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Reproducible changes in the gut
microbiome suggest a shift in microbial
and host metabolism during spaceflight
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Abstract

Background: Space environment imposes a range of challenges to mammalian physiology and the gut microbiota,
and interactions between the two are thought to be important in mammalian health in space. While previous findings
have demonstrated a change in the gut microbial community structure during spaceflight, specific environmental
factors that alter the gut microbiome and the functional relevance of the microbiome changes during spaceflight
remain elusive.

Methods: We profiled the microbiome using 16S rRNA gene amplicon sequencing in fecal samples collected from
mice after a 37-day spaceflight onboard the International Space Station. We developed an analytical tool, named
STARMAPs (Similarity Test for Accordant and Reproducible Microbiome Abundance Patterns), to compare microbiome
changes reported here to other relevant datasets. We also integrated the gut microbiome data with the publically
available transcriptomic data in the liver of the same animals for a systems-level analysis.

Results: We report an elevated microbiome alpha diversity and an altered microbial community structure that were
associated with spaceflight environment. Using STARMAPs, we found the observed microbiome changes shared
similarity with data reported in mice flown in a previous space shuttle mission, suggesting reproducibility of the effects
of spaceflight on the gut microbiome. However, such changes were not comparable with those induced by space-
type radiation in Earth-based studies. We found spaceflight led to significantly altered taxon abundance in one order,
one family, five genera, and six species of microbes. This was accompanied by a change in the inferred microbial gene
abundance that suggests an altered capacity in energy metabolism. Finally, we identified host genes whose expression
in the liver were concordantly altered with the inferred gut microbial gene content, particularly highlighting a relationship
between host genes involved in protein metabolism and microbial genes involved in putrescine degradation.

Conclusions: These observations shed light on the specific environmental factors that contributed to a robust effect on
the gut microbiome during spaceflight with important implications for mammalian metabolism. Our findings represent a
key step toward a better understanding the role of the gut microbiome in mammalian health during spaceflight and
provide a basis for future efforts to develop microbiota-based countermeasures that mitigate risks to crew health during
long-term human space expeditions.
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Background
The gastrointestinal microbiota plays an important role in
mammalian health by interacting with host immune,
metabolic, and neuropsychiatric functions [1, 2]. The
space environment imposes many challenges to mamma-
lian physiology, including functions known to interact
with the gut microbiota in a bidirectional fashion. Specific
space environmental factors, such as microgravity and ra-
diation, are thought to alter the gut microbiota, represent-
ing a risk to astronaut health, especially during long-term
spaceflight missions [3]. We previously studied the gut
microbiome of a twin astronaut and found alterations dur-
ing his 1-year mission onboard the International Space
Station (ISS), which were not observed in his twin brother
on Earth during the same period of time [4]. Similarly,
spaceflight-associated microbiome changes were observed
in mice flown on a space shuttle mission (STS-135) for
13 days [5]. However, the specific space environmental

factors that influence the gut microbiome and the impact
of these changes on host functions remain unknown.
In 2014, NASA carried out the first ISS-based rodent re-

search mission (RR-1), with the primary goal of validating
hardware and operations for future rodent research mis-
sions [6]. RR-1 involved four groups of mice (Fig. 1a), and
fecal samples from a subset of these animals were avail-
able, providing an opportunity to study the effects of
spaceflight on the murine gut microbiome. Using 16S
rRNA gene amplicon sequencing, we profiled the micro-
biome in these RR-1 samples and report spaceflight-asso-
ciated changes in the gut microbial diversity and
composition. We developed an analytical tool, Similarity
Test for Accordant and Reproducible Microbiome Abun-
dance Patterns (STARMAPs), to test the similarity of
microbiome variations between two datasets. Using this
method, we found the spaceflight-associated microbiome
changes during RR-1 were similar to those during STS-
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Fig. 1 Microbial diversity of RR-1 fecal samples. a Animal groups involved in RR-1, highlighting group differences in the environmental conditions
and durations (for details see the “Methods” section). The ISSES simulates the temperature, humidity, and CO2 partial pressure of the ISS
environment based on data recorded onboard with a 3-day delay. b The number of microbial species observed in each sample (left) and the
Shannon index (right) of microbial alpha diversity (i.e., within-sample diversity) varied among experimental groups of RR-1. c Analysis of beta
diversity (i.e., between-sample diversity) using PCA on ILR-transformed relative abundance data found significant differences in the microbial
composition among RR-1 experimental groups and specifically between Flight and Ground samples. Diversity analyses shown were performed
using species-level data, and similar results were found at higher taxonomic levels as well (Additional file 1). Sample sizes in b and c: Basal, n = 10;
Vivarium, n = 8; Ground, n = 7; Flight, n = 6
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135, suggesting a robust effect of spaceflight. However,
when comparing the microbiome changes during RR-1 to
those induced by space-type radiation in Earth-based
studies [5, 7], we found no similarity, suggesting factors
other than radiation are likely to drive the observed gut
microbiome changes during spaceflight. By testing associ-
ations between inferred microbial gene content in the gut
and the host liver transcriptome, we observed concordant
variations suggesting potential interactions between the
microbial metabolic capability and the host metabolism.
Particularly, we highlight an association between the pre-
dicted abundance of bacterial genes involved in putrescine
degradation in the gut and the expression of host genes
involved in protein metabolism in the liver. These findings
provide insights into the contributing factors of a reprodu-
cible change in the gut microbiota during spaceflight and
the interactions between the gut microbiota and host
metabolism in space.

Results
Spaceflight-associated changes in the gut microbial
diversity and community structure
To evaluate the effect of spaceflight on the gut microbial
alpha diversity (i.e., within-sample diversity), we computed
the number of species observed in each sample (i.e., rich-
ness) and Shannon index (i.e., a diversity index accounting
both evenness and richness) at the species level. We found
that both the number of observed species and Shannon
index significantly varied across RR-1 experimental groups
(P = 0.0057 and P = 3.28 × 10−4, respectively, Kruskal-Wallis
test) and were higher in Flight and Ground groups relative
to Basal and Vivarium groups (Fig. 1b). Since the primary
difference between Flight/Ground and Basal/Vivarium
groups is the conditions of animal housing (i.e., habitat
hardware, temperature, humidity, and CO2 levels; Fig. 1a),
this observation indicates that the ISS rodent housing en-
vironment alters the richness and evenness of the murine
gut microbial community. Interestingly, when comparing
Flight and Ground animals, we found a slight increase in
Shannon index (P = 0.022, Mann-Whitney test) but not in
the number of observed species (P = 0.721, Mann-Whitney
test) in Flight samples. Since the Ground animals were
housed using the same ISS habitat equipment as the Flight
animals under matched conditions of temperature, humid-
ity, and CO2 levels in an ISS Environmental Simulator
(ISSES), our observations suggest that factors specific to
spaceflight induce an elevation in the evenness but not
richness of the gut microbial community in mice.
We also observed significant differences in the gut micro-

bial community structure among RR-1 groups (i.e., beta di-
versity analysis). Using principal component analysis (PCA)
on isometric-log-ratio (ILR)-transformed species-level data,
we found clear segregation of samples by the experimental
group (P < 1 × 10−4, PERMANOVA; Fig. 1c). While the

largest difference was between Flight/Ground samples and
Basal/Vivarium samples, Flight samples were also signifi-
cantly segregated from Ground samples (P = 7 × 10−4, PER-
MANOVA; Fig. 1c). Since the RR-1 groups were each
associated with a distinct set of experimental conditions
(Fig. 1a), we formulated the PERMANOVA test to replace
animal groups with these associated factors in an additive
model, in order to obtain an approximated estimation of
the contributions of each condition to the overall variance
of the gut microbial composition. Our analysis found that
ISS housing conditions (i.e., habitat, temperature, humidity,
and CO2 levels) accounted for 36.3% and spaceflight-spe-
cific factors accounted for 6.6% of the overall variance at
the species level (for higher taxonomic levels, see Add-
itional file 1). Thus, in addition to ISS housing conditions,
we demonstrate that spaceflight-specific factors strongly
modulate the composition of the gut microbiome.

Reproducible effects of spaceflight on the murine gut
microbiome composition
Spaceflight-associated changes in the gut microbiome
composition have been reported in a recent study of fecal
samples collected in mice onboard a space shuttle during
the STS-135 mission in 2011 [5]. It is thus of interest to
compare RR-1 data to STS-135 data, in order to test the
reproducibility of spaceflight-associated changes in the gut
microbiome. Comparing two different microbiome data-
sets in a formal statistical setting remains a challenge due
to dataset-specific biases associated with biological and
technical factors, such as animal or population cohorts,
experimental conditions, sequencing strategies, data ana-
lysis methods, and many others. Despite these challenges,
if changes in microbial compositions are reproducible, the
microbial differential abundance patterns in two datasets
are expected to involve a similar set of microbes with
comparable amplitudes and directions of changes. We
developed a statistical method, named STARMAPs, to
capture this similarity by projecting samples from a sec-
ond microbiome dataset onto the PCA axes that separate
the groups of the first dataset. This method assumes that,
when the group differences in two datasets are similar, the
samples of each dataset in the microbial taxon space seg-
regate by their respective groups in a similar fashion and
that the PCA axes capturing the group segregation in the
first dataset can also capture the similar group segregation
in the second dataset.
To evaluate the performance of STARMAPs, we simu-

lated pairs of datasets, each with 10% of the species that
were differentially abundant with a given fold change
(FC). The differential abundance patterns in a given pair
of datasets were set to be either similar (i.e., involving the
same set of differentially abundant species) or distinct (i.e.,
involving totally non-overlapping sets of differentially
abundant species). We applied STARMAPs to each of the
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simulated pairs of datasets and compared the results to
this “ground truth” for an evaluation of STARMAPs
performance (Additional file 2: Figure S1). At the typical
cutoff of omnibus P < 0.05, the specificity of STARMAPs
was very high under all of the simulated conditions, while
the sensitivity of the test varied in each of the scenarios. In
the first simulation (Simulation 1; Additional file 2: Figure
S1, left), we considered the influence of sample size in
each of the dataset. Expectedly, when the differential
abundance amplitude was small [i.e., log2(FC) = 1], the
sensitivity of STARMAPs decreased as the sample size
decreased. However, STARMAPs performed very well
regardless of the sample size when the simulated ampli-
tude of differential abundance was moderate or high [i.e.,
log2(FC) ≥ 2]. Since dataset-specific biological and
technical biases are expected to cause differences in the
amplitudes of differential abundance between datasets, in
Simulation 2 (Additional file 2: Figure S1, middle), we in-
troduced random variations into the differential abun-
dance amplitude in the second dataset of the dataset pair,
and tested whether STARMAPs can still capture the simi-
larity between the pair of datasets. As the introduced vari-
ance increased, the sensitivity of STARMAPs decreased,
particularly when the mean differential abundance was
small [i.e., log2(FC) = 1]. However, when the mean differ-
ential abundance increased, the negative impact of this
variation on test sensitivity reduced, indicating STAR-
MAPs is well suited to identify differential abundance pat-
terns that are similar but not necessarily identical in two
datasets. Another expected consequence of dataset-spe-
cific biological and technical biases is the differences in
the set of microbial species uncovered in each of the data-
set, which was simulated in Simulation 3 (Additional file
2: Figure S1, right). As expected, the sensitivity of STAR-
MAPs worsened as the proportion of commonly observed
taxa in the pair of datasets decreased, due to loss of infor-
mation. However, the decrease in sensitivity caused by low
proportions of commonly observed taxa was in part com-
pensated by the increase in the effect size. It is of interest
to note that, when considering a similar effect in two
microbiome datasets, it is likely that the proportion of taxa
that are differentially abundant in both datasets is higher
than the proportion of taxa that are commonly present in
both datasets. In our simulation, all species in the second
dataset have the same chance of not being found in the
first dataset, and therefore, our simulation represented a
harsher condition. Nevertheless, our simulations suggest
that the performance of STARMAPs was satisfactory over
a range of scenarios, particularly when the differential
abundance amplitudes were relatively large.
We next applied SATRMAPs to test whether spaceflight-

associated changes in the gut microbiome during the RR-1
mission were similar to the STS-135 mission. Like RR-1,
the mouse research onboard STS-135 involved a flight and

a ground group with matched diet, habitat equipment, and
environment (i.e., an environmental simulator was used),
and a significant difference in the microbial community
structure between the two groups was reported [5]. Using
STARMAPs, we found that the differences in fecal micro-
bial composition between the flight and the ground ani-
mals in the STS-135 mission were similar to those
between RR-1 Flight and Ground animals (Fig. 2a; omnibus
P = 0.032, STARMAPs). It can be noted that the directions
of differences between Flight and Ground samples in the
two missions were similar but not parallel with each other
(cosθ = 0.33; θ is the angle between the directions of group
differences in the two datasets). Aside from the technical
differences in the microbiome profiling methods, this may
be due to the differences in the mission duration (i.e., 13
days for STS-135 vs. 37 days for RR-1) or the sample col-
lection strategies. STS-135 samples were collected from
animals euthanized after return to Earth, while the RR-1
samples were collected from frozen carcasses of mice
euthanized in orbit. Nonetheless, our findings indicate that
space environmental factors produce robust and reprodu-
cible effects on the murine gut microbiome composition.

Lack of similarity between spaceflight- and radiation-
induced microbiome changes
We next sought to understand the contributions of specific
space-associated factors to microbiome changes during
spaceflight. It has been hypothesized that cosmic radiation
is a unique environmental factor that can modulate the gut
microbiome in space [3]. Previous Earth-based studies have
indeed found changes in the gut microbiome in animals ex-
posed to radiation that was similar in type to cosmic radi-
ation. One study exposed mice to high-linear energy
transfer (LET) radiation (600MeV/n 16O) at doses of 0, 0.1,
0.25, or 1.0 Gy and reported changes in the gut microbiome
composition and functional potential 10 and 30 days after
the exposure [7]. Another study fed rats on either a high-
iron diet or a diet with adequate iron for 14 days and then
exposed the animals to low-LET radiation (137Cs fraction-
ated radiation at 0.375Gy/day) every other day for 16 days
with a total dose of 3 Gy while continuing the assigned di-
ets [5]. This study reported an altered relative abundance
pattern of microbial orders that were associated with the
diet and radiation exposure [5]. In order to test whether ex-
posure to radiation significantly contributed to the micro-
biome changes during spaceflight, we used STARMAPs to
compare the microbiome differences between RR-1 Flight
and Ground groups to the space-type radiation-induced
microbiome changes in these two Earth-based rodent stud-
ies (Fig. 2b, c). In both datasets, changes in the gut micro-
bial community structure in response to radiation
exposures were observed in our re-analysis at the species
level (Additional file 3: Figure S2), confirming an effect of
space-type radiation on the gut microbiome. However, the
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Fig. 2 Comparison between microbiome variations during RR-1 to those during the STS-135 mission or induced by space-type radiation using
STARMAPs. a Microbiome differences between RR-1 Flight and Ground samples were similar to microbiome differences between the flight and
ground samples from the shuttle mission STS-135. A detailed description of STARMAPs is provided in the “Methods” section. Briefly, to compare group
differences in the gut microbiome in one dataset to another, STARMAPs first performs PCA using samples from the first dataset alone (e.g., RR-1 data,
left) and tests whether samples were segregated by the groups of interest (e.g., Flight vs. Ground) along the PCA axes. Then, samples from the second
dataset (e.g., STS-135 data, RIGHT) are projected onto the same PCA axes and are tested for their group segregation along these PCA axes. As a third
test, STARMAPs also evaluates the similarity in the directions of changes in the two datasets. It draws a line through the centers of the two groups of
samples in each dataset to represent the group differences and tests whether the cosine of the angle, θ, between the lines in two datasets is
significantly different from 0. When cosθ = 1, the microbiome changes in the two datasets are in exactly the same direction, and when cosθ = − 1, the
microbiome changes in the two datasets are in exactly the opposite directions. Finally, STARMAPs uses an omnibus P value to summarize the three
tests above to evaluate the overall similarity. Note that, while the graphs depict only PC1 and PC2, the tests were performed with all PCA axes. b
Microbiome variations during RR-1 were compared to those induced by 10 days (left) or 30 days (right) of exposures to high-LET radiation exposure on
Earth. c Microbiome variations in RR-1 mice were compared to those in rats exposed to low-LET radiation while fed on diets with either an adequate
iron content (left) or a high-iron content (right). Note that STARMAPs uses random samplings from the Dirichlet distribution to estimate abundances of
microbial taxa detected in one dataset but not the other. As a result, each time when comparing RR-1 data to another dataset, PCA of RR-1 samples
gives very similar but not identical segregation patterns. Results shown here are at the species level, and similar results were observed at higher
taxonomic levels as well (Additional file 1). Sample sizes of RR-1 data in a–c: Basal, n = 10; Vivarium, n = 8; Ground, n = 7; Flight, n = 6. Sample sizes of
STS-135 data in a: Ground, n = 7; Flight, n = 6. Sample sizes of irradiated mice in b: n = 10 in each group. Sample sizes of irradiated rats in c: sham/
Normal-Fe, n = 9; irradiated/Normal-Fe, n = 8; sham/High-Fe, n = 7; irradiated/High-Fe, n = 8
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radiation-induced changes were not found to share signifi-
cant similarity to those during RR-1 spaceflight (Fig. 2b, c).
Although the exact nature of radiation exposure during
RR-1 is unknown, radiation dosimetry data [8] recorded in-
side the space shuttle cabins during previous STS missions
suggest that the total radiation dose and the dose rate (dose
per day) during each mission were at least two and three
magnitudes lower, respectively, than those used in the two
Earth-based studies, which considered space environment
beyond ISS and space shuttle orbits. It can be expected that
the radiation exposure during RR-1 was likely to be similar
to the STS missions, since ISS and space shuttles operate in
similar obits. Therefore, our observation, together with the
expected dose of RR-1 radiation exposure, suggests that
space radiation alone during RR-1 is unlikely to be the pre-
dominant contributor to the observed microbiome changes
and implies significant contributions from other space en-
vironmental factors.

Spaceflight-associated changes in taxon abundance and
inferred functional gene content
The altered microbial community structure among RR-1
groups was associated with altered relative abundance
patterns that can be clearly seen at the family level
(Fig. 3a). To identify specific microbial taxa affected by
spaceflight, we used the ALDEx2 analysis package, which
operates on centered-log-ratio (CLR) transformed se-
quencing data for a compositionally coherent inference
of differential abundance [9]. Within the RR-1 dataset, at
false discovery rate (FDR) < 0.05, 5 phyla, 6 classes, 10
orders, 15 families, 20 genera, and 18 species of bacteria
were differentially abundant among the four experimen-
tal groups (Fig. 3b). Consistent with the PCA results, the
predominant differences were observed between Flight/
Ground samples and Basal/Vivarium samples, highlight-
ing the strong impact of ISS rodent housing conditions
on the gut microbiome composition. A number of taxa
(1 order, 1 family, 5 genera, and 6 species), however,
were significantly (FDR < 0.05, ALDEx2) differentially
abundant between Flight and Ground groups, while an
additional set of taxa (1 phylum, 1 class, 2 families, 6
genera, and 6 species) were suggestively (P < 0.05 but
FDR > 0.05, ALDEx2) differentially abundant between
the two groups (Fig. 3b). For example, the abundance of
the bacteria in the phylum of Bacteroidetes, while was
lower in the Ground/Flight animals compared to Basal/
Vivarium animals, was also suggestively decreased (P <
0.05 but FDR > 0.05, ALDEx2) in the Flight animals
compared to Ground animals. This change, together
with a trend of elevated abundance of the Firmicutes
phylum, led to a significantly increased Firmicutes-to-
Bacteroidetes (F/B) ratio (Fig. 3c; P = 0.014, Mann-Whit-
ney test, Flight vs. Ground), consistent with our previous
findings in a twin astronaut during his 1-year spaceflight

mission [4]. Firmicutes and Bacteroidetes are the two
most common and abundant bacteria phyla found in the
mammalian gastrointestinal tract. A change in the F/B
ratio can be a sensitive marker, or serve as a proxy, of
overall microbiome changes associated with many con-
ditions. Examples include changes in the F/B ratio in pa-
tients with obesity [10], during aging in humans [11], and
in response to dietary fiber particle size [12]. In addition,
the relative abundance of Tyzzerella (a genus in the Lach-
nospiraceae family, Clostridiales order) was significantly de-
creased (FDR < 0.05, ALDEx2) in Flight animals compared
to Ground animals, while the abundance of a few other
genera of the Lachnospiraceae family were significantly
(FDR < 0.05, ALDEx2) or suggestively (P < 0.05 but FDR >
0.05, ALDEx2) increased in Flight animals (Fig. 3b), reveal-
ing opposite effects of spaceflight on relatively close-related
taxa. Similar patterns were observed in the Ruminococca-
ceae family, in which the Ruminococcaceae UCG-010 genus
showed a significantly increased (FDR < 0.05, ALDEx2)
while the Hydrogenoanaerobacterium genus showed a sug-
gestively decreased (P < 0.05 but FDR > 0.05, ALDEx2)
abundance in the Flight animals compared to Ground ani-
mals. Finally, the relative abundance of the Staphylococcus
genus of the Bacillales order was similar among Flight, Viv-
arium, and Basal samples, while the Ground samples ap-
peared to be distinctively high (Fig. 3b), suggesting ISS
rodent housing conditions and space-specific factors may
induce opposite changes in the abundance of these
microbes.
We next investigated the functional implication of

these spaceflight-induced changes in gut microbial com-
positions. We used the software package PICRUSt2 to
infer microbial gene content from 16S rRNA gene data
and aggregated relative abundance of functional genes
into metabolic pathways [13]. We then used ALDEx2 to
identify differentially abundant pathways among RR-1
experimental groups. To capture the dominant func-
tional features of spaceflight and ISS housing environ-
ment effects, we used a permissive threshold of FDR <
0.1. At this threshold, we found 619 pathways differen-
tially abundant among groups (Additional file 1), 174 of
which were differentially abundant between Flight and
Ground animals (Fig. 3d). Hierarchical clustering of
these 174 pathways based on the CLR-transformed rela-
tive abundance revealed three clusters, each with a
unique differential abundance pattern and highlighting a
specific mode of energy metabolism (Fig. 3d, e). Cluster
I consists of a set of pathways that involve compounds
used or produced by pyruvate fermentation, including
carbohydrate degradation, aromatic compound degrad-
ation, carboxylate degradation, amino acid biosynthesis,
lipid biosynthesis, and synthesis of polysaccharides. The
relative abundance of genes in Cluster I pathways was
low in Ground animals and higher in Flight animals.
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Fig. 3 Differential abundance of microbial taxa and inferred gene content. a A stacked bar plot shows the relative abundance of
microbial families uncovered in each sample, sorted by groups. For clarity, families with an overall abundance of less than 0.1% were
summed into “Others”. b A heatmap depicts the differential abundance of microbial taxa that varied among RR-1 groups at FDR < 0.05.
Rows (microbial taxa at each level) and columns (samples) were ordered by hierarchical clustering. The overall relative abundance of the
taxa at a given taxonomic level is also noted as a sidebar of the heatmap. The effect sizes (i.e., the median ratio of between- and within-
group differences) of differential taxon abundance comparing Flight samples to Ground samples were estimated using ALDEx2 and are
plotted as a sidebar to highlight the differences between the two groups. Taxa that were significantly different (FDR < 0.05) between
Flight and Ground samples are labeled in orange, and those suggestively different (P < 0.05 but FDR > 0.05) between Flight and Ground
samples are labeled in dark grey. The identities of all the taxa in the heatmap and test statistics are provided in Additional file 1. c A
boxplot showing the ratios between bacterial phyla Firmicutes and Bacteroidetes among RR-1 groups. d A heatmap showing inferred
microbial metabolic pathways that were differentially abundant between Flight and Ground samples. Rows (microbial pathway) and
columns (samples) were ordered by hierarchical clustering. Three clusters of microbial pathways were identified, and the dendrogram is
color-shaded for each cluster. Microbial pathways are noted by their level-2 superclasses at the right side, and the identity of each
pathway and test statistics are provided in Additional file 1. – log10(FDR) values are noted by the color scale on the right sidebars for
the differential abundance test of each pathway between Flight and Ground samples (FLT vs. GRD) and between Flight samples and the
combined Basal and Vivarium samples (FLT vs. BSL and VIV). e Simplified diagrams summarizing key microbial pathways of each cluster
identified, colored accordingly as in d. Sample sizes in a–d: Basal, n = 10; Vivarium, n = 8; Ground, n = 7; Flight, n = 6
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However, except for several pathways, Flight samples
were not significantly different from the combined Basal
and Vivarium samples (Fig. 3d and Additional file 1).
This differential abundance pattern contrasted that of
Cluster II, which contains a number of pathways related
to utilizing amines as sources of nutrients and energy.
The relative abundance of Cluster II pathway genes was
high in Ground animals and was lower in Flight animals. In
a few pathways (e.g., 4-aminobutanoate degradation I and
III, urea degradation II, and putrescine degradation I; Fig. 3d
and Additional file 1), gene abundance in Flight animals
was also lower than Basal/Vivarium animals. Finally, Clus-
ter III pathways are involved in electron transfer and bio-
synthesis of cofactors needed for aerobic and anaerobic
respiration. Flight animals showed the lowest relative abun-
dance of genes in this cluster, and Ground animals ap-
peared to be intermediate between Flight and Basal/
Vivarium animals. Taken together, our analysis of inferred
microbial gene content revealed an increased abundance of
fermentation genes and a decreased abundance of genes for
respiration and amine degradation in Flight animals com-
pared to the housing condition-matched Ground mice.
This finding is consistent with a shift in energy metabolic
capability in the gut microbiome during spaceflight.
It is worth noting that the choice of reference genome

catalog influences the accuracy of microbiome gene con-
tent predictions. A recently developed integrated mouse
gut metagenome catalog (iMGMC) has been shown to en-
hance the accuracy of PICRUSt predictions in mice [14],
providing a useful resource for inferring the functional
capability of the murine gut microbiome. We thus per-
formed PICRUSt2 functional prediction with the iMGMC
reference and compared the results with those obtained
with the default reference, in order to ensure that the in-
ference described above was robust. Using the iMGMC
reference, PICRUSt2 analysis uncovered 592 of the 868
pathways that were uncovered with the default reference
and 3 additional pathways (Additional file 4: Figure S3A;
Additional file 1). This discrepancy is likely due to the fact
that iMGMC reference, at its current stage, contains a
small set of 16S rRNA-linked functional genomes (i.e., 484
genomes) that are specific to the murine gut microbiome,
as opposed to the PICRUSt2 default reference, which con-
tains a set of > 20,000 genomes of various origins. Despite
this major difference, the predicted abundance of the
commonly uncovered pathways and their differential
abundance patterns between Flight and Ground animals
derived using these two references were largely similar
(Additional file 4: Figure S3B–D; Additional file 1). Given
these observations, we continued our analysis with the
functional predictions made using the PICRUSt2 default
reference for a more inclusive analysis, in order to suffi-
ciently capture the functional capability of the gut micro-
biome under the unique environment of spaceflight.

Associations between the expression of host genes in the
liver and inferred gene abundance of microbial metabolic
pathways in the gut during spaceflight
To further understand the functional implications of
spaceflight-associated changes in the gut microbiome,
we utilized RNA-seq data in the liver of RR-1 mice
stored in NASA’s GeneLab data repository [15, 16] and
tested the correlations between the liver transcriptome
of the host animal and the inferred relative gene abun-
dance of microbial metabolic pathways in the gut, with
the hypothesis that microbial metabolic potential and
host metabolism are altered in coordination during
spaceflight. We focused on the subset of microbial path-
ways that have been identified with differential inferred
gene abundance between Flight and Ground animals
(i.e., the 174 pathways in Fig. 3d), and performed the
correlation analysis with multiple testing adjustment on
a per-pathway basis in order to capture the dominant
patterns of transcriptomic variations relevant to each
microbial pathway of interest. The number of host genes
significantly correlated (FDR < 0.1) with each microbial
pathway were highly variable, ranging from a few thou-
sand to only a few or even none (Fig. 4a and Additional
file 1). For each microbial pathway with significantly cor-
related host genes, we identified biological processes and
pathways that were enriched with those genes. This ana-
lysis revealed a number of host functions that covaried
with gut microbial metabolism under the spaceflight and
control conditions (Fig. 4b). Microbial 1,2-dichloroeth-
ane degradation (a Cluster I pathway in Fig. 3d) was
positively correlated with genes encoding rhodopsin-like
G-protein-coupled receptors (GPCRs) and was nega-
tively correlated with genes encoding glycoproteins. In
addition, microbial pathways of putrescine degradation,
4-aminobutanoate degradation, and glutathione-glutare-
doxin redox reactions (Cluster II pathways in Fig. 3d)
were positively correlated with host genes that were
enriched in a number of pathways, most notably ribo-
some, proteasome, mitochondria, redox processes, lipid
metabolism, and cell-cell adhesion. Lastly, microbial
conversion of acetate to acetyl-CoA (a Cluster III path-
way in Fig. 3d) was positively correlated with the expres-
sion of host genes involved in lipid metabolism, for
which acetyl-CoA is a key intermediate.
We note that these correlations could be due to inde-

pendent responses of the liver transcriptome and the gut
microbiome to the ISS housing and spaceflight condi-
tions, and are not necessarily indicative of interactions
between liver functions and the gut microbial metabolic
potential. Indeed, the majority of the correlations be-
tween microbial pathways and hepatic gene expression
were no longer significant (FDR > 0.1) when partial cor-
relations controlling for experimental groups were com-
puted (Fig. 4a), suggesting these relationships reflected
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Fig. 4 Relationships between inferred gene abundance of gut microbial pathways and gene expression in the host liver. a The number of host
genes whose hepatic expression was significantly correlated (lighter color shades and numbers noted at end of the bars) and partially correlated
(darker color shades and numbers noted in parenthesis) with the gene abundance of each of the microbial pathways. Top 10 pathways with the
most numbers of correlated genes are shown. b Biological functions and pathways that were enriched with genes correlated with the gene
abundance of each of the microbial pathways. c An example of correlations between the expression of a host gene in the liver and the inferred
gene abundance of a microbial pathway in the gut. In this example, the overall correlation pattern between the expression of Rpl3 (ribosomal
protein L3) in the liver and the inferred gene abundance of microbial putrescine degradation I pathway were consistently observed within each
experimental group, giving rise to a significant partial correlation. Only a subset of RR-1 animals has been profiled for both gut microbiome and
liver transcriptome, and thus correlation analysis was performed with reduced sample sizes: Basal, n = 5; Vivarium, n = 4; Ground, n = 3; Flight, n = 4
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only a concurrence under the spaceflight and control
conditions. Nonetheless, several potential microbial-host
interactions were observed. The microbial pathway con-
verting acetate to acetyl-CoA was associated with 121
genes, 48% of which remained significantly correlated
(FDR < 0.1) when partial correlations were computed. In
addition, about 26% of the genes correlated with the mi-
crobial putrescine degradation pathway remained signifi-
cantly correlated (FDR < 0.1) after controlling for
experimental groups. Enriched biological functions of
these partially correlated genes confirmed a positive as-
sociation between host protein metabolic genes (e.g.,
ribosome and proteasome; Fig. 4c and Additional file 1)
in the liver and the capability of putrescine degradation
by microbes in the gut. Putrescine is one of the most
common polyamines that can be synthesized or uptaken
by mammalian cells [17]. While polyamines are essential
for many physiological functions, inhibited protein
synthesis by excessive exogenous polyamines has been
observed in a murine mammary carcinoma cell line [18].
Therefore, our observations raise an intriguing possibil-
ity that the decreased abundance of gut microbial pu-
trescine degradation genes during spaceflight leads to a
putrescine surplus, and in turn, to inhibition of host
protein synthesis and metabolism.

Discussion
Our analysis of the fecal samples from mice onboard the
ISS and the three control groups on Earth during NASA’s
RR-1 mission identified reproducible spaceflight-associated
changes in the gut microbiome. These spaceflight-associ-
ated changes were linked to an altered transcriptome in the
liver of the same animals. A few observations of the gut
microbiome during spaceflight in the RR-1 mice reported
here are consistent with our recent findings in a twin astro-
naut during his 1-year mission onboard the ISS, including
an unchanged richness of microbial community, an altered
community structure, and an elevated F/B ratio [4]. More
importantly, using a newly developed statistical tool, STAR-
MAPs, we tested the similarity in spaceflight-associated
microbiome changes between RR-1 mice and mice onboard
a previous shuttle mission STS-135 in a formal statistical
setting, and we found that spaceflight-associated micro-
biome changes in the two missions were similar, despite
the differences between the two missions in the durations
of spaceflight, animal study protocol, as well as microbiome
profiling and data processing methods. Together, our ob-
servations support a robust effect of spaceflight on the
mammalian gut microbiome.
Importantly, the utilization of three diet-matched con-

trol groups in RR-1 allowed for attributing the observed
microbiome variations to specific aspects of environ-
mental factors associated with spaceflight missions. Par-
ticularly, Ground mice were housed using the same

rodent habitat as Flight animals with matched
temperature, humidity, and CO2 levels. While the Flight
animals were traveling at high velocity and altitude when
onboard the ISS, there were very few acceleration/decel-
eration events and the air pressure inside the ISS is kept
at the sea level (i.e., same as where the control mice
were housed). The major differences in the experimental
conditions between Flight and Ground animals included
the acceleration and vibration during launch as well as
microgravity and cosmic radiation during spaceflight.
The launch occurred 37 days prior to the time of sample
collection and the duration was very short (i.e., minutes).
Thus, the impact of launch on the gut microbiome, al-
though cannot be excluded, is expected to be very small,
and the observed microbiome changes between RR-1
Flight and Ground animals can be predominantly attrib-
uted to environmental conditions specific to spaceflight.
Although the effects of microgravity and cosmic radi-

ation cannot be dissected experimentally using the
current rodent research mission hardware, our study
also presents a step toward an understanding of their
contributions to the changes in the gut microbiome dur-
ing spaceflight using statistical analysis with STARMAPs.
Our analysis showed a lack of similarity between space-
flight-associated microbiome changes and those induced
by exposures to space-type radiation on the ground. This
lack of similarity implies that the gut microbiome is mod-
ulated largely by space environmental factors other than
radiation during spaceflight. Given the differences in ex-
perimental conditions between Flight and Ground groups
discussed above, we hypothesize that spaceflight-associ-
ated microbiome changes can be largely attributed to
microgravity, which may influence microbial physiology
and growth via low fluid shear dynamics [19, 20] and host
physiological responses including altered digesta propul-
sion and digestive function [21], inflammation [22], fluid
shift, and cardiovascular functions [23]. Microgravity also
enables the animals to explore the three-dimensional
space more easily in the rodent habitat, thus allowing be-
havioral changes that may be related to coping with
stressors such as confinement. Future studies utilizing
artificial gravity generated using a centrifuge onboard the
ISS are needed to verify the effect of microgravity on the
gut microbiome and its underlying mechanisms [24]. It is
also worth noting that the lack of similarity between the
effects of RR-1 spaceflight and space-type radiation may
be due to the fact that the ISS operates in a low Earth
orbit within the Van Allen Belts, and thus the animals
were protected from the full impact of cosmic radiation.
Indeed, radiation dosimetry data from previous space
shuttle missions, which operated in the same or similar
low Earth obits as the ISS, suggest the radiation exposure
during RR-1 is expected to be magnitudes lower than
those in the two datasets used in our analysis [5, 7, 8].
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Nevertheless, given the observed effects of space-type ra-
diation on the gut microbiome when the doses were much
larger than expected for ISS and shuttle missions [5, 7], fu-
ture studies are needed to understand how space radiation
may alter the gut microbiome during space travels beyond
Van Allen Belts.
In addition to spaceflight-associated changes, our study

also observed pronounced differences in the gut micro-
biome composition between Basal/Vivarium and Flight/
Ground groups, highlighting a strong effect of the rodent
housing condition onboard the ISS. Many factors associ-
ated with this ISS housing condition may contribute to
the observed differences. For example, the ISS rodent
habitat, unlike the Basal/Vivarium cages, is equipped with
wire-mesh grid surfaces and a special ventilation system
to create continuous airflow to remove small particles
(e.g., food, water, and animal waste) from the cage in order
to keep the cage clean in microgravity. Grid surfaces are
known to induce stress and changes in the gut micro-
biome composition [25]. In addition, the CO2 concentra-
tion is higher on ISS than on Earth, although the O2 level
on ISS is kept at near sea-level values, and this condition
was matched in Ground animals in the ISSES. Intermit-
tent hypoxia has been shown to alter the gut microbiome
compositions in mice [26, 27]. While it is unclear whether
this ISS condition induces hypoxia, gene expression
changes consistent with hypoxic responses have been re-
ported in mice housed with ISS housing conditions com-
pared to standard vivarium conditions [16, 28] and in a
twin astronaut when onboard the ISS [4]. Another
striking change in the gut microbiome associated with
ISS housing conditions included an elevated alpha di-
versity in Flight/Ground animals compared to Basal/
Vivarium animals. Although the gut microbiome in
animals housed under a closed environment or under
stress is generally expected to show a decreased alpha
diversity [29], we speculate that the increased diver-
sity in ISS habitat housed mice may be related to the
constant airflow created by the ventilation system of
the habitat, although other factors may also have con-
tributed to this change.
Furthermore, it is worth noting that our study was lim-

ited by the availability of fecal samples only at the end of
the mission, particularly given that animals of the same
group were housed together in a single cage during the
mission and a cage effect could confound our findings.
However, the inclusion of Basal animals provided an as-
sessment of gut microbiome prior to the mission. The lack
of difference between Basal and Vivarium animals
suggests that the gut microbiome was quite stable without
exposures to ISS housing or spaceflight conditions and
that the cage effect was likely to be minimal. Future ro-
dent research missions designed to study the gut micro-
biome are expected to longitudinally monitor the gut

microbiome before, during, and after spaceflight, in order
to further characterize spaceflight-associated changes.
Finally, our study provided inference regarding the func-

tional relevance of changes in the gut microbiome com-
position during spaceflight. We showed that spaceflight-
associated changes in taxon abundance were accompanied
by changes in the inferred gene abundance of microbial
metabolic pathways, suggesting that an altered metabolic
need may drive taxonomic changes in the gut microbiota
under space environmental conditions. By analyzing tran-
scriptomic data in the liver of the RR-1 animals, we identi-
fied host genes whose expression in the liver covaried with
the inferred gene abundance of gut microbial metabolic
pathways during spaceflight. Although this analysis only
links the predicted microbial metabolic capability with
transcriptional signatures implicating host metabolic state
and does not establish interactions of metabolic activities
between host and the gut microbiome, our observations
suggested interesting candidates for future studies to
mechanistically interrogate such interactions. In addition,
most of the associations are likely due to the concurrence
of independent responses of the host and microbiome to
the spaceflight environment, as the associations were no
longer significant after controlling the effects of experi-
mental groups. However, we highlight here a spaceflight-
associated decrease in the relative gene abundance of mi-
crobial putrescine degradation pathway, which was corre-
lated with the expression of host genes involved in protein
synthesis and degradation even after controlling for group
effects, suggesting a potential host-microbial interaction
that may contribute to a decline in protein metabolism in
the host liver during spaceflight [30, 31]. Furthermore,
some of the concurrent host and microbial responses dur-
ing spaceflight, even though they may not directly interact
with each other, could have important health implications.
For example, the inferred abundance of genes encoding
microbial glutathione-glutaredoxin redox enzymes was
positively correlated with the hepatic expression of host
genes involved in redox processes (Fig. 4b). These associa-
tions were not significant, however, when partial correla-
tions were computed to control for effects of experimental
groups (Fig. 4a). Thus, the data suggest that these particu-
lar host and microbial pathways were not likely interacting
with each other. However, the decreased gene abundance
of the microbial glutathione-glutaredoxin pathway and its
covariation with the expression of the host redox-related
genes during spaceflight suggest a decreased capability to
maintain redox homeostasis in all cellular systems, expos-
ing physiological functions to oxidative damage at a sys-
tems level [4, 32, 33].

Conclusions
Taken together, our observations demonstrate a robust
effect of the spaceflight on the gut microbiome, which
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may be attributed to specific space environmental fac-
tors, likely microgravity, and suggest an altered meta-
bolic potential in the gut microbiota that was associated
with the expression of metabolic genes in the host liver.
We speculate that microgravity leads to an altered meta-
bolic environment for the microbes in the gastrointes-
tinal tract via mechanisms such as lowered fluid shear
dynamics, altered digesta movement, as well as other
physiological and behavioral responses of the host, and
the gut microbiota adapts to such changes by shifting
community structure and associated gene content, which
may in turn influence host biological functions. As such,
a change in the gut microbiota is a key component of
mammalian adaptation to the space environment. Fur-
ther characterizations and mechanistic studies of the
complex interactions between the host and the gut
microbiome during spaceflight are needed and may en-
able interventions allowing the microbial communities
to adapt to the spaceflight-associated metabolic environ-
ment in the gut while avoiding harm or even conferring
benefits to mammalian physiology. Such a strategy will
mitigate risks to crew health and performance during fu-
ture long-term spaceflight missions.

Methods
Fecal samples from RR-1 mice
Fecal samples from 32 RR-1 animals were obtained
through NASA’s Biospecimen Sharing Program, and no
live animals were involved in this study. The detailed in-
formation regarding the RR-1 mission is available
through NASA’s Life Sciences Data Archive (https://lsda.
jsc.nasa.gov/document/doc_detail/Doc13600) as well as
previous publications [6]. Briefly, a single cohort of adult
(16 weeks of age at the time of launch) female C57BL/6J
mice were ordered from the Jackson Laboratory and
housed under standard vivarium conditions before
launch. All animals were fed on NASA’s spaceflight-ap-
proved rodent food bar starting at 24 days prior to the
launch and throughout the entire study. Two weeks
prior to the launch, animals were regrouped into cages
of 10 animals, and a week later, one cage of 10 mice was
selected as Flight animals and was launched on Sept. 21,
2014, with the SpaceX-4 resupply mission to the ISS.
Mice arrived at the ISS 4 days later and were then trans-
ferred into the ISS rodent habitat and housed for a total
of 37 days in space until euthanasia in orbit. Frozen car-
casses (stored at − 80 °C) were returned to Earth and
then were dissected for tissue collection, including the
fecal materials dissected from the colon. While this sam-
ple collection protocol requires additional freeze/thaw
cycles, which may influence microbiome profiling, it
avoided the technically challenging detailed dissection
in-orbit and is advantageous over sample collection from
live-returned animals, which introduces confounding

factors such as stress and condition changes associated
with the return flight. In addition to Flight, three ground
control groups (a cage of 10 mice per group) were se-
lected from the same cohort. These include (1) a Basal
group euthanized the day after the launch, (2) a Vivar-
ium group kept in standard cages, and (3) a Ground
group experienced a launch/transportation simulation
and housed in the identical spaceflight habitat hardware
placed in an ISSES chamber, which reproduced the
temperature, CO2, and humidity environment of Flight
animals based on 72-hour-delayed data collected on ISS.
Ground animals were kept in ISSES for 37 days and were
euthanized on day 40 since the launch of Flight animals.
Vivarium animals were euthanized together with the
Ground animals. Euthanasia, as well as tissue and fecal
sample collection procedures (including the number of
freeze/thaw cycles involved) for animals from the three
control groups, were performed the same way as the
Flight group. Fecal samples were available from a subset
of the RR-1 mice, including 7 Flight, 7 Control, 8 Vivar-
ium, and 10 Basal animals. Note that RR-1 also included
another set of mice, known as the CASIS commercial
mice, which were in space for 21–22 days [34]. Samples
from these mice were not a part of NASA’s Biospecimen
Sharing Program and were not included in our study.

Microbiome characterization
Genomic DNA was extracted from individual fecal pel-
lets using a Maxwell Tissue kit, implemented on a Max-
well 16 automated extraction robot (Promega, Madison,
WI), as described previously [35]. The extracted DNA
was PCR-amplified using primers (forward 515F GTGC
CAGCMGCCGCGGTAA and reverse 926R CCGYCA
ATTYMTTTRAGTTT) targeting the V4–V5 variable re-
gions of microbial 16S ribosomal RNA genes [36], using
a two-stage targeted amplicon sequencing protocol [37].
The primers contained 5′ common sequence tags
(known as common sequence 1 and 2, CS1 and CS2)
[38] in addition to the 515F/926R sequences. First-stage
PCR amplifications were performed in 10 μl reactions in
96-well plates, using the MyTaq HS 2X master mix. PCR
conditions were 95 °C for 5 min, followed by 28 cycles of
95 °C for 30′′, 50 °C for 60′′, and 72 °C for 90′′. Subse-
quently, a second PCR amplification was performed in
10 μl reactions in 96-well plates. A master mix for the
entire plate was made using the MyTaq HS 2X master
mix. Each well received a separate primer pair with a
unique 10-base barcode, obtained from the Access Array
Barcode Library for Illumina (Fluidigm, South San Fran-
cisco, CA; Item# 100-4876). These AccessArray primers
contained the CS1 and CS2 linkers at the 3′ ends of the
oligonucleotides. Cycling conditions were as follows:
95 °C for 5 min, followed by 8 cycles of 95 °C for 30′′,
60 °C for 30′′, and 72 °C for 30′′. A final 7-min
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elongation step was performed at 72 °C. Samples were
pooled in equal volume using an EpMotion5075 liquid
handling robot (Eppendorf, Hamburg, Germany). The
pooled libraries were purified using an AMPure XP
cleanup protocol (0.6 ×, vol/vol; Agencourt, Beckmann-
Coulter) to remove fragments smaller than 300 bp. The
pooled libraries, with a 20% phiX spike-in, were loaded
onto an Illumina MiniSeq mid-output flow cell (2 × 150
paired-end reads). Based on the distribution of reads per
barcode, the amplicons (before purification) were re-
pooled to generate a more balanced distribution of
reads. The re-pooled libraries were again purified using
the AMPure XP cleanup protocol to remove fragments
smaller than 300 bp. The re-pooled libraries, with a 20%
phiX spike-in, were loaded onto a MiSeq v3 flow cell
and sequenced (2 × 300 paired-end reads; > 40,000
reads/sample requested) using an Illumina MiSeq se-
quencer. Fluidigm sequencing primers, targeting the
CS1 and CS2 linker regions, were used to initiate se-
quencing. De-multiplexing of reads was performed on
the instrument. Library preparation, pooling, size selec-
tion, and sequencing were performed at the University
of Illinois at Chicago Sequencing Core (UICSQC).
Sequence data were processed through a QIIME (v1.8)

pipeline. Briefly, forward and reverse reads were merged
using PEAR [39]. Reads were then trimmed using a quality
threshold of P = 0.01. Primer sequences were trimmed
from the reads, and any reads lacking either primer were
discarded. Reads with internal ambiguous nucleotides or
less than 300 bp in length after trimming were also dis-
carded. Reads were further filtered to exclude chimeric se-
quences identified using the USEARCH algorithm [40] as
compared with the Greengenes_13_8 database [41]. The
software package QIIME [42] was used to generate taxo-
nomic summaries, employing a “sub-OTU” modification
of the standard pipeline [43]. Briefly, all sequences were
dereplicated to produce a list of unique sequences. All se-
quences that had an abundance of at least 10 counts were
designated “seed” sequences, and USEARCH was used to
find the nearest seed sequence for any non-seed sequence
with a minimum identity threshold of 98%. The count
threshold (i.e., 10 counts) for choosing seed sequences was
set based on the distribution of the sequence data. When
sequence data were binned based on the replicate number
of a unique sequence and the total sequence count in each
bin was plotted against the replicate number, we found that
the inflection point on the curve falls just below a count of
10, below which the total sequence counts in the bins dis-
played a nearly exponential decay. Using this threshold,
less than 2% of the unique sequences were used as seed se-
quences for the clustering, accounting for 58% of the
sequence counts. Taxonomic annotations were assigned to
each master sequence and independent low-abundance
sequences using Silva_132 reference database, and sample-

by-taxon abundance matrices at multiple taxonomic levels
were generated for statistical analyses and data
visualization. One Flight sample was excluded from all
subsequent analysis due to an extremely low number of
sequencing reads. The final dataset contains 6 Flight, 7
Control, 8 Vivarium, and 10 Basal samples (1 sample
per animal).

Diversity and differential abundance analysis
For alpha diversity, data was rarefied at 33.2 k reads per
sample, and Shannon indexes were computed at each
taxonomic level. Non-parametric statistical tests (i.e.,
Kruskal-Wallis and Mann-Whitney tests) were used to
test for group differences. To perform a beta diversity ana-
lysis appropriate to the compositional nature of sequen-
cing data [44, 45], we used PCA on ILR-transformed
sequencing counts [46, 47]. The non-parametric PERMA-
NOVA test [48], implemented in the adonis function of
the R/vegan package (v2.5-2) was then used to identify
group differences with 10,000 permutations.
To identify differentially abundant taxa, we applied

ALDEx2 [9] (v1.12.0) at each taxonomic level. We fo-
cused on taxa with an overall relative abundance more
than 0.01% and excluded low-abundance taxa from the
differential abundance analysis. ALDEx2 performs CLR-
transformation to the sequencing count data for a com-
positionally coherent inference and estimates P values
and false discovery rates (FDR) from independent testing
of Monte Carlo Dirichlet instances to control for type-I
error due to the underestimated variance of low abun-
dance taxa. Data at each taxonomic level was analyzed
independently. While ALDEx2 provides both parametric
and non-parametric test statistics, only non-parametric
test results were reported in this study.
We inferred the microbial gene content from the taxa

abundance using PICRUSt2 (https://github.com/picrust/
picrust2; v2.0.0-b). PICRUSt2 is a significant expansion
of PICRUSt [13] with a > 10 × larger reference genomes
database and provides MetaCyc [49] pathway predictions
comparable with typical shotgun metagenomics datasets.
We used ALDEx2 to identify group differences in the in-
ferred gene abundance of MetaCyc pathways. Differen-
tially abundant taxa and inferred pathways were
visualized in heatmaps and hierarchically clustered based
on Euclidian distances of CLR-transformed data. To
evaluate the influence of reference catalog on the predic-
tion of microbial functional gene content, we replaced
the default reference catalog in PICRUSt2 with a mouse
gut microbiome specific reference catalog, the iMGMC
reference [14]. The catalog files were downloaded from
https://github.com/tillrobin/iMGMC/tree/master/
PICRUSt. A phylogenetic tree was built from the down-
loaded 16S rRNA alignment file using RAxML-NG [50]
(v0.8.0) with the GTR +G model and 50 bootstraps. The
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phylogenetic tree was provided together with all other
iMGMC reference files to PICRUSt2. Since the func-
tional genes predicted with iMGMC reference was in
KEGG Orthology IDs, the gene IDs were converted to
Enzyme Commission numbers using the R/KEGGREST
package (v1.22.0) which provides a client interface to the
KEGG REST server. For each KEGG Orthology IDs
matched to multiple Enzyme Commission numbers, the
predicted abundance was split equally to each Enzyme
Commission number; for each Enzyme Commission
number matched to multiple KEGG Orthology IDs, the
summed abundance was used. After this conversion,
predicted abundance for enzymes was provided to
PICRUSt2 to aggregate into MetaCyc pathway abun-
dance for a comparison with results obtained using the
PICRUSt2 default reference.

STARMAPs
We were interested in comparing microbiome changes
in two different datasets, in order to test the reproduci-
bility of space-induced changes in the microbiome as
well as to associate the effects of candidate factors to the
observed effects of spaceflight. Methods comparing the
differential expression patterns in two transcriptomics
datasets have been previously developed. These methods
were based on testing the enrichment of a list of up/
downregulated genes in one dataset against the pattern
of genome-wide differential expression/abundance in an-
other dataset, as exemplified by the method developed
by the Connectivity Map project [51]. However, these
methods do not perform well on microbiome datasets,
especially those using 16S rRNA amplicon sequencing,
due to the fact that a typical microbiome dataset un-
covers only hundreds of taxa (as opposed to tens of
thousands of genes in transcriptomics datasets) and a
handful of differentially abundant taxa, leading to much
reduced statistical power. To address this issue, we de-
veloped STARMAPs (Similarity Test for Accordant and
Reproducible Microbiome Abundance Patterns), which
does not depend on differential abundance or enrich-
ment analyses but instead testing whether particular lin-
ear combinations of taxon abundance capture the group
differences in two microbiome datasets in a similar
fashion.
STARMAPs considers the taxon-by-sample tables

from two microbiome datasets, ds1 and ds2. When the
differential taxon abundance patterns in ds1 and ds2 are
similar, the differentially abundant taxa in two datasets
involve a similar set of taxa and the group differences of
a given taxon in two datasets are comparable in magni-
tude and direction. Thus, it can be expected that, when
ds1 and ds2 samples are plotted in the same microbial
taxon space, the samples segregate by their respective
groups in each dataset in a similar fashion. When

applying a rotation of axes in PCA so that the first few
PCs capture the group segregation in ds1, the similar
group segregation in ds2 would also be apparent with
the same PCs from the same axis rotation. To test this
similarity in group segregation, STARMAPs first
matches the microbial taxa at a given taxonomic level to
include all taxa detected in either dataset, so that the
samples of two datasets are in the same microbial taxon
space. Taxa detected only in one dataset are filled with 0
counts in the other dataset. Next, a point estimate of
relative abundance is obtained from the mean of 1000
Monte Carlo Dirichlet instances based on the counts
with an added offset of 0.5. STARMAPs then ILR-trans-
forms the data into the Euclidean space for both datasets
and performs PCA using only ds1. The same rotation
matrix from PCA of ds1 is applied to ds2 so that sam-
ples of ds2 are projected to the same PCA axes as ds1.
Sample segregation patterns in the two datasets are then
evaluated with this set of PCA axes. A significant simi-
larity in the group differences is called by STARMAPs
when the following three criteria are met simultaneously:
(1) ds1 samples are segregated by the groups, evaluated
by PERMANOVA of the first few PCs. (2) Group segre-
gation in ds2 can be seen on the same PCA axes captur-
ing the ds1 group segregation, also evaluated by
PERMANOVA. In addition to the typical sample permu-
tations used in PERMANOVA, a second permutation
test, in which the taxon matching between ds1 and ds2
is randomized, is also used in order to ensure the speci-
ficity of the linear combination of microbial taxa in dis-
criminating group differences. The larger P value from
the two permutation tests is taken as the final P value.
(3) The directions of changes in two datasets are not
perpendicular to each other. To evaluate this, a line is
drawn through the centers of the two groups being com-
pared in each dataset, to represent the directions of
change in the respective dataset. The cosine of the angle
between the two lines (cosθ) is computed. Thus, when
cosθ = 1, the directions of group differences in the two
datasets are the same; when cosθ = − 1, the directions
are the opposite of each other; and when cosθ = 0, the
directions are perpendicular and the group differences in
two datasets are not comparable. A bootstrap test is used
to estimate Pr(cosθ = 0) as the test P value. Since calling
similarity requires satisfaction of all three conditions de-
scribed above, the rejection region of the overall hypoth-
esis test is the intersection of the rejection regions of the
component tests. Thus, the omnibus P value of this over-
all hypothesis test can be given using the Intersection-
Union Test framework and computed as the supremum
of the P values of the component tests [52]. We imple-
mented STARMAPs (v2) in R (v3.5) and the script is avail-
able at GitHub (https://github.com/pjiang82/
STARMAPs).
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We tested the performance of STARMAPs using simu-
lated datasets. Data simulations were performed as de-
scribed by McMurdie and Holmes [53] using the fecal
microbiome data from the “Global Patterns” dataset [54]
for a realistic evaluation of STARMAPs performance. For
each simulation, we considered two datasets, each with
two groups and a sample size of N per group. We simu-
lated four N samples at sequencing depths determined by
the depths of randomly chosen samples in the Global Pat-
terns dataset and randomly drew sequence counts to each
of the microbial species according to the overall species
abundance distribution of the fecal samples in the Global
Patterns dataset. To simulate differential abundance pat-
terns, we assumed that a moderate proportion (10%) of
the microbial species were differentially abundant with a
specified effect size ranging from small to large fold
changes [log2(FC) = 1, 2, 3, or 4], and we applied the effect
size to the randomly selected set of species. To simulate a
pair of datasets with true similarity in the respective group
difference, the effect size was applied to the same set of
microbial species in each of the datasets. To simulate a
pair of datasets with no similarity, the effect size was ap-
plied to distinct sets of species in two datasets, while keep-
ing the number of species in each set the same. For each
of the 12 evaluations shown in Additional file 2: Figure S1,
2000 pairs of datasets were simulated with an approxi-
mately 1:1 ratio for true similarity pairs and no similarity
pairs. In Simulation 1, we tested the effects of sample size.
We assumed the two datasets uncovered the exact same
species (i.e., the proportion of species commonly found in
two datasets is 1, or, overlap = 1) and the differential abun-
dant species in two datasets changed with the same
log2(FC) [i.e., no variation in log2(FC), or, s = 0]. In Simu-
lation 2, we evaluated the effects of variable effect sizes be-
tween two datasets, while keeping the sample size N at 6
per group and the proportion of overlapping species be-
tween datasets at 1. While the same set of species in two
datasets was set as differentially abundant, the log2FC ap-
plied to the first dataset was constant (i.e., 1, 2, 3, or 4) but
the effect size applied to the second dataset is a normally
distributed variable with a mean of 1, 2, 3, or 4 (same as in
the first dataset) and a standard deviation s (s = 0.5, 1, 2,
or 4). In Simulation 3, we evaluated effects of varying pro-
portions of overlapping species found in two datasets,
while setting the sample size N = 6 per group and the
standard deviation of effect size applied to the second
dataset s = 1. We simulated the differential abundance pat-
terns in the same way as in Simulation 2, but randomly
added a string of “xx” to the species names at a given pro-
portion (1 - overlap) in the second dataset so that they
cannot be matched with the species names in the first
dataset. Codes used for the data simulations and perform-
ance evaluations are available at GitHub (https://github.
com/pjiang82/STARMAPs).

We used STARMAPs to compare the microbiome
differences between Flight and Ground animals during
RR-1 to the spaceflight-associated differences during
STS-135 and to radiation-induced changes in Earth-
based studies. The raw 16S rRNA gene sequencing
reads were downloaded from NCBI’s Sequence Read
Archive (SRA) database. Sequencing data from STS-
135 mice and rats exposed to low-LET radiation [5]
were downloaded with the accession number
SRP058196 but were processed separately. Sequencing
data from mice exposed to high-LET radiation [7] were
downloaded with the accession number SRP098151.
Since the 16S rRNA gene sequencing was done with
different primers and different settings, it is not pos-
sible to process the data in an identical manner as our
RR-1 data. While using a closed-reference operational
taxonomic unit (OTU) approach can reduce the im-
pact of biases associated with different primer sets, it
may also fail to capture the key variations of interest
and is less intuitive given all other analyses were done
with the typical open-reference OTU approach. In
addition, our simulations have suggested that STAR-
MAPs can tolerate some challenging conditions associ-
ated with dataset-specific biological and technical
biases. Therefore, we processed these SRA datasets in-
dependently using the QIIME2 (https://qiime2.org/;
v2018.2) pipeline. The SRP058196 dataset (i.e., STS-
135 mice and low-LET irradiated rats) contains single-
end sequencing data of the V1–V2 region of the bac-
terial 16S rRNA gene and was analyzed with the De-
blur [55] plugin, which trimmed the sequences at a
quality threshold of P < 1 × 10−4, removed chimeras
and reads shorter than 200 bases, and assembled the
sub-OTUs at 99% sequence identity. The SRP098151
dataset (i.e., high-LET irradiated mice) contains pair-
end sequencing data of the V4 region of the 16S rRNA
gene, and DADA2 [56] was used to denoise and dere-
plicate sequence reads with a quality filtering at P <
0.01 and chimera removal, before constructing the fea-
ture table at 99% sequence identity. For each dataset,
taxonomic assignments were made according to Silva_
132 reference database, and a sample-by-species abun-
dance matrix was generated for analysis using STAR-
MAPs in comparison with the RR-1 data. In this study,
10,000 permutations or bootstraps were used for each
of the three composite tests in STARMAPs for all
comparisons.

Analysis of the liver transcriptome
The liver transcriptome has been profiled in a subset of
RR-1 animals using RNA-seq, and the data is available
via the NASA GeneLab database under the accession
numbers GLDS-48 and GLDS-168. The GLDS-48
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dataset does not include Basal and Vivarium animals
and thus only contains half of the samples as in GLDS-
168. We therefore only used the GLDS-168 dataset. The
GLDS-168 dataset includes transcriptomics data from 20
RR-1 animals, 16 of which (including 5 Basal, 4 Vivar-
ium, 3 Ground, and 4 Flight mice) were also studied for
their fecal microbiome in this study. The purpose of the
GLDS-168 dataset was to evaluate the utility of control
RNA spike-ins in RNA-seq data analysis, and we only
used data from sample aliquots without the added con-
trol RNA spike-ins. The detailed sample processing and
sequencing procedures can be found in https://genelab-
data.ndc.nasa.gov/genelab/accession/GLDS-168/. RNA
sequencing reads were analyzed against the mouse refer-
ence transcriptome (GRCm38) using Salmon [57]
(v0.10.2) to quantify transcript-level expression (mea-
sured as transcript per million, or TPM), which was then
summarized into the gene level using tximport [58]
(v1.8.0). We calculated Spearman’s correlations between
gene-level expression (CLR-transformed TPM) and the
PICRUSt2-inferred gene abundance of microbial path-
ways (also CLR-transformed), for each of the inferred
microbial pathways that were differentially abundant be-
tween Flight and Ground group. FDRs were estimated
using the Benjamini-Hochberg procedure, independently
for correlations of each microbial pathway. This permis-
sive approach was taken because our analysis was fo-
cused on a set of pre-selected microbial pathways and
was interested to capture host gene expression that con-
cordantly altered with each microbial pathway of inter-
est. For each significant correlation between a host gene
and a microbial pathway, partial correlations controlling
for experimental groups were also computed. To com-
pute partial correlations, we first fit the gene expression
or microbial pathway gene abundance separately in ro-
bust linear models with the experimental groups. Spear-
man correlations were then computed using the
residuals of these linear models. DAVID [59] (v6.8) was
used to identify host functions enriched with genes that
were correlated with each of the microbial pathways.

Additional files

Additional file 1: The complete set of analysis results. (XLSX 1341 kb)

Additional file 2: Figure S1. Receiver operating characteristic (ROC)
curves showing the performance of STARMAPs using simulated data. In
each panel, STARMAPs was applied to 2000 simulated pairs of datasets that
either shared a set of differentially abundant species (true positives) or
involved distinct sets of differentially abundant species (true negatives), and
the sensitivity (true positive fraction) and specificity (1 – false positive
fraction) of STARMAPs were plotted at given STARMAPs omnibus P values
ranging from 0 to 1. The enlarged point on each curve indicates the
sensitivity and specificity estimated at omnibus P = 0.05. Simulations were
done with varying amplitudes of differential abundance [i.e., effect size in
log2(FC); rows] over a range of parameters representing different scenarios
(columns). These varying parameters included the sample size (N) for each

group, the variance (s) of the log2(FC) applied to the second dataset of a
given pair of datasets, and the proportion of species commonly found in a
given pair of datasets (overlap). (PDF 2000 kb)

Additional file 3: Figure S2. Radiation-induced changes in the
community structure of gut microbiome in rodents. Beta diversity
analyses of the two publically available datasets were performed using
PCA on ILR-transformed relative abundance data at the species level. (A)
Exposure to high-LET radiation (600 MeV/n 16O) at various doses altered
the community structure of the gut microbiome in mice 10 or 30 days
after the exposure (n = 10 in each group) [7]. Significant effects of time
(P = 0.018, PERMANOVA) and dose (P < 0.0001, PERMANOVA) were
observed. (B) Exposing rats to low-LET radiation (137Cs fractionated
radiation at 0.375 Gy every other day, totaling at 3 Gy) induced a shift in
the gut microbiome community structure (P = 0.0029, PERMANOVA) [5].
A diet-by-radiation interaction effect was also observed (P = 0.033,
PERMANOVA). Sample sizes: sham/Normal-Fe, n = 9; irradiated/Normal-Fe,
n = 8; sham/High-Fe, n = 7; irradiated/High-Fe, n = 8. (PDF 2280 kb)

Additional file 4: Figure S3. Comparison between inferred gene
abundance of microbial pathways predicted with the PICRUSt default
reference and iMGMC reference. (A) A Venn diagram showing the
number of pathways uncovered with each of the reference catalogs. (B)
Coefficients of pathway-wise correlations computed for each of the
samples showing a high agreement in the predicted gene abundance of
pathways uncovered by both reference catalogs. (C) Sample-wise
correlations between the relative abundance predicted using the two
reference catalogs were computed for each of the pathways, and a
histogram is used here to show the distribution of correlation
coefficients. CLR-transformed relative abundance was used to compute
correlation coefficients. (D) A scatter plot showing the overall similarity
(Pearson’s r = 0.61, P = 6.98 × 10-61) in the differential abundance effect
sizes estimated by ALDEx2 using gene abundance predicted with either
reference catalog. Each point denotes a pathway that commonly
uncovered using both references, and points filled with colors indicate
pathways found to be differentially abundant (FDR < 0.1, ALDEx2) when
the abundance was predicted using either reference or both. The lower
correlation coefficients in C and D compared to B was expected, as
differences in the number of pathways uncovered with each reference
influences the estimated total sequence abundance and thus the
estimated relative abundance of each predicted pathway. (PDF 1300 kb)
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