of MAGs, and phyla involved in different pathways in each sample. The numbers in the circle 
represent the number of phyla harboring the related genes
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polysulfide reductase (psrA) was found in the Nitros-
pirae, Delta-, Gamma-, and Zetaproteobacteria MAGs. 
The psrA-containing MAGs within Nitrospirae and Del-
taproteobacteria were only found in TVG11 and TVG12, 
while those within Gamma-, and Zetaproteobacteria 
were only present in the other two samples, suggesting 
significant contribution of these taxa to sulfur reduction 
in the hydrothermal fields (Table S3).

Notably, among the diverse taxa detected in the 
Deyin-1 hydrothermal field, Gammaproteobacteria 
MAGs contained abundant genes related to all men-
tioned energy-producing pathways (sulfur/sulfide, hydro-
gen, and methane oxidation; Figure S5), which was in 
agreement with their copiotrophic lifestyle represented 
in the previous studies [46, 47]. Thus, Gammaproteobac-
teria potentially plays an important role in organic car-
bon production in the Deyin-1 hydrothermal ecosystem. 
Besides, sulfur and hydrogen oxidation pathways were 
found in Acidiferrobacter and Thiotrichales, enabling 
their energy production through these compounds. In 
contrast, a few mentioned metabolic pathways were only 
detected in MAGs of other lineages in specific samples. 
For example, Alphaproteobacteria potentially utilized 
diverse chemical compounds except for hydrogen (Figure 
S4), and Bacteroidetes possessed abundant genes asso-
ciated with hydrogen oxidation in TVG12 (Figure S9 & 
Table S3).

Carbon fixation and extracellular carbohydrate‑active 
enzymes (CAZymes)
To predict potential metabolic pathways for carbon 
cycling, the abundances of genes encoding key enzymes 
for carbon fixation and CAZymes were calculated, par-
ticularly for the CAZymes predicted to be secreted 
(extracellular CAZymes). The results indicated that key 
genes associated with carbon fixation were present in 
all four samples in abundance. Specifically, diverse car-
bon fixation pathways were predicted in the MAGs with 
RPKM values of 10.0–55.4 (Fig.  4), including the CBB 
cycle, the rTCA cycle, the Wood-Ljungdahl pathway, the 
3-hydroxypropionic acid pathway, and the 4-hydroxybu-
tyryl pathway (Figure S9). Nitrospirae, Alpha-, Delta-, 
and Gammaproteobacteria were the most abundant taxa 
involved in carbon fixation, as the relative abundance of 
their MAGs harboring the key genes were 7.2, 2.8, 1.8, 
and 8.2 (RPKM value), respectively. In particular, Nitro-
spirae and Gammaproteobacteria were abundant carbon-
fixing taxa across all four samples (Figure S9).

In addition, 18,622 genes encoding potential CAZymes 
were detected in four samples, and approximately 2.7–
5.2% of them were predicted to be secreted (Figure S10). 
Among these extracellular CAZymes, GH13 (α-amylase), 
GH15 (glucoamylase), GH16 (active toward β-1,4 or 

β-1,3 glycosidic bonds), GH57 (α-amylase), GH74 (xylo-
glucanase), and PL22 (oligogalacturonate/oligogalac-
turonide lyase) were detected in all samples (Table  S4). 
The relative abundance of MAGs encoding extracellular 
CAZymes in the samples (RPKM values of 14.4–31.4) 
was comparable with that having carbon-fixing genes, 
suggesting that extracellular carbohydrate compounds 
could be another important carbon source for these sam-
pled microbial communities in the Deyin-1 hydrothermal 
field. Contrastingly, for the hydrothermal oxide sample 
(TVG13), the number of MAGs encoding extracellular 
CAZymes was much lower than that possessing carbon 
fixation pathways (Fig.  4), suggesting that carbon fixa-
tion might be more prevalent in this hydrothermal oxide 
sediment sample. Of note, co-occurrence of carbon fixa-
tion and extracellular carbohydrate utilization pathways 
was observed in 41 MAGs (RPKM values of 5.8–9.4; 32 
of them were with contamination <5%), including the 
MAGs within known chemoautotrophic taxa (Acidiferro-
bacter, Thiotrichales, etc.). Altogether, these results sug-
gest that these autotrophic members exhibit potentials 
to use both heterotrophic and autotrophic strategies for 
survival in deep-sea hydrothermal ecosystems.

Nitrogen fixation
The key genes of nitrogen fixation (nifHDK) were 
observed in the inactive chimney samples, with the 
RPKM values as high as 207.7 in TVG10 and 165.3 in 
TVG12 (Table  S3). Relevant genes were found in 61 
MAGs within diverse taxa, including Bacteroidia (within 
Bacteroidetes), Nitrospirae, Rhodospirillaceae (within 
Alphaproteobacteria), Deltaproteobacteria, and Thi-
otrichales (within Gammaproteobacteria) (Fig.  3, Figs. 
S4, S5, & S6). In particular, a cascade of genes related to 
nitrogen fixation was present in the MAG SZUA-77 (nif-
HDKEB in Fig. 5b), which was one of the most abundant 
MAGs and phylogenetically belonged to Candidatus 
Magnetobacterium (Fig. 3), suggesting its potential nitro-
gen fixation ability. Highly abundant and diverse nitro-
gen-fixing communities imply that substantial nitrogen 
fixation possibly takes place at deep-sea hydrothermal 
sites, and dinitrogen may be an essential nitrogen source 
for the microbial community in situ.

Discussion
As a representative of slow-spreading MORs, the Mid-
Atlantic Ridge is estimated to have a spreading rate of 
~35 mm/year [48], attracting considerable research inter-
est in recent years [6, 41, 49–52]. However, the Mid-
Atlantic Ridge south of 14°S remained unexplored until 
recent cruises in which 14 hydrothermal deposits were 
confirmed [32]. Among them, the Deyin-1 hydrother-
mal field is a Normal-Mid-Ocean Ridge Basalt-hosted 
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field with a locally confined hydrothermal plume [34, 
37]. Hydrothermal fields have long been characterized 
by intensive fluctuations in salinity and temperature. The 

salinity ranges from 0.1 to twice the salinity of seawater 
[53], and the temperature ranges from 2°C when mixing 
with seawater to more than 400°C at the core vent [54]. It 

Fig. 5 Phylogenetic tree of NifH sequences from MAGs (a) and comparison of the nif operon from SZUA-77, the closest nif operon in NCBI, and 
the nif operons of representative Nitrospirae diazotrophs (b). The scale bar in the phylogenetic trees represents 0.1 amino acid substitutions per 
sequence position. The information of reference NifH sequences used in the phylogeny is in Table S6
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was observed in a previous study that the pillow-shaped 
basalt was covered by small volume of sediment in the 
Deyin-1 hydrothermal field, indicating that the oceanic 
crust in this field was newly formed [36]. Hydrothermal 
activity at newly formed fields is usually unstable, it could 
lead to more fluctuating environments in  situ, mak-
ing Deyin-1 hydrothermal field an ideal site to study the 
hydrothermal influence on the microbial community in 
young hydrothermal vents [36, 37]. In the current study, 
333.3 Gbp of metagenomic data were obtained, which 
unveiled highly diverse and variable microbial commu-
nities in the Deyin-1 hydrothermal field, including 219 
high-quality MAGs within 26 phyla (Fig.  1). Compared 
to the microbial compositions of the deep seafloor sedi-
ments in Atlantic Ocean [55–57], some microbial groups 
were exclusively found in our samples, such as Nitros-
pirae and Hydrothermarchaeota. These taxa have been 
widely detected in hydrothermal fluid samples [55–57], 
suggesting a noticeable influence of the hydrothermal 
fluid activity on microbial communities. This study is the 
first to investigate the microbial compositions, energy 
acquisition and electron-accepting pathways, as well as 
carbon and nitrogen metabolic pathways in the hydro-
thermal ecosystem at the Mid-Atlantic Ridge south of 
14°S. The results of microbial diversity and metabolisms 
in this newly discovered hydrothermal field provide 
another example of metabolic plasticity and functional 
redundancy for the microbial community in deep-sea 
hydrothermal systems.

Variable microbial communities and their energy sources
In the current study, Bacteroidetes, Nitrospirae, Alpha-, 
Delta-, and Gammaproteobacteria were the five most 
abundant taxa. While only Alpha- and Gammaproteo-
bacteria represented major constituents in sampled 
microbial communities, the abundance of Deltaproteo-
bacteria and Nitrospirae exhibited great variations, even 
between two inactive chimney samples (Fig. 2). The taxo-
nomic variation was also observed in the results of both 
MDS analysis and Venn diagram (Figure S7). A possible 
reason is the highly fluctuating or varying environments 
in situ. As for the energy sources, consistent with the pre-
vious hydrothermal studies [21], sulfide and hydrogen 
might be two vital energy sources for the microbial eco-
system in the Deyin-1 hydrothermal field. Sulfide could 
be the major energy source for Alpha- and Gammapro-
teobacteria, while hydrogen might provide energy mainly 
for Nitrospirae and Deltaproteobacteria (Fig.  3, Figs. S4 
& S5).

In agreement with the previous studies [49, 58], Nitro-
spirae was one of the major bacterial phyla in the inac-
tive chimney sample TVG10 (Fig. 2). However, it showed 
lower abundance in the other three samples, including 

the inactive chimney sample TVG12 (Fig.  2). It is pos-
sible that a much lower pH value in TVG12 may affect 
the growth of Nitrospirae. Additionally, both Nitrospirae 
and Deltaproteobacteria were predicted to be the major 
hydrogen oxidizers and sulfate reducers. Nitrospirae was 
only abundant in TVG10, while Deltaproteobacteria was 
abundant in TVG11 and TVG12, where the environ-
ments were more acidic than TVG10 (Fig. 3). Deltapro-
teobacteria is one of the most common sulfate-reducing 
taxa in some acidic environments (such as acid mine 
drainage) [59, 60], and some acid-tolerant deltaproteo-
bacterial members were cultured from acid mine drain-
age [61–63]. Thus, the relatively low pH value of the 
samples TVG11 and TVG12 seemed to be one of the 
important reasons for the taxonomic shift of hydrogen 
oxidizers, rather than different temperatures between 
active and inactive chimneys (TVG 11 and TVG12).

Inconsistent with previous studies showing the over-
whelming predominance of Epsilonproteobacteria in 
active chimney rocks from Manus Basin and Southern 
Mariana Trough [49, 64], this class only occupied less 
than 2% of total prokaryotes in the active chimney sam-
ple TVG11. It is believed that Epsilonproteobacteria are 
sulfur oxidizers dependent on reduced sulfur from fluids 
in active chimneys [49]. Their low abundance detected in 
our study indicated that the fluids from the active chim-
ney TVG11 might not be rich in reduced sulfur. In addi-
tion, a previous study reported that thermophilic archaea 
(Bathyarchaeota and Euryarchaeota) were dominant in 
hydrothermal sediments from Guaymas Basin, where 
organic carbon was plentiful [51]. But they were less 
abundant in our samples. Since these archaeal groups are 
known for utilizing extracellular organic carbon [7, 65], 
an explanation is that the samples taken from Deyin-1 
hydrothermal field are not rich in organic carbon.

Moreover, methane has been reported to be one of 
the crucial energy sources for the hydrothermal ecosys-
tems in Guaymas Basin, Menez Gwen, and Rainbow vent 
fields, which might be attributed to the sediment rich in 
organic carbon or the fluids with high methane concen-
trations [51, 52]. In the current study, methanotrophic 
pathways were only detected in one MAG with less abun-
dance (Table S3), suggesting a possible low concentration 
of methane in the hydrothermal fluids and a minor role 
of methane metabolisms in the Deyin-1 hydrothermal 
field.

Co-existence of heterotrophic and autotrophic pathways
Regarding microbial carbon metabolism, except for 

Bacteroidetes, high relative abundance of MAGs within 
the other four major taxa (RPKM values of 1.8–8.2) 
had the potential to fix inorganic carbon (Table  S3). 
This result suggested a high proportion of carbon-
fixing microbes in the Deyin-1 hydrothermal field, in 
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agreement with the results of previous studies on other 
hydrothermal sites [49, 50]. Similar to the results of a 
previous study on the Guaymas Basin hydrothermal 
plume [6], genes encoding CAZymes were frequently 
detected in the MAGs, with a high proportion of extra-
cellular CAZymes (Figure S10). For the samples TVG11 
and TVG12, the numbers of genomes encoding extracel-
lular CAZymes were even higher than those containing 
carbon-fixing genes (Fig. 4), suggesting an important role 
of heterotrophic pathways for the hydrothermal ecosys-
tem, especially for active chimneys. Notably, the genes 
of extracellular CAZymes co-occurred with carbon fixa-
tion pathways in many MAGs with contamination < 5% 
(Tables S3 & S4), and their abundance was in accord-
ance with that of carbon fixation genes in diverse taxa 
(Figures S9 & S10), indicating that both carbon fixation 
and extracellular carbohydrate utilization pathways were 
potentially essential for microorganisms inhabiting deep-
sea hydrothermal ecosystems. In these extreme environ-
ments, particularly in active chimney sites, high carbon 
fixation productivity supports large amounts of biomass, 
which could explain the high abundance of genes related 
to heterotrophic metabolisms. In the hydrothermal field, 
sharply fluctuating environments may kill many organ-
isms and produce enormous amounts of organic detri-
tal compounds, enriching heterotrophic microbes and 
even encouraging some chemoautotrophic members to 
utilize surrounding carbohydrates. Thus, extracellular 
carbohydrate utilization pathways should be indispensa-
ble for carbon recycling in deep-sea hydrothermal eco-
systems. Moreover, the co-occurrence of carbon fixation 
and extracellular carbohydrate utilization pathways in 
many MAGs indicates the presence of redundant carbon-
obtaining capabilities for many microbes, which may 
be their survival strategy in the extreme hydrothermal 
environment.

Novel nitrogen‑fixing bacteria
Dissolved dinitrogen gas is one of the largest nitrogen 
reservoirs in the ocean and presents in large amounts in 
hydrothermal fluids [66, 67]. Biological nitrogen fixation 
has been suggested as an important nitrogen source for 
deep-sea hydrothermal ecosystems [68]. Although mul-
tiple methods (including culture-, amplification-, and 
metagenomic-based) have been used to predict the nitro-
gen fixation capabilities of microorganisms in hydrother-
mal ecosystems [67, 69–71], our understanding regarding 
the community structure and metabolism of diazotrophs 
in this environment is limiting.

The observation in the current study was that nitrogen 
fixation represented a widespread and abundant path-
way for multiple taxa across all samples (Fig. 4, Fig. S9 & 
Table S3). Also, phylogenetically diverse nifH sequences 

were detected in the metagenomes (Fig. 5a). Taking into 
consideration the predicted metabolic profiles of these 
MAGs, a wide range of chemicals in hydrothermal envi-
ronments (including carbohydrates, sulfide/sulfur, hydro-
gen) could provide energy for nitrogen fixation. Thus, in 
agreement with the results of a previous study of other 
hydrothermal ecosystems, dinitrogen should be a major 
nitrogen source for the microbial community in different 
types of samples at the Deyin-1 hydrothermal field [72].

According to the previous studies of the nitrogenase 
gene nifH, methanogenic archaea, Firmicutes, Nitros-
pirae, and Proteobacteria were considered the poten-
tial nitrogen fixers in deep-sea hydrothermal vents [67, 
72]. However, in the current study, in addition to those 
typical proteobacterial diazotrophs (Nitrospirae, Delta-, 
and Gammaproteobacteria), abundant nifHDK genes 
were observed in the MAGs of the phyla Spirochaetes 
and Bacteroidetes (class Bacteroidia) from the sample 
TVG12 (Fig. S6, Fig. S9), indicating their nitrogen-fixing 
potential in the inactive chimney. Members of the phy-
lum Spirochaetes are important diazotrophs that have 
only been detected in insect guts and freshwater envi-
ronments [73, 74]. In comparison, diazotrophs within 
Bacteroidia inhabit diverse environments, including the 
seafloor [75, 76], but have not been reported in deep-sea 
hydrothermal ecosystems. This study is the first to report 
the potentially nitrogen-fixing Bacteroidetes and Spiro-
chaetes inhabiting the inactive hydrothermal chimney, 
suggesting that some members within these two phyla 
may play important roles in the nitrogen cycle.

In addition, the nif operon, including the genes nif-
HDK, was present in the MAG SZUA-77, which was one 
of the most abundant MAGs in the inactive chimney 
sample TVG10 (Fig.  3). Phylogenetic analysis of NifH 
sequences showed that the sequences present in SZUA-
77 clustered with the reference Nitrospirae sequences 
within group I (Fig.  5a). The results of comparative 
analyses of gene clusters also indicated that the cluster 
structure of SZUA-77 was highly syntenous with that of 
Nitrospirae BMS3Bbin07 and the nitrogen fixer Lepto-
spirillum ferrooxidans C2-3 [77, 78] (Fig.  5b). Collec-
tively, these findings reveal a great potential of nitrogen 
fixation by SZUA-77. On the other hand, phylogenetic 
analyses of Nitrospirae genomes showed that SZUA-77 
clustered with the MAGs of Candidatus Magnetobacte-
rium (Figure S11a). The percentages of conserved pro-
teins between SZUA-77 and the MAGs of Candidatus 
Magnetobacterium were higher than 50% (50.2–58.4%; 
Figure S11b), which was a proposed genus boundary 
for prokaryotes [79]. Accordingly, the MAG SZUA-77 
should be affiliated with the genus Candidatus Mag-
netobacterium. It is generally known that members of 
this genus are widespread in diverse habitats, including 
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aquatic environments [80], estuaries [81], seafloor [82], 
and hydrothermal fields [83], with unique characteris-
tics of forming bullet-shaped magnetite magnetosomes 
and arranging multiple magnetosome chains [84, 85]. In 
agreement with previous genomic analyses on Candida-
tus Magnetobacterium, potential pathways for carbon 
fixation, sulfate reduction, denitrification, aerobic respi-
ration, and hydrogen oxidation (NiFe hydrogenase group 
3b) were present in SZUA-77 [84] (Fig. 3). Nevertheless, 
no genes related to magnetosome biomineralization 
were found. Instead of utilizing nitrate or nitrite as nitro-
gen source described previously [84], the high similar-
ity of both nifHDK sequences (94.6–99.3%) and operon 
structure suggested the potential diazotrophic ability of 
SZUA-77 within Candidatus Magnetobacterium. Con-
sidering Candidatus Magnetobacterium showed a high 
abundance in the sample TVG10 but was barely found in 
the more acidic sample TVG12, it could be inferred that 
Candidatus Magnetobacterium likely fixes nitrogen in 
the inactive chimney under neutral pH conditions.

Metabolic plasticity and functional redundancy
Metabolic plasticity refers to the potential to switch 
metabolic processes in response to changing environ-
ments [51], which was observed in the major members 
of the microbial community in this study. For example, 
Alpha- and Gammaproteobacteria could couple sulfur 
oxidation with either denitrification or aerobic respira-
tion (Figures S4 & S5). Nitrospirae and Deltaproteobac-
teria could couple hydrogen oxidation with either sulfate 
reduction, denitrification, or aerobic respiration to obtain 
energy (Fig.  3). Furthermore, a large proportion of the 
major taxa were potentially capable of obtaining organic 
carbon by fixing inorganic carbon and utilizing extracel-
lular carbohydrates. In fact, many studies have reported 
the metabolic plasticity of bacterial members in deep-sea 
hydrothermal ecosystems [51, 86, 87], suggesting that this 
might be a common feature for the hydrothermal micro-
organisms. A possible reason is that these additional 
metabolic pathways provide multiple surviving strategies, 
potentially allowing microbial adaptation to fluctuating 
deep-sea hydrothermal habitats.

As for the microbial community in  situ, great distinc-
tions in microbial composition were observed across the 
four samples, even between the two inactivate samples 
(Figure S7), which was similar to observations in other 
hydrothermal ecosystems [88, 89]. Diverse microbial 
communities in deep-sea hydrothermal fields could serve 
as flexible seed banks that allow the communities to sur-
vive in the highly fluctuating environments in the ground 
[90, 91], suggesting that the variation of community com-
position is an adaptation strategy for the community as a 
whole to persist in such extreme environments.

From the perspective of community metabolism, taxo-
nomically distinct microorganisms in different samples 
harbored the same metabolic pathways. For example, 
abundant sulfate-reducing Nitrospirae were present in 
TVG10, while Deltaproteobacteria was the major sulfate 
reducer in TVG11 and TVG12 (Fig. 3). Aggregating the 
MAGs potentially involved in carbon metabolism, nitro-
gen fixation, and energy acquisition led to the observa-
tion that at least three taxa could participate in each step 
(Fig.  6), suggesting a high degree of functional redun-
dancy across the microbial communities in the Deyin-1 
hydrothermal field. Reported in other hydrothermal sys-
tems [92, 93], the functional redundancy of the micro-
bial community is considered to be the key to ensure 
the stability of metabolic processes despite the elimina-
tion of certain taxa by fluctuating environments [51, 94]. 
A recent study found that functional redundancy may 
be an inevitable emergent property as a consequence of 
mainly biotic interactions and environmental and spa-
tial processes [95]. Another theory—“it’s the song not 
the singer” (ITSNTS)—assumes that the biochemical 
functions (“the song”) of the microbial community (“the 
singers”) are more conserved and ecologically relevant 
than the microbial community itself [96]. Specifically, 
the transformation of chemicals and energy within spe-
cific environments can be maintained by taxonomically 
diverse but functionally similar microorganisms. Instead 
of microbial compositions, collective metabolic func-
tions of the microbial community are proposed as gen-
eral characteristics for specific environments. Overall, 
in fluctuating environments like deep-sea hydrothermal 
fields, the metabolic plasticity of microbes, the high bio-
diversity of community compositions, and the functional 
redundancy of microbial communities may be common 
features for maintaining the stability of the metabolic 
network in situ.

Conclusions
The Southern Mid-Atlantic Ridge represents a slow-
spreading ocean ridge on Earth. So far, little is known 
about the deep-sea hydrothermal systems along this 
ridge. Deyin-1 is a newly discovered hydrothermal field 
in the Atlantic Ocean south of 14°S with diverse com-
munities of fauna and microbes described [38–40], 
indicating it is an ideal site to study the microbial diver-
sity and metabolisms of deep-sea hydrothermal sys-
tem in the South Atlantic Ocean. In the current study, 
we first investigated the microbial composition and 
functional potential in this field via MAG construc-
tion, revealing a phylogenetically diverse and variable 
community, with Bacteroidetes, Nitrospirae, Alpha-, 
Delta-, and Gammaproteobacteria as the major taxa. 
In the metabolic aspect, reduced sulfur and hydrogen 
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were the primary energy sources for microbial chem-
osynthesis, and frequent observation of nitrogen fixa-
tion pathways in the major taxa revealed dinitrogen as 
one of the major nitrogen sources. Of note, taxonomi-
cally different bacteria exhibited the same metabolic 
potentials across samples, suggesting a highly variable 
community possibly impacted by the fluctuating envi-
ronments. The co-occurrence of carbon fixation and 
extracellular carbohydrate utilization pathways in most 
MAGs indicated a possible surviving strategy by using 
both heterotrophic and autotrophic pathways, which 

highlights the metabolic plasticity of the microorgan-
isms in  situ. Intriguingly, for the first time, the genus 
Candidatus Magnetobacterium was predicted to be a 
potential nitrogen fixer, and the diazotrophs within the 
phyla Bacteroidetes and Spirochaetes were detected in 
the inactive chimney. Moreover, the metabolic plas-
ticity of microbes, diverse and variable community 
composition, and functional redundancy of microbial 
communities may be an adaption strategy to maintain 
the metabolic network in the geochemically complex 
and fluctuating environmental conditions in deep-sea 
hydrothermal fields.

Fig. 6 Metabolic network and the involved taxa in the hydrothermal ecosystem. The heatmaps show the presence of metabolic genes harbored by 
the taxa in each sample. The brown arrow shows the transfer of energy, and the purple arrow shows the transformation of electrons
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Methods
Sample collection, DNA extraction, and sequencing
As described previously, the Deyin-1 hydrothermal field 
(15.2°S hydrothermal field of the Mid-Atlantic Ridge), 
located between the Cardno and St. Helena Fracture 
zones, was explored for hydrothermal activity during a 
cruise of the R/V Dayangyihao in August 2012 [37, 39] 
(Figure S1). One hydrothermal oxide, one active, and two 
inactive chimney samples were collected by a TV-guided 
grab sampler and stored at −80°C before subsequent 
DNA extraction. The chemical parameters, including 
total C, total N, total H, total S, and the C/N ratio, were 
analyzed using a Vario EL III elemental analyzer (Ele-
mentar, Germany). The pH value was determined in 1:1 
sample/water slurries (Table S1). The pictures, chemical 
parameters, and more detail information of these sam-
ples could be found in the previous study [37].

All of the samples were moved from the container with 
sterile strips, placed on the sterile petri dishes, and rinsed 
with sterile seawater. Then, they were crushed with a 
sterile pestle and mortar, aliquoted to the same quan-
tity, and placed into the DNA extraction tubes. Genomic 
DNA from all samples was extracted using a FastDNA® 
Spin kit for Soil (MP Biomedicals, USA) according to 
a modified extraction protocol [97]. Triplicate DNA 
extracts were pooled for each sample and stored at 
−20°C until use. The extracted DNA was examined by 
1.0% agarose gel electrophoresis. The qualified DNA 
samples were randomly fragmented by sonication. The 
DNA fragments were end polished, A-tailed, and further 
PCR amplified (28 cycles). The PCR products were puri-
fied with AMPure XP system, sheared, and ligated with 
adapter sequences to prepare the DNA libraries. The 
libraries were then sequenced on an Illumina HiSeq 2000 
(USA) PE 150 (paired-end reads of 2 × 150 bp) platform 
by Novogene Corporation (China).

De novo metagenomic assembly and taxonomic analysis
Raw sequencing reads of all samples were dereplicated 
(100% identity over 100% length; dereplicate script from 
https:// github. com/ Geo- omics/ scrip ts) and trimmed 
using Sickle [98], and the remaining reads were assem-
bled de novo using IDBA-UD v1.1.1 with the “–mink 
50, –maxk 92, –steps 8” parameters [99]. To analyze the 
taxonomic composition of the microorganisms in the 
four samples, 16S rRNA genes and ribosomal protein S3 
(rpS3) were chosen as the marker genes. 16S rRNA genes 
were identified from the scaffolds using BLASTn [100] (e 
value cutoff is 1e−10) against the SILVA SSU Database 
v132 [101] and then clustered into OTUs at a similarity 
cutoff of 95% using USEARCH v10.0.240 [102] (sequences 
were sorted by length using “sortbylength”command with 

default parameters and sequences shorter than 700 bp 
were discarded, then remaining sequences were clustered 
using cluster_fast command with -id 0.95). A phyloge-
netic tree of 16S rRNA genes was constructed using the 
representative 16S rRNA gene sequences and their most 
related reference sequences (detail parameters can be 
found in the “Genome binning, taxonomic identification, 
and phylogeny” section). The rpS3 sequences were iden-
tified by BLASTp [100] (e value cutoff is 1e−10) against 
rpS3 sequences retrieved from UniProtKB (https:// www. 
unipr ot. org/ unipr ot/), then the taxonomy was assigned 
by BLASTp (e value cutoff is 1e−10) against the NR data-
base (retrieved on December 2017).

Genome binning, taxonomic identification, and phylogeny
Binning of the assemblies was performed using Meta-
BAT v0.32.4 with twelve sets of parameters [103], and 
the results were then analyzed with Das Tool v1.0 [104] 
(with search engine of blast and score threshold of 0.1) 
to obtain optimized metagenomic assembled genomes 
(MAGs) (command parameters of each set and the 
evaluation of the results are shown in Figure S12). Sub-
sequently, all the MAGs were further decontaminated 
using RefineM v0.0.20 with the default settings [42]. The 
completeness and contamination of the MAGs were cal-
culated using CheckM v1.0.7 [105] with default param-
eters, and only the MAGs with estimated quality ≥ 50 
(defined as completeness—5 × contamination [42]) were 
considered in the following analyses. To analyze the tax-
onomy of the MAGs, multiple results were considered, 
including the taxonomic information from RefineM with 
the Genome Taxonomy Database (GTDB) [106], taxo-
nomic assignments of the 16S rRNA gene sequences in 
the MAGs, the phylogeny of concatenated ribosomal 
proteins, and the phylogeny of the 120 bacterial and 122 
archaeal marker genes (principle of the majority). For 
16S rRNA genes, the sequences were aligned with those 
from their corresponding reference genomes using SINA 
v1.2.11 [107] with default parameters, and columns with 
more than 5% gaps were trimmed using trimAl v1.4 [108, 
109]. For ribosomal protein phylogeny, the sequences 
of sixteen ribosomal proteins (ribosomal proteins L2, 
L3, L4, L5, L6, L14, L15, L16, L18, L22, L24, S3, S8, S10, 
S17, and S19) were extracted from the MAGs [109] and 
aligned with those from their corresponding reference 
genomes using MUSCLE v3.8.31 [110] with default 
parameters, and columns with more than 5% gaps were 
trimmed using trimAl v1.4 [108, 109]. The reference 
genomes for ribosomal protein phylogeny were selected 
from the genomes used by Hug et al. [109]. For the 120 
bacterial and 122 archaeal marker genes, those genes 
of each MAG were extracted and aligned by GTDB-tk 
v0.3.1 [106] following the official pipeline. The aligned 

https://github.com/Geo-omics/scripts
https://www.uniprot.org/uniprot/
https://www.uniprot.org/uniprot/
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sequences were then concatenated for phylogenetic anal-
ysis, and MAGs with less than six ribosomal proteins or 
ten marker genes were discarded. Phylogenetic trees of 
the major bacterial taxa (including Bacteroidetes, Nitro-
spirae, Alpha-, Delta-, and Gammaproteobacteria) were 
individually constructed with 120 bacterial marker genes 
of the MAGs for accurate analyses. To identify the closely 
related MAGs, the pairwise average nucleotide identity 
(ANI) of MAGs was calculated using the get_homologues 
package [111] with the default parameters and those with 
> 70% ANI values were plotted on the phylogenetic trees.

In our study, all of the phylogenetic analyses were per-
formed using RAxML v8.0 [112] on the CIPRES Science 
Gateway [113]. 1000 bootstraps were performed, and the 
evolutionary models used were GTR CAT  (for nucleotide) 
and LG+GAMMA (for amino acid). All of the trees were 
visualized on the iTOL web server [114].

For taxonomic identification of the MAG SZUA-77, 
the percentages of conserved proteins among Nitrospirae 
genomes were calculated with the script from https:// 
github. com/ hoelz er/ pocp [79].

Gene prediction, annotation, and abundance calculations
Genes of the metagenomic assemblies and MAGs were 
identified using Prodigal v2.6.3 with the “-p meta” and 
“-p single” parameters, respectively [115]. Then, they 
were annotated by combining the results of the eggNOG-
mapper v2.0 (with eggNOG v5.0 database) [116] and 
BLASTp searches (e value cutoff is 1e−5) against the NR 
database (retrieved on December 2017). In particular, to 
distinguish between rdsrA and dsrA genes, a phyloge-
netic tree of these amino acid sequences was built with 
the reference sequences from Loy et  al. [117] and pres-
ence of the gene dsrD in the same MAG was marked on 
the tree [118] (Figure S13). The phylogenetic tree of gene 
nifH was built with the reference sequences from Mehta 
et al. [67] and Cao et al. [72]. Both trees were built with 
the methods described in the previous section (“Genome 
binning, taxonomic identification, and phylogeny”). The 
genes encoding hydrogenases were classified into differ-
ent functional groups with the reference sequences from 
Greening et al. [119]. The genes involved in carbohydrate 
degradation were annotated using the dbcan packages 
following the pipeline [120], and the subcellular location 
of the encoded proteins was predicted using PSORTb 
v3.0.6 following its official pipeline [121].

To calculate the abundance of each scaffold and gene 
assignment, raw sequencing reads were mapped to the 
nucleotide sequences of assembled scaffolds using BWA 
v0.7.5 [122] with the default parameters. The num-
bers of reads that mapped on the scaffolds and the gene 
sequences were obtained from the BAM file, and the rela-
tive abundances of sequences were calculated with the 

reads per kilobase per million mapped reads (RPKM) 
method, which is number of mapped reads/(sequence 
length × metagenomic size) [43]. The abundances of the 
metabolisms were calculated with the summation of the 
genes listed in Table  S3. The abundance of 16S rRNA 
gene and ribosomal protein S3 was calculated with the 
relative abundance of each sequence. To further exam-
ine the coverage of the data, rarefaction analysis was 
performed with an OTU table of 16S rRNA gene cov-
erage values by using “multiple_rarefactions.py” script 
in QIIME package [123]. The maximum number of 
sequences was set to 10,000, and the iterations were set 
to 10 for each step. The metric multidimensional scaling 
(MDS) analysis was performed and visualized by plotting 
the Bray-Curtis distance among the results of taxonomic 
abundance in our study and reference active and inactive 
hydrothermal data (Table S5) using vegan package [124].
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of each gene harbored by each taxon is normalized by RPKM (mapped 
reads per kilobase scaffolds per million sequenced reads) method. 
Table S5 Taxonomic details of this study and reference active and inactive 
samples that were used in the Figure 2 and S7b. Table S6 The accession 
ID and taxonomic information of the NifH sequences used in Figure 5a. 
Supplementary Data 1 Phylogenetic tree of bacterial MAGs based on 
120 bacterial marker genes in newick format. The values depicted on the 
branches are bootstrap values. Supplementary Data 2 Phylogenetic tree 
of archaeal MAGs based on 122 archaeal marker genes in newick format. 
The values depicted on the branches are bootstrap values. Supplementary 
Data 3 Phylogenetic tree of 16S rRNA genes in newick format. The values 
depicted on the branches are bootstrap values. Supplementary Data 4 
Phylogenetic tree of MAGs based on 16 ribosomal protein sequences in 
newick format. The values depicted on the branches are bootstrap values.

Additional file 2: Fig. S1 Bathymetric map of the southern Mid-Atlantic 
Ocean and the location of the Deyin-1 hydrothermal field. Fig. S2 Phy-
logenetic tree and relative abundance of 16S rRNA genes in the current 
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study. The maximum likelihood phylogenetic tree was constructed based 
on 16S rRNA gene sequences from the assembled scaffolds. The scale 
bar represents 0.1 nucleotide substitutions per sequence position. The 
bar plots are based on the relative abundance of each sequence, and 
the color of the bars represents the samples that each sequence was 
obtained from. The full phylogenetic tree is available in Supplementary 
Data 3. Fig. S3 Ribosomal protein tree of the MAGs in the current study. 
The maximum likelihood phylogenetic tree was constructed based on 
16 ribosomal protein sequences. The scale bar represents 0.1 amino acid 
substitutions per sequence position. The colors represent the taxonomy 
of the MAG. The full phylogenetic tree is available in Supplementary Data 
4. Fig. S4 Phylogenetic tree, relative abundance, and functional potentials 
of Alphaproteobacteria MAGs. The maximum likelihood phylogenetic tree 
was constructed based on 16 concatenated ribosomal protein sequences. 
The scale bar represents 0.1 amino acid substitutions per sequence 
position. RPKM value is the relative abundance of each MAG, calculated 
by number of mapped reads / (sequence length × metagenomic size). 
Fig. S5 Phylogenetic tree, relative abundance, and functional potentials of 
Gammaproteobacteria MAGs. The maximum likelihood phylogenetic tree 
was constructed based on 16 concatenated ribosomal protein sequences. 
The scale bar represents 0.1 amino acid substitutions per sequence 
position. RPKM value is the relative abundance of each MAG, calculated 
by number of mapped reads / (sequence length × metagenomic size). 
Fig. S6 Phylogenetic tree, relative abundance, and functional potentials 
of Bacteroidetes MAGs. The maximum likelihood phylogenetic tree was 
constructed based on 16 concatenated ribosomal protein sequences. The 
scale bar represents 0.1 amino acid substitutions per sequence position. 
RPKM value is the relative abundance of each MAG, calculated by number 
of mapped reads / (sequence length × metagenomic size). Fig. S7 Venn 
diagram of OTUs clustered with 16S rRNA gene sequences in this study 
(a) and MDS analysis of the taxonomic compositions with reference 
active and inactive chimney data (b). The taxonomic details of reference 
samples were available in Table S5. Fig. S8 Rarefaction curves based on 
the 16S rRNA gene coverages in all samples. (a) Observed OTU number. 
(b) Chao1 index. Fig. S9 Relative abundance of functional genes encoded 
by the taxa in each sample. The details of gene abundance are available 
in Table S3. Fig. S10 Relative abundance of carbohydrate-active enzymes 
(CAZymes) encoded by the taxa in each sample. The purple triangle indi-
cates CAZymes with a potential secretion signal. The details of CAZymes 
abundance are available in Table S4. Fig. S11 Phylogenetic tree based on 
120 bacterial marker genes (a) and the percentages of conserved proteins 
(b) with the reference Nitrospirae genomes and the MAG SZUA-77. Fig. 
S12 Command parameters of twelve binning methods using MetaBAT (a) 
and the evaluation of each result comparing to the final result optimized 
by using DAS_Tool. Fig. S13 Phylogenetic tree of dsrA and rdsrA amino acid 
sequences from the MAGs. The scale bar of the phylogenetic trees repre-
sents 0.1 amino acid substitutions per sequence position. The bar plots are 
based on the average abundance of the sequences. The stars represent 
the existence of dsrD gene in the same MAG.
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