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Abstract

Background: The interconnectivities of built and natural environments can serve as conduits for the proliferation and
dissemination of antibiotic resistance genes (ARGs). Several studies have compared the broad spectrum of ARGs (i.e.,
“resistomes”) in various environmental compartments, but there is a need to identify unique ARG occurrence patterns
(i.e., “discriminatory ARGs”), characteristic of each environment. Such an approach will help to identify factors
influencing ARG proliferation, facilitate development of relative comparisons of the ARGs distinguishing various
environments, and help pave the way towards ranking environments based on their likelihood of contributing to the
spread of clinically relevant antibiotic resistance. Here we formulate and demonstrate an approach using an extremely
randomized tree (ERT) algorithm combined with a Bayesian optimization technique to capture ARG variability in
environmental samples and identify the discriminatory ARGs. The potential of ERT for identifying discriminatory ARGs
was first evaluated using in silico metagenomic datasets (simulated metagenomic Illumina sequencing data) with
known variability. The application of ERT was then demonstrated through analyses using publicly available and in-
house metagenomic datasets associated with (1) different aquatic habitats (e.g., river, wastewater influent, hospital
effluent, and dairy farm effluent) to compare resistomes between distinct environments and (2) different river samples
(i.e., Amazon, Kalamas, and Cam Rivers) to compare resistome characteristics of similar environments.

Results: The approach was found to readily identify discriminatory ARGs in the in silico datasets. Also, it was not found
to be biased towards ARGs with high relative abundance, which is a common limitation of feature projection methods,
and instead only captured those ARGs that elicited significant profiles. Analyses of publicly available metagenomic
datasets further demonstrated that the ERT approach can effectively differentiate real-world environmental samples
and identify discriminatory ARGs based on pre-defined categorizing schemes.

Conclusions: Here a new methodology was formulated to characterize and compare variances in ARG profiles between
metagenomic data sets derived from similar/dissimilar environments. Specifically, identification of discriminatory ARGs
among samples representing various environments can be identified based on factors of interest. The methodology
could prove to be a particularly useful tool for ARG surveillance and the assessment of the effectiveness of strategies for
mitigating the spread of antibiotic resistance. The python package is hosted in the Git repository: https://github.com/
gaarangoa/ExtrARG
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Background
As recognized by the World Health Organization (WHO)
and other national and international bodies, antibiotic
resistance poses a serious threat to public health and is a
major impediment to the application of antibiotics for
effective infectious disease treatment [1, 2]. Substantial
effort has been directed towards understanding the factors
that contribute to the spread of resistance and the means
to control it. While antibiotic resistance has likely existed
since bacteria and their competitors first evolved, the
development, mass production, and widespread use of
antibiotics in humans and livestock is understood to have
sped up evolution of antibiotic resistance, leading to new
types, higher abundances, and enhanced horizontal trans-
fer of antibiotic resistance genes (ARGs) among microbial
populations. Thus, it is critical to identify how human
activities and interventions influence the mechanisms by
which resistance evolves and spreads and alters occur-
rence relative to the “natural” background condition [3].
Notably, selective pressures exerted by antibiotic residues
and other co-selecting factors, such as metals and surfac-
tants, can act to sustain and exacerbate the selection and
spread of ARGs [4, 5].
Of greatest concern is the carriage of ARGs by clinical

pathogens, which severely endangers the effective use of
antibiotics as human and veterinary medicines [6, 7].
Pathogenic bacteria have been documented to be cap-
able of obtaining ARGs from non-pathogenic bacteria
[8]. In particular, soil and other natural environments
are known to contain a rich diversity of microorganisms
and have been described as a reservoir and source of
ARGs [9, 10]. Under favorable conditions, these ARGs
can be transferred to pathogenic bacteria via horizontal
gene transfer, thus extending resistance to new bacteria
[11]. Such processes are extremely difficult, if not impos-
sible, to monitor in real time, and thus, there is a need
to develop tools to systematically and objectively assess
how anthropogenic impacts, such as inputs of resistant
bacteria, ARGs, and selective agents, collectively shape
the “resistomes” (i.e., the full complement of ARGs in a
system [12]) of affected environments.
Several studies have identified aquatic environments as

key conduits of ARGs, where anthropogenic inputs
interact with resident microbes, with a feedback loop
returning back to human exposure via affected drinking
water, recreational water, food, and aerosols [13, 14].
High ARG loadings in wastewater discharges have been
found to exert a strong influence on aquatic environ-
ments, such as rivers and surface waters, and can aid in
augmenting the ARG pool [15, 16]. In particular, exten-
sive use of antibiotics in clinical and agricultural settings
has established hospital wastewater and farm wastewater
effluents as potential “hot spots” for the evolution and
spread of antibiotic resistance [17–19]. ARG profiles and

patterns in surface waters and river water, which are
often treated to use for drinking purposes, are pro-
foundly influenced by agricultural and wastewater inputs
[20–24]. Assessing the human health risk represented by
the ARG content of aquatic environments remains a
crucial endeavor. Wastewater treatment plants (WWTPs)
serve as a critical node for either mitigation or dissemin-
ation of ARGs. Wastewater from various sources may
contain antibiotics and other bacterial stressors at varying
concentrations depending on the local antibiotic con-
sumption/usage pattern, which could lead to different
microbial communities, ARG profiles, and ARG loadings
[25]. Wastewater influents and sludge discharges are often
found to be rich in ARGs and other co-selecting agents
[26, 27]. Hence, there has been increased attention placed
on the characterization of WWTP influents (i.e., sewage)
and effluents in the context of antibiotic resistance.
Various methods have been applied towards environ-

mental bacterial resistance surveillance, but there re-
mains a lack of consensus on a standardized approach.
Molecular methods are often favored due to a lack of
representation of the full resistome by culture-based
approaches. In particular, quantitative polymerase chain
reaction (qPCR) has been widely used to profile and
quantify a wide array of ARGs in environmental samples
[28, 29]. However, qPCR requires a priori selection of
targets and thus may overlook the key ARGs within a
given environment [30]. Over the past decade, shotgun
metagenomic sequencing has emerged as a powerful tool
that can reveal the broad spectrum of ARGs present in
clinical and environmental samples [31, 32]. Recent
studies have used metagenomics to characterize and
compare ARG profiles in different urban water systems
and natural water bodies [33] and between different
influent and effluent WWTP samples [34, 35]. However,
analysis of metagenomic data is challenging, and to date,
there are no standardized means for assessing and com-
paring resistome characteristic of a given sample or en-
vironment. Most commonly, metagenomic analysis has
primarily employed feature projection methods, such as
principal component analysis (PCA), principal coordin-
ate analysis (PCoA), and non-metric multi-dimensional
scaling (NMDS) [36]. A major limitation of these ana-
lyses is that they only provide measures of similarity or
dissimilarity between samples, rather than identifying
the actual ARGs that drive the observed differences. Due
to the costs involved, metagenomic data sets are also
often limited [37], which can further complicate analysis
and decrease confidence in observed differences. In par-
ticular, the highly correlated nature of the variables in
genomic data renders the independent assumptions
required by many statistical models invalid. Statistical
test-based tools such as LefSe [38] or DESeq [39] are
readily used for identifying differentially abundant
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features, but come with their own limitations. Some of
these methods often assume an underlying distribution
of the data that may not be accurate for metagenomic
data [40]. Machine learning techniques are emerging as
a rapid and powerful way to capture such specific pat-
terns and observations. As currently applied, discrimin-
atory features are identified as those found to be
relevant in building the corresponding machine learning
model. However, this approach is empirical and the re-
quirement of a user-provided threshold has a potential
to introduce bias [41]. The prevalent automatized
methods to select discriminant features work by recur-
sively selecting the feature set and estimating model ac-
curacy also known as wrapper methods. Unfortunately,
such methods can be impractically slow when dealing
with large and sparse datasets [42], such as those charac-
teristics of metagenomic data. Thus, there is a need for
analytical approaches that can appropriately account for
such limitations and biases, that facilitate identification
of key ARGs characteristic of a given sample or environ-
ment, and that identify the corresponding dissimilarities
relative to other samples.
Ensemble learning methods have recently been intro-

duced as a means of managing complex multi-dimen-
sional data sets, such as those derived from metagenomic
sequencing. In particular, the extremely randomized tree
(ERT) algorithm, enabled by the emerging field of ma-
chine learning, is growing in popularity [43]. ERT uses a
similar approach to random forests (RF) [44] to build an
ensemble of trees, but with two major differences: (1) in-
stead of using bagging features, it employs full datasets to
grow and learn the trees, and (2) the node split is picked
randomly, as compared to RF, where best splits are chosen
within the random subset and are sampled. The ERT algo-
rithm is especially efficient in handling correlations and
interactions among variables and provides effective data
inference. ERT algorithms can also serve to rank features
by variable importance measures and can improve differ-
entiation of classes based on the feature variables. This
property of ERT algorithms holds particular promise for
identifying discriminatory ARGs that could be used to
characterize the differences among samples according to
their groups. However, like other machine learning
methods, ERT requires the optimization of parameters to
improve its performance. The selection of such parameter
values is not straightforward and is dependent on the data
that is being processed. A Bayesian-based optimization
strategy [45, 46] could potentially overcome this challenge
by providing a means to tune the parameters of the ERT
to maximize discriminatory ARG identification.
The objective of this study was to formulate an ERT

methodology for identifying discriminatory ARGs among
different environmental compartments based on their
corresponding shotgun metagenomic sequencing data.

The potential of ERT for identifying discriminatory
ARGs was first evaluated using in silico metagenomic
datasets (simulated metagenomic Illumina sequencing
data) with known variability. The application of ERT
was then demonstrated through analyses using publicly
available metagenomic datasets associated with (1)
different aquatic habitats (e.g., river, wastewater influent,
hospital effluent, and dairy farm effluent) to compare
resistomes among distinct environments and (2) differ-
ent river samples (i.e., Amazon, Kalamas, and Cam
Rivers) to compare resistome characteristics of similar
environments. Cluster analysis was done by estimating
silhouette coefficients and Bray-Curtis similarities to
quantitatively validate the performance of the ERT algo-
rithm. The overall ERT approach holds promise for
improving ARG surveillance in the environment and can
aid in identifying sources and mechanisms of the spread
of antibiotic resistance and assessing strategies for
mitigation.

Implementation
The extremely randomized tree algorithm
The extremely randomized tree (ERT) algorithm is a
tree-based ensemble method that is traditionally used
for supervised classification and regression problems.
The ensemble method is a process by which the out-
comes from many decision trees are averaged to obtain
a final output [47, 48]. ERT is used to deduce useful in-
formation from a labeled set of data. The labeled dataset
contains “features” (also called attributes) and “classes”
(or groups). Simply put, attributes are a set of parame-
ters that together describe an object. For example, shape,
taste, and color are all attributes that could describe a
fruit. Accordingly, such attributes could be applied
towards categorizing the fruits into different groups (e.g.,
apples and oranges). In the context of the present study,
the attributes applied were relative abundances of the
resistance genes (e.g., 16S rRNA gene normalized ARG
abundances) and the groups are user-defined labels (e.g.,
sampling location, environments). The objective of the
ERT algorithm was to map the resistance genes against
the group labels and identify ARGs associated with
different groups.
The ERT algorithm was constructed using an ensem-

ble of Classification and Regression Trees (CART) [49].
These trees are grown by splitting the input dataset into
subsets using simple decision rules deduced from the at-
tribute information. The decision based on the ensemble
reduces the variance of the model, without increasing
bias, yielding more accurate classification. This tech-
nique largely overcomes overfitting problems associated
with single classification tree methods. A key difference
between ERT and other tree-based ensemble approaches
is that it splits nodes using randomly generated cut-
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points for each feature. The randomness in choosing
cut-point thresholds of the attributes reduces variance.
The introduction of randomness in selecting the cut-
point threshold and attributes reduces the variance
effectively when combined with ensemble averaging. An-
other difference relative to other tree-based approaches
is that ERT uses the full dataset to build the trees,
whereas other methods adopt a bootstrapping approach
to sample the dataset. In the bootstrapping method, only
a portion of the data set is used to make the trees and
this could lead to high bias in the resulting classification.
Using the entire dataset helps to further reduce bias.
Ultimately, the ERT algorithm ranks the attributes

based on their Gini importance to identify discrimin-
atory ARGs. The Gini importance score indicates those
attributes that are most efficient at effectively classifying
the groups that contribute the most towards building
strong decision trees [50, 51].

Data preprocessing and labeling
After retrieving ARG abundances computed from Meta-
Storm [52], the samples were grouped and labeled. The
labels were based on the desired classification scheme.
Additional file 1: Figure S1 illustrates the labeling of dif-
ferent metagenomes based on user-defined group labels.

In silico datasets
Six artificial metagenomic datasets (of 1,000,000 reads)
were generated using InsilicoSeq—a Python software
package [53]. InSilicoSeq is a sequencing simulator that
simulates metagenomic Illumina sequencing data from
given genomes. We used 21 bacterial genomes and the
default pre-computed error model to produce a typical
metagenomic dataset for the Illumina Hiseq platform
(for more information, see Additional file 2). These data-
sets were used to benchmark our methodology. The
datasets were randomly divided into two groups (i.e., “A”
and “B”), with each group containing three samples. To
synthesize known differences among these groups, the
reads of three randomly selected ARGs (sul1, tet(W),
ermB) were added to the simulated datasets in varying
and known proportions. sul1 was in high abundance in
group “A” samples when compared with group B. tet(W)
was in high abundance in group B samples in compari-
son with group A. ermB was added in high abundance,
but with little variation among the groups.

Labeling for analysis 1
Metagenomic data sets extracted from public databases
were selected to represent a cross section of a broad
range of aquatic environments, including river, dairy
farm, WWTP influent, and hospital effluents (Tables 1
and 2). To differentiate these samples, dairy farm efflu-
ents were labeled as “farm”, hospital effluents were

labeled as “hospital,” and wastewater influent samples
were labeled as “influents.” The Kalamas River and Cam
River samples were labeled as “river,” while Amazon
River plume samples were maintained in a separate
group as “Amazon River plume” due to the expected
minimal human intervention in the Amazonian region.
The idea underlying this demarcation was to broadly
analyze differences among the environments that are
closely impacted by human activities from those envi-
ronments that are expected to be relatively pristine.

Labeling for analysis 2
Deeper analysis of the river and similar environments
was achieved by grouping samples by their respective
rivers in order to identify the corresponding discrimin-
atory ARGs and to compare resistome characteristic of
riverine environments. The samples were labeled based
on their respective rivers: “Amazon,” “Cam,” and
“Kalamas.”

Step-wise execution of ERT
The ExtraTreesClassifier
The ERT algorithm was applied to the labeled datasets
using Python (3.2.5). The scikit-learn pre-built classifier,
ExtraTreesClassifier, was used to build the ensemble and
to calculate Gini importance scores. The number of esti-
mators was set at a default value of 1000. The algorithm
subsequently provides a list of attributes (i.e., ARGs) best
suited for discriminating groups.

Identification of discriminatory ARGs using the
ExtraTreesClassifier
The input dataset consisted of an abundance matrix
where the “rows” represent the ARG abundances and
the “columns” represent the samples. The system takes
this matrix and the group labels as the input and returns
the list of ARGs with their individual Gini importance
(Additional file 1: Figure S2).
To improve the accuracy of the discriminatory ARG

identification, the parameters of the ERT were tuned by
using the Bayesian optimization approach [45, 59]. This
method enables automatic identification of the parame-
ters of the ERT relative to the input data. Specifically,
the number of estimators and the importance cutoff
used to determine the most relevant ARGs were
optimized. By default, the algorithm runs through 50
iterations to identify the parameters that maximize seg-
regation between the groups. The number of estimators
was observed to range from 800 to 1000, and the Gini
importance ranged from 10−5 to 10−2 based on the
observation of the samples analyzed in this study. Dur-
ing each iteration, ARGs are potentially discarded due to
their lack of importance. For instance, if the importance
cutoff was set to 10−3, all ARGs below that value were
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discarded. The remaining ARGs were then fed into the
ERT, and the predicted labels were compared to the ac-
tual labels using a customized loss function. This scoring
function consists of the Rand index score, which com-
putes the similarity among clusters adjusted to random
chance [60]. Thus, values close to 0 are considered to be
from random labels, whereas values close to 1 are con-
sidered to be identical to the true group labels [61, 62].

In the end, this step yields the optimum number of dis-
criminatory ARGs for the specific analysis of interest.
Figure 1 provides a schematic of the methodology.

Clustering
Group-average hierarchical clustering was obtained using
PRIMER-E (v6). Cluster quality was evaluated by estimat-
ing silhouette coefficients and Bray-Curtis similarities to

Table 1 Metadata of different environmental samples obtained from public databases

Sample Biomes Sampling
location/
region

Description Database Accession
number

Total
number
of reads

DNA extraction
kit/method

Sequencing
platform

Reference

ARP 1
ARP 2
ARP 3

Amazon
River
plume

Western
tropical
North
Atlantic
Ocean

Samples were collected at
Amazon River plume

NCBI_
SRA

SRR1185414
SRR1186214
SRR1199271

1,724,
868
1,304,
682
1,277,
913

Method
proposed by
[54]

Illumina
Genome
Analyzer IIx

[55, 56]

KR 1
KR 2
KR 3

Kalamas
River

Epirus
region of
Greece

Samples were collected from
the Kalamas River

NCBI_
SRA

SRR3098756
SRR3098759
SRR3098769

10,792,
071
7,698,
589
5,351,
255

Mo Bio Power
Soil Kit (Mo Bio
Inc. Carlsbad, CA,
USA)

Illumina
HiSeq 2500

[57]

DF 1
DF 2
DF 3

Dairy
farm
effluent

Cambridge,
UK

Samples were collected from the
effluent lagoon of a dairy farm

EMBL-EBI ERR1193297
ERR1193298
ERR1193301

23,154,
788
82,819,
396
26,421,
627

Meta-G-Nome
DNA Isolation
Kit, Epicentre)

Illumina
HiSeq 2000

[19]

HE 1
HE 2
HE 3

Hospital
effluent

Cambridge,
UK

Samples were collected from the
combined wastewater effluents of
the main wards of university
hospital

EMBL-EBI ERR1191817
ERR1191818
ERR1191819

30,295,
299
22,689,
323
50,303,
545

CR 1
CR 2
CR 3

Cam
River

Cambridge,
UK

Samples were collected within the
River Cam catchment

EMBL-EBI ERR1193292
ERR1193293
ERR1193294

17,899,
008
68,902,
092
43,078,
304

HE 4 Hospital
effluent

Singapore Sample was collected from
general ward

NCBI-
SRA

SRR5997540 2,257,
389

PowerWater
DNA Isolation Kit
(Mo Bio Lab, Inc,
CA)

Illumina
HiSeq 2500

[58]

HE 5
HE 6

Hospital
effluent

Singapore Samples were collected from
clinical isolation ward

NCBI-
SRA

SRR5997541
SRR5997548

1,927,
227
2,090,
859

Table 2: Sampling information: WWTP influent samples

Sample ID Sample type Sampling country Coordinates Location Sampling date Total reads Annotated read

IN 1 Influent India 13.036238, 80.193738 Chennai 10 Mar. 2016 13,045,504 15,421

IN 2 Influent USA 37.201889, − 76.447378 Christiansburg 19 Jan. 2017 13,460,770 11,776

IN 3 Influent Philippines 14.592113, 121.058931 Mandalayong City 29 Nov. 2016 14,332,977 20,267

IN 4 Influent Switzerland 47.405586, 8.597585 Zurich 18 May 2016 15,314,202 18,311

IN 5 Influent Sweden 57.704713, 12.926666 Boras 8 Jun. 2016 11,801,763 10,149

IN 6 Influent Hong Kong 22.406709, 114.213706 Hong Kong 14 Jul. 2016 15,763,560 14,979
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quantitatively validate the performance of the ERT algo-
rithm [63]. The silhouette coefficient shows how well a
sample is clustered to its correct cluster label compared to
other clusters. The score ranges from − 1 to 1, where
higher scores indicate better cluster assignment. Further,
the dataset containing only the discriminatory ARGs was
executed using a R code to generate a heatmap projecting
the relative gene abundances. The library used for heat-
map construction was Complex Heatmap [64].

Results
In silico metagenomic dataset
The potential and the limitations of ERT were first
examined using in silico metagenomic datasets, within
which three ARGs (sul1, tet(W), and ermB) with known
abundances were embedded. Based on intentional ma-
nipulation of their relative abundances among the hypo-
thetical groups generated in silico, ERT was expected to
identify sul1 and tet(W) as discriminatory, but ermB as
non-discriminatory. It was observed that ERT was

correctly able to identify the discriminatory ARGs
among the two labeled groups, i.e., “A” and “B,” includ-
ing the ARGs which were manipulated with known vari-
ation among the groups. ERT ranked both sul1 and
tet(W) among the top 10 discriminatory ARGs based on
their Gini importance, whereas ermB received a low Gini
importance score (Fig. 2a). Cluster quality was evaluated
using average silhouette score, which improved from
0.08 to 0.65 for the groups (Fig. 2b, c). To provide
insight into the profiles of discriminatory ARGs, we
compared the top 10 ARGs ranked by ERT as being
discriminatory along with the profile of ermB that was
added at high abundance (Additional file 1: Figure S3). It
was observed that the proposed approach was not biased
towards the ARGs with high relative abundance. Rather,
ERT captured the ARGs with significant variations in
their profile (p < 0.05). This capability helps overcome
the high background occurrence of common housekeep-
ing genes and provides a better resolution into ARG
variations.

Fig. 1 Computational pipeline for the selection of discriminatory ARGs
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Performance
The present ERT with Bayesian optimization (ERT_
Bayesian) was compared with existing techniques that
are often used for feature selection. The optimal number
of features was extracted using different techniques.
Firstly, to illustrate the need for feature selection, we

compared the full dataset and most abundant ARGs with
the discriminatory ARGs (features) obtained from ERT_
Bayesian. Secondly, to elucidate the need for optimization,
ERT_Bayesian was compared with the empirical method.
The SelectFromModel package from Scikit-learn was
used, which is an empirical feature selection method and
requires a threshold value to select features. Features are
considered important if the corresponding feature import-
ance value is greater than the provided threshold. We
used two generic metrics that are the default (mean) and
the median-based threshold for this comparison. Thirdly,

we compared the RF + Bayesian optimization (RF_Bayes-
ian) with ERT_Bayesian to illustrate the performance of
two classifiers. Lastly, Bayesian strategy was compared
with a popular wrapper method, i.e., recursive feature
elimination (RFE) method [65]. Both the optimization
strategies used ERT as the estimator. RFE was imple-
mented using RFECV package from Scikit-learn. All
comparisons were done for both simulated and real meta-
genomic datasets (Fig. 3). Silhouette scores estimated
using the discriminatory features were compared.
It was observed that the best performance was obtained

by ERT + Bayes and ERT + RFE. Such a result is expected
as both the methods were implemented using the same
estimator (i.e., ERT) and aim for maximum model per-
formance. However, RFE was very slow in comparison
with Bayesian, making a Bayesian optimization faster and
overall a better choice. When compared with RF, ERT

Fig. 2 a (Left) Gini importance of the identified top 10 discriminatory ARGs. (Right) Gini importance of the ARGs (sul1, tet(W), ermB) added in the
known variations to the in silico datasets (simulated metagenomic Illumina sequencing data generated using InSilicoSeq). b Silhouette plot for in
silico samples using all the annotated ARGs. c Silhouette plot for in silico samples using the discriminatory ARGs
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performed well with all of the datasets. Furthermore,
ERT_Bayesian clearly outperformed the empirical tech-
niques in selecting optimal features. Moreover, the num-
ber of discriminatory ARGs obtained from other methods
was very high, which is suggestive that they are not
particularly selective. This defeats the purpose of identify-
ing relevant features from a large dataset such as a
metagenomic data, and it does not result in the downscal-
ing of the number of features. With ERT_Bayesian, the
optimization step helps downscale the problem and only
yields the most discriminatory features. Moreover, the
ERT_Bayesian process is fully automated with very little
user input. The comparison between abundant and ERT_
Bayesian is consistent with the assumption that dominant
features are not necessarily the discriminatory features.

Identification of discriminatory ARGs based upon user-
defined labels
Analysis 1: Comparison across resistomes (samples from
different aquatic environments)
The first set of metagenomic data analyses served to assess
the performance of the established methodology and to
validate that the algorithm is effective at distinguishing
resistomes representative of a diverse array of environ-
ments by identifying discriminatory ARGs. The ERT
algorithm was used to generate a list of discriminatory
ARGs that effectively classified the resistome characteristic
of each environment. The optimal number of discrimin-
atory ARGs, i.e., 36, was selected based on the highest
Rand index score (0.87) obtained from the Bayesian
optimization. Similarity/dissimilarity analysis using hier-
archical clustering (Fig. 4b) and NMDS (Additional file 1:
Figure S4) shows that these discriminatory ARGs were

able to accurately cluster the samples according to their
respective groups. The cluster quality was validated by
estimating the sample silhouette coefficient for each label.
The analysis showed that the score for each cluster label
increased when only the discriminatory ARGs were used
to cluster the samples (Fig. 4c, d). The average silhouette
score improved from 0.2 to 0.36, thus indicating that the
methodology successfully improved the identification of
discriminatory ARGs. As observed in Fig. 4b, three major
clusters resulted: hospital effluents, Amazon River plume
samples, and farm effluent/river samples/WWTP influ-
ents. A heatmap of the relative abundances of the top 25
discriminatory ARGs categorized according to the corre-
sponding antibiotic classes in rows and environmental
samples in columns provided insight into the occurrence
patterns of individual ARGs (Fig. 4a). For example, glyco-
peptide ARGs had relatively lower abundances in the
hospital sewages tested. By contrast, ARGs conferring
aminoglycoside (AAC(6’)-Ib, APH(3”)-IB, AAC(3)-IIC,
APH(3)-IIA, macrolide-lincosamide-streptogramin (MLS;
msrE), and multidrug resistance (PmrC)) were abundant
across all the hospital sewages. The identification of a few
specific ARGs in the hospital sewages provides evidence
that these could be associated with the use of certain
specific drugs in the hospitals [66]. Moreover, literature
review suggests that the majority of the aminoglycoside
resistance genes that were identified here tend to be
present within mobile genetic elements (MGEs), such as
plasmids, transposons, integrons, and integrative conjuga-
tive elements [67], as is the MLS ARG msrE [68]. These
observations highlight the potential mobility associated
with resistomes that are discriminatory or otherwise of
interest.

Fig. 3 Comparison of silhouette scores estimated using discriminatory features (ARGs) obtained using different classifiers and feature selection methods
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Another observation worth noting was the abundance
of bacA, often characterized as a housekeeping gene, but
also known to confer low-level resistance towards bacitra-
cin in some bacterial genera [69, 70]. This gene was dom-
inant in wastewater influents and hospital sewages, which
is not surprising, given that bacA is highly characteristic
of the human gut [71] and human waste is a major
contributor to these samples. The same was observed with
respect to tetracycline ARGs (tetQ, tetX, tet32) and the
sulfonamide ARG sul1 which were also characteristic of
both hospital and wastewater influent samples. tetX is a
flavin-dependent monooxygenase that works by inactivat-
ing antibiotics through enzymatic action and is known to
confer resistance to all known tetracyclines, especially the
broad-spectrum antibiotic tigecycline [72]. Hence, tetX is
an important candidate for further investigation in terms
of its source and fate. On the other hand, tetQ and tet32
confer resistance primarily as ribosomal protection pro-
teins (RPPs), which are often associated with MGEs such
as plasmids and transposons [73]. sul1 is also of prime
importance, owing to its association with the resistance
genes of class 1 integrons. The rifamycin resistance gene,
arr-1, a chromosome-encoded ribosyltransferase was only

detected in river samples. The aminoglycoside (AAC(6’)-
Iad) ARG was specifically detected only in farm effluent
samples, suggesting that there is a farm-specific character-
istic associated with increased loading of this gene type.
Notably, these ARGs were not found in the Amazon River
plume samples. This is as expected if anthropogenic fac-
tors are the main drivers of the observed ARG occurrence
patterns, where the Amazonian datasets were selected
specifically to represent a low human impact aquatic en-
vironment. It was further observed that the aminoglyco-
side resistance genes (APH(3”)-Ib and AAC(6’)-Ib) were
found in Cam River, but not in Kalamas River samples.
These ARGs were also detected in HE 1, HE 2, HE 3, and
farm samples. It is important to note that these metage-
nomic data sets were derived from the same study con-
ducted in Cambridge, UK [19]. It is possible that these
different samples might be influenced by each other or by
the same site-specific variable resulting in the abundance
of specific ARGs in these systems.

Analysis 2: Comparison within resistomes (river samples)
In analysis 2, the established ERT methodology was dem-
onstrated for the focused characterization of samples that

Fig. 4 a Heatmap and b hierarchical clustering of different aquatic environment samples based on the relative abundance of discriminatory ARGs.
c Silhouette plot for environmental samples using all the annotated ARGs. d Silhouette plot for environmental samples using the discriminatory
ARGs. (Legend: ARP: Amazon River Plume, DF: Dairy Farm Effluent, HE: Hospital Effluent, KR: Kalamas River, CR: Cam River, IN: Influent)
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are similar in nature. Forty-five discriminatory ARGs were
identified based on the Gini importance and the Rand
index score (= 0.72).
Figure 5b represents the clustering of river resistomes

using the discriminatory genes selected using the ERT
algorithm. This is supported by the NMDS-based simi-
larity analysis, which indicated increased similarity and
improved clustering among samples using discrimin-
atory ARGs (Additional file 1: Figure S5). The mean
silhouette coefficient for this analysis increased from
0.09 to 0.45 (Fig. 5c, d), which is consistent with the
visual interpretation of the NMDS plot. Out of 45, the
top 25 discriminatory ARGs associated with 10 antibiotic
classes were visualized using a heatmap (Fig. 5a). Not-
ably, the Amazon River plume was the most distinct
when compared with the Kalamas and Cam Rivers. Not-
ably, 23 of the 25 discriminatory ARGs were not

detected in Amazon samples, but were present in the
Kalamas and Cam samples. These differences in ARG
profiles could be due to anthropogenic stressors impact-
ing the river samples from Cambridge and Kalamas.
Further, particular ARGs such as aminoglycoside resist-
ance AAC(3)-IIIb and AAC(6')-Ib-cr, MLS resistance
EreB, glycopeptide resistance VanR1, phenicol resistance
CatI, and multidrug resistance mdtA (membrane fusion
protein of the multidrug efflux complex mdtABC) were
only detected in Cam River, while beta-lactam resistance
BcI and multidrug resistance bmr ARG were only found
in Kalamas River. Furthermore, the multidrug resistance
gene, mexT, which is a regulator of the efflux complex
mexEF-OprN, was highly abundant in Kalamas River
samples, showing a 10 to 20-fold increase when
compared with Cam River samples. Previous studies
have shown that a number of genes (such as AAC(6')-Ib,

Fig. 5 a Heatmap and b hierarchical clustering of different riverine samples based on the relative abundance of discriminatory ARGs. c Silhouette
plot for riverine samples using all the annotated ARGs. d Silhouette plot for riverine samples using the discriminatory ARGs. (Legend: ARP:
Amazon River Plume, KR: Kalamas River, CR: Cam River)
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AAC(6')-Ib-c, msrE, sul1, sul2) that were identified as
discriminatory have been found to be associated with
MGEs. The phenicol ARG, cat, which is an umbrella
term for many variants of chloramphenicol acetyltrans-
ferase has also been observed to be associated with
transposons. Interestingly, most of the discriminatory
ARGs presumed to be associated with MGEs were not
observed in Amazon River plume samples. This observa-
tion supports the potential role of MGEs in the dissem-
ination of these ARGs. These are just a few examples of
the kinds of patterns that emerged based on examination
of the occurrence patterns of the discriminatory ARGs.
Overall, the ERT algorithm demonstrated sufficient
sensitivity to effectively classify similar environments
and identify discriminatory ARGs.

Discussion
The ERT algorithm was able to effectively identify and
classify simulated ARG occurrence variations for both in
silico and real metagenomic datasets. The value of in
silico data sets for validating methodologies is increas-
ingly being recognized, given inevitable variation that
occurs in natural data sets as a result of uncontrollable
factors, not excluding DNA extraction efficiency and
bias and variable sequencing depth. Further, analysis 1
served to demonstrate the appropriateness of the
algorithm for differentiating highly distinct aquatic envi-
ronments, which clustered according to expectation, and
identifying corresponding discriminatory ARGs. It was
particularly compelling to find that the hospital meta-
genomes, which were retrieved from two different
studies, displayed high similarity in terms of the specific
ARGs that they harbored. This finding supports the
notion of a potential “core resistome” associated with
hospital wastewater. Here we define a “core resistome”
as essentially the opposite of the “discriminatory resis-
tome,” i.e., the ARGs most commonly encountered
across a sample set. ARG-MGE associations are well
known to occur, and hence, investigations of the core
resistome in conjunction with mobilome analysis could
lead to better understanding of the potential for ARG
dissemination and subsequently inform risk assessment
of specific sources [74]. As it is known that wastewater
influent and hospital wastewater are associated with
human waste, it was further interesting to observe the
commonality of high abundance of human-specific
ARGs in these samples. While these observations require
further validation, these patterns identify potential foci
for future research. Analysis applied to very different
environments could prove useful in identifying key attri-
butes of corresponding resistomes. This type of analysis
could be beneficial in identifying the potential source of
the ARGs and in formulating improved surveillance
strategies.

Analysis 2, comparing different riverine environments
across the globe, further demonstrated that the ERT al-
gorithm has sufficient resolution for distinguishing resis-
tome characteristic of highly similar environments. In
addition to relative levels of anthropogenic inputs, site-
specific variables such as climatic conditions likely
played a role in shaping the ARG profiles [75]. Such ana-
lyses could prove to be a stepping stone in identifying
the environmental and anthropogenic stressors leading
to the proliferation of ARGs. Future studies can adapt
the ERT algorithm developed here towards testing
various hypotheses of interest. For example, one could
frame a study to characterize the effects of each stage of
wastewater treatment on ARG occurrence patterns or to
characterize baseline geospatial variation in ARG profiles
in natural water bodies.
A key advantage of the ERT methodology is the holistic

analysis that it provides in a format highly amenable to
visual comparison. In particular, it overcomes the bias
towards dominant ARGs typical of similarity/dissimilarity
analysis and feature projection methods, which can over-
shadow other insights and lead to the loss of information
or an incomplete picture. Moreover, it overcomes the
dominant background signal, as demonstrated using in
silico datasets. Antibiotic resistance proliferation is a
global problem, but it is also greatly influenced by site-
specific variables. Both anthropogenic and geospatial
variables influence ARG proliferation [76–78]. The com-
bined dynamics of background occurrences, co-selection
pressures, temporal variations, and frequency of genetic
exchange can further vary the conditions creating an
environment that favors specific ARGs [78]. In essence,
each variable has individual, synergistic, and antagonistic
effects in shaping the resistome. The interconnectivity of
various pathways of ARGs and aquatic environments fur-
ther challenge the ability to delineate sources and mecha-
nisms of ARG dissemination. Under such a multiplexed
system, it is crucial to look into the ARGs that are behav-
ing variedly in different environments or different places.
Moreover, the method could be extended to the entire set
of genes such as MGEs and MRGs for label discrimination
and studying co-occurrence patterns. Combined with the
validations using qPCR and other methodologies, the ef-
fort can lead to an improved understanding of the effect
of various stressors. This study demonstrates that the
methodology developed here can efficiently target and
identify such discriminatory ARGs.
While the developed methodology is quite promising

for resistome characterization, it should be noted that
there are additional factors that could play a role in data
interpretation. Notably, several databases are available
for ARG annotation (e.g., SARG [79], DeepARG-DB
[80], Comprehensive Antibiotic Resistance Database
(CARD)). In this study, CARD was selected because it is
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well-curated and extensively cited in the literature. For
the detection of resistance elements, a protein homolog
model reference was used which does not include muta-
tion as a determinant of resistance. Still, it is important
to note that, in any metagenomic analysis, annotations
inherently will contain some degree of bias based on the
database selected, none of which are exhaustive or lack-
ing in erroneous entries. In both analysis 1 and 2, it was
observed that in some cases, most of the genes that are a
part of an operon were identified as discriminatory
ARGs. For example, in analysis 1, vanHB, vanXB, and
vanYB all are a part of the vanB gene cluster [81] and
were identified as discriminatory. In analysis 2, both
mexT and OprN were identified as discriminatory ARGs,
where mexT is a regulator of MexEF-OprN system [82].
However, there were a number of cases where not all
the genes of an operon were identified as discriminatory
ARGs. For example, vanRI and vanRO are regulatory
proteins associated with glycopeptide resistance gene
clusters and were identified as discriminatory, but the
same was not observed for other genes belonging to
these operons [83, 84]. Similar observation could be
made for mdtA which is a part of efflux complex
mdtABC [85]. This result could be attributed to a
number of reasons such as annotation parameters,
sequencing depths, and sequencing errors. Furthermore,
the annotations are based on similarity search, which
infers that there could be many ARGs that were missed
or incorrectly annotated during the annotations owing
to the limited knowledge, computational abilities,
and available technologies. For example, vanRO se-
quence is homologous to many other regulatory proteins
at an identity of 99% and the same is true for many
other van-type gene clusters [81]. This brings to light
various caveats and potential biases introduced by data-
bases and sequencing platforms that deserve attention in
future work. Also, considering the complexity of micro-
bial environments as well as the numerous niches and
corresponding anthropogenic pressures, the potential
presence of novel or unidentified ARGs is likely. Import-
antly, the fact that no existing database contains 100% of
existing ARGs in nature should be considered when
attempting to characterize and differentiate environments.
As new ARGs are continuously being added to the

databases, the ARG profiles obtained from different
versions of databases could also be different. Since the
presented methodology uses the relative abundance met-
rics of ARGs to identify discriminatory ARGs, it is
expected that using different databases could generate
different sets of discriminatory ARGs. Hence, to be
consistent within a given study, the database version for
ARG annotation should be maintained consistent
throughout as a precautionary approach, as was the case
in the present study. Another important point that needs

consideration is potential bias introduced by the metric
used to estimate the importance of features. In this
study, the Gini importance was applied as a simple, fast,
and widely applied means of impurity reduction. How-
ever, it should be noted that this method could be biased
towards features with multiple possible split points and
high minor allele frequency [86].
As is the case with most of the metagenomic data ana-

lysis involving public databases, the effectiveness of the
method could very well be limited by the underlying
differences in sample pretreatment, sample processing,
and prior sample contamination. For example, different
DNA extraction kits could present their own biases to
the samples [87] (Additional file 1: Supplementary
Information I). The difference in the sequencing depths
and different sequencing platforms might also bias the
analyses to a degree as low-coverage samples could lead
to misleading inferences. Here we demonstrated the
approach both with in silico datasets, where these factors
were controlled, and with real-world datasets, where
they were not. We judge that efforts towards standardiz-
ing approaches and improvements in sequencing power
could be key in curbing such biases and drawing effect-
ive global-scale comparisons. In particular, improved
consistency in the data quality could lead to profound
observations using the ERT algorithm approach devel-
oped here in identifying discriminatory ARGs. The
approach could further be strengthened in its ability by
expanding the sample size. It is expected that more
concrete patterns will emerge with increases in sample
size.

Conclusions
Here a new methodology was formulated to characterize
and compare variances in ARG profiles among metage-
nomic data sets derived from similar/dissimilar environ-
ments. Specifically, identification of discriminatory ARGs
among samples representing various environments can be
identified based on factors of interest. The proposed
methodology presents an effective way to analyze,
visualize, and compare environmental resistomes. Ultim-
ately, the ERT approach can offer a new tool for surveil-
lance of environmental ARGs and a means of assessing
effectiveness of mitigation strategies.

Experimental section
Data sources
In total, 24 shotgun metagenomic sequencing data sets
representing a wide range of environments were selected
for this study. These included six hospital effluents, nine
river source waters, four farm effluents, and six WWTP
influents [19, 55, 57, 58]. Among these samples, the hos-
pital effluent, river water, and farm effluent metagenomes
were publicly available and downloaded from the EMBL-
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EBI (https://www.ebi.ac.uk/) and NCBI-SRA (https://
www.ncbi.nlm.nih.gov/sra) metagenome databases.
WWTP influent metagenomic data was available in-house
from a sampling campaign of WWTPs situated in the
USA, Switzerland, the Philippines, Sweden, Hong Kong,
and India. To maintain uniformity, only datasets gener-
ated on the Illumina shotgun sequencing platform were
selected. The average number of reads over all the datasets
was 13.8 million with a minimum and maximum of 1.3
and 82.8 million reads, respectively. Detailed information
about the metagenomes retrieved from the databases is
included in Table 1, and the influent data is presented in
Table 2.

Sample collection
WWTP influent samples were collected after the grit
removal and screening process. Grab samples were col-
lected from each site and transported to the lab on ice.
Biomass from the liquid samples was filter-concentrated
onto three separate 0.45-μm filters after homogenizing
each sample by shaking. Each membrane filter was then
preserved in 50% ethanol at − 20 °C [87] and then
shipped to the Molecular Biology Lab at Virginia Tech
for DNA extraction and further analyses.

DNA extraction and shotgun metagenomic sequencing
DNA was extracted from the filter-concentrated samples
using a FastDNA Spin Kit (MP Biomedicals, Solon, OH)
for soil according to the prescribed protocol. Total DNA
was eluted in 100 μL of water and stored at − 20 °C until
further analysis. The concentration and quality of extracted
DNA were analyzed using NanoPearl spectrophotometry,
Qubit fluorometry, and agarose gel electrophoresis. Librar-
ies were prepared using a TruSeq library prep kit, and shot-
gun metagenomics sequencing was performed on an
Illumina HiSeq2500 platform with 2 × 100 paired-end reads
by the Virginia Tech Biocomplexity Institute Genomic
Sequencing Center, Blacksburg, VA, USA. Two of the sam-
ples were duplicated to verify sequencing reproducibility.

Bioinformatic analysis
FastQ files obtained from shotgun metagenomic sequen-
cing and the public databases were uploaded onto the
MetaStorm server to compute the relative abundance of
ARGs [52]. The read matching pipeline was used for
ARG annotation of the metagenomic data by mapping
the raw reads to a reference ARG database using the
marker gene analysis approach [88]. This approach uses
Diamond [89] with the representative hit approach hav-
ing E value < 10−10, identity > 80%, [90], and minimum
length of 25 amino acids for the annotation. Sequences
were annotated to antibiotic resistance function using
the CARD v. 1.0.6 [91]. The database version was con-
sistent throughout the analyses. Further, the samples

were compared based on the relative abundance of an-
notated ARGs, where ARG abundance was normalized
based on the total number of 16S rRNA genes present
in the sample. This normalization provides an indication
of the proportion of bacterial populations carrying the
functional genes of interest, though it must be recog-
nized that this is an imperfect measure given that the
number of copies of 16S rRNA genes varies per cell. We
note that CARD contains various efflux proteins that
can be found in both antibiotic resistant and susceptible
bacteria and may not be classified as valid markers of
resistance phenotypes. In previous studies, however,
these were related to efflux of antibiotics and have been
classified as ARGs. Accordingly, in this study, efflux
proteins were also included in the ARG profiles.

Statistical analysis
The non-parametric multivariate statistical test PERMA-
NOVA was performed to compare whether the distributions
and abundances of ARGs among various environments or
defined groups were statistically different. NMDS was
conducted on the relative abundance matrix of ARGs
obtained from MetaStorm to visualize the level of similarity
between the samples in the metadata using the Bray-Curtis
similarity method [92]. Firstly, the similarity analysis was
done with all the annotated genes obtained from the Meta-
Storm server and then compared to the NMDS plot gener-
ated based on the relative abundance metric of the ARGs
selected upon the application of the ERT algorithm. The
analysis represents the effectiveness of the ERT algorithm in
selecting the ARGs specific to a given environment and in
enhancing the characterization of the different environ-
ments. All of the statistical analyses were performed using
PAleontological STastics software (version 3.18), and NMDS
was done using the PRIMER-E Software (v6).

Additional files

Additional file 1: Supplementary information file. Figure S1.
Methodology of Data Labeling. The Raw data consists of metagenomic
DNA sequence reads derived from different samples. The raw data is
labeled according to the user-defined group labels. Figure S2.Variable
importance determined by the ERT algorithm.This figure illustrates the
output of the ERT Algorithm. The Y-axis represents the Gini importance
value and the X-axis corresponds to the attributes (in this study, ARGs)
sorted in ascending order of their Gini importance. The attribute with the
highest Gini importance is most suitable for differentiating samples
according to the user-defined group labels, and is ranked first in the list.
Similarly, all the attributes are ranked based on their Gini importance
score. This plot represents the concept of variable ranking. Figure S3.
(Left) Profile of identified discriminatory ARGs. (Right) Profile of dominant
ARG with no significant variation among the samples. Figure S4. (a)
NMDS plot for environmental samples using all the annotated ARGs (b)
NMDS Plot for environmental samples using the discriminatory ARGs.
Figure S5. (a) NMDS plot for riverine samples using all the annotated
ARGs (b) NMDS Plot for riverine samples using the discriminatory ARGs.
(DOCX 1074 kb)

Additional file 2: SI simulated data. (XLSX 32 kb)
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