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Abstract

Background: Direct and indirect selection pressures imposed by antibiotics and co-selective agents and horizontal
gene transfer are fundamental drivers of the evolution and spread of antibiotic resistance. Therefore, effective
environmental monitoring tools should ideally capture not only antibiotic resistance genes (ARGs), but also mobile
genetic elements (MGEs) and indicators of co-selective forces, such as metal resistance genes (MRGs). A major
challenge towards characterizing the potential human health risk of antibiotic resistance is the ability to identify
ARG-carrying microorganisms, of which human pathogens are arguably of greatest risk. Historically, short reads
produced by next-generation sequencing technologies have hampered confidence in assemblies for achieving
these purposes.

Results: Here, we introduce NanoARG, an online computational resource that takes advantage of the long reads
produced by nanopore sequencing technology. Specifically, long nanopore reads enable identification of ARGs in
the context of relevant neighboring genes, thus providing valuable insight into mobility, co-selection, and pathogenicity.
NanoARG was applied to study a variety of nanopore sequencing data to demonstrate its functionality. NanoARG was
further validated through characterizing its ability to correctly identify ARGs in sequences of varying lengths and a range
of sequencing error rates.

Conclusions: NanoARG allows users to upload sequence data online and provides various means to analyze and visualize
the data, including quantitative and simultaneous profiling of ARGs, MRGs, MGEs, and putative pathogens. A user-friendly
interface allows users the analysis of long DNA sequences (including assembled contigs), facilitating data processing,
analysis, and visualization. NanoARG is publicly available and freely accessible at https://bench.cs.vt.edu/nanoarg.
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Background
Antimicrobial resistance (AMR) compromises the ability
to prevent and treat infectious disease and represents a
highly significant and growing global public health threat
[1]. It is currently estimated that the annual number of
deaths worldwide due to antibiotic resistance will top
ten million by 2050 [2]. In response, numerous national
and international agencies have called for expanded
monitoring both in the clinic as well as in environmental
settings. In particular, environmental monitoring can
provide insight into not only human and agricultural

inputs of antibiotic-resistant bacteria and antibiotic re-
sistance genes (ARGs), but also factors contributing to
the evolution and spread of resistant pathogens. For
instance, various environmental compartments, such as
wastewater treatment plants, livestock lagoons, and
amended soils, can act as “environmental reactors,” in
which resistant bacteria discharged from domestic,
hospital, industrial, and agricultural waste streams have
the opportunity to interact with native aquatic and soil
bacteria in the presence of selection pressures to poten-
tially give rise to new resistant forms [3, 4]. Humans
may subsequently be exposed to resistant organisms via
consumption of food crops affected by biological soil
amendment or irrigation, as well as through contact with
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treated and untreated water used for recreational, hy-
gienic, and potable purposes [5, 6].
Molecular-based monitoring presents many advantages

over culture-based techniques for tracking antibiotic
resistance in the environment. This is particularly true
with respect to the potential to recover rich information
regarding the carriage and movement of ARGs within
complex microbial communities. Culture-based tech-
niques are time-consuming and only provide information
about one target species at a time, thus potentially over-
looking key microbial ecological processes that contribute
to the spread of AMR. Thus, directly targeting ARGs as
“contaminants” of concern that transcend bacterial hosts
has gained popularity. In particular, horizontal gene trans-
fer (HGT) [7] plays a critical role in the rise of new resist-
ant strains and the dissemination of AMR in microbial
ecosystems [8]. Intercellular transfer of ARGs among
bacteria is facilitated via mobile genetic elements (MGEs),
such as transposons, plasmids, and integrons [9]. In-
tegrons are key genetic elements of interest as they facili-
tate capture of multiple ARGs, thus effectively functioning
as vehicles for dissemination of multidrug resistance [10].
The mechanisms involved in HGT include conjugation,
transformation, transduction, and homologous recombi-
nation, where DNA is incorporated by transposition,
replication, and integration [9].
Multidrug resistance has emerged as a major clinical

challenge. For example, methicillin-resistant Staphylococcus
aureus (MRSA) is responsible for major hospital infections,
with few options for treatment, especially when resistant to
vancomycin [11]. More recently, New Delhi Metallo beta
lactamase (blaNDM-1) has emerged as a major concern, as
it encodes for resistance to powerful last-resort carbapenem
antibiotics and is carried on a highly mobile genetic
element associated with multidrug resistance that has
been detected in several different pathogenic species,
including Escherichia coli, Klebsiella pneumoniae, Provi-
dencia rettgeri, and Acinetobacter baumannii [12–14]. This
example emphasizes that, ideally, monitoring technologies
should provide a rapid and robust characterization of
ARGs and their likely association with MGEs, multidrug
resistance, and carriage by pathogen hosts. In this
regard, shotgun metagenomic sequencing techniques
have emerged as a promising tool for the characterization of
the diverse array of ARGs found in different environments
[4, 15–17]. In particular, high-throughput next-generation
DNA sequencing technologies, such as the Illumina plat-
form [18] and 454 pyrosequencing [19, 20], have enabled a
new dimension to ARG monitoring in the environment.
While providing unprecedented amounts of sequence in-

formation (360,081 metagenomes processed on MG-RAST
[21], 20,120 on EBI-metagenomics [22], and 3038 on Meta-
Storm [23]), a major drawback of these technologies is the
very short DNA sequence reads produced, at most a few

hundred nucleotides long. Nonetheless, next-generation
DNA sequencing is growing in use as a powerful means of
profiling ARG occurrence in various environments. ARGs
can be identified by direct annotation through comparing
sequences against available ARG databases. This enables
relatively quantitative comparisons, including relative abun-
dance calculations (e.g., normalization to 16S rRNA genes
or total ARGs). Alternatively, short reads can be assembled
into longer contigs for assembly-based annotation, which
can improve resolution in identifying ARGs and can also
provide information about neighboring genes. Both
approaches have limitations. The first can only be used to
detect previously described ARGs that populate available
databases [24] and requires determination of an arbitrary
DNA sequence identity cutoff [25]. This process generally
undermines the possibility to identify novel ARGs, although
a novel similarity-based method was recently proposed to
annotate ARGs with low similarity to existing database
ARGs [26]. Assembly, on the other hand, requires deeper
and more costly sequencing along with greater computa-
tional resources [27] and still can produce incorrect contigs
and chimeric assemblies [28]. For these reasons, it is im-
portant to be cautious in interpreting results derived from
the assembly of short sequence reads because of the possi-
bility of assembly errors and the lack of standard means to
estimate confidence in assembly accuracy [29–31]. Also,
quantitative value of data is lost following assembly.
In 2014, Oxford Nanopore Technologies (ONT) re-

leased the MinION nanopore sequencer, which provides
long sequence reads averaging 5 kb in length [32] and
even upwards of 100 kb [33]. A major disadvantage of
nanopore technology, however, is the high error rate,
estimated by Jain et al. to be below 8% [34]. However, this
error rate represents a marked improvement over an
earlier estimated error rate of 38% [35], with a general
trend towards reduced error rates with the help of read
correction algorithms [36]. It has been shown that nano-
pore technology can produce highly accurate assemblies,
in the range of 95% when applied to whole-genome
sequencing [37–39]. Nanopore sequencing has also been
applied for shotgun metagenomics, including identifica-
tion of viral pathogens [40], assessment of microbial diver-
sity in extreme environments [41], and detection of ARGs
in various environments [42–47]. To date, nanopore
sequencing has not been applied for the purpose of meta-
genomic profiling of ARGs in environmental samples.
Long nanopore reads offer a unique opportunity to ex-

plore the context of ARGs in terms of co-occurrence and
potential for mobility. Unlike de novo assembly of short
reads into longer contigs that might produce chimeric
sequences [48], nanopore sequencing inherently yields long
sequences, thus reducing the potential for chimeras.
Therefore, nanopore sequencing has potential to become a
powerful tool for the identification of the coexistence of

Arango-Argoty et al. Microbiome            (2019) 7:88 Page 2 of 18



ARGs, MGEs, and MRGs. Such an approach could sub-
stantially advance environmental monitoring approaches,
providing insight into the potential dissemination of AMR
through co-occurrence and co-selection of ARGs and
other relevant genes and genetic elements [49–51]. The
co-occurrence of ARGs and MGEs also enables tracking of
evidence of genetic events of interest, such as HGT [46].
Here, we introduce NanoARG, a user-friendly online

platform that enables comprehensive profiling of ARGs in
environmental samples using nanopore sequencing data. In
addition to comprehensive ARG profiling, NanoARG also
provides identification of MRGs, MGEs, taxonomic
markers, and sequences with high similarity to known
pathogens, along with interactive visualization of linkages
among these various elements on the same DNA strand.
To demonstrate the potential of NanoARG for environ-
mental ARG profiling, several nanopore sequencing libra-
ries, including environmental and clinical samples, were
analyzed. The Web service is freely available at https://
bench.cs.vt.edu/nanoarg. It requires a user login and sub-
scription to upload and process nanopore sequencing data.

Implementation
Web service and pipeline
Figure 1 illustrates the NanoARG architecture. The work-
flow has three major components: (1) a web interface, where
users can upload data and monitor the progress of the
analysis (Fig. 1a); (2) a Representational State Transfer
(RESTful) application program interface (API), which

monitors and sends the raw MinION nanopore sequencing
data to a computing cluster for processing (Fig. 1b); and (3)
a back end platform for retrieval of results and downstream
analyses (Fig. 1c), such as taxonomic annotation, gene co-
occurrence analysis, human pathogen-like sequence detec-
tion, network analysis, and multiple sample comparisons.
The nanopore reads are screened against databases cur-
rently available using different ‘omics tools, both of which
will be updated in the future when an improved version is
available. Results are stored as JavaScript Object Notation
(JSON) files. Metadata and user information are encrypted
and stored in a Mongo database. The workflow runs on a
large distributed system in the Advanced Research Compu-
ting (ARC) center at Virginia Tech. The cluster is managed
by the qsub queuing system [52].
The Web service provided by NanoARG includes several

features to facilitate analysis of environmentally derived
metagenomic data obtained via nanopore sequencing.
Users can submit data to the NanoARG Web service using
a simple graphical user interface (Fig. 2a). In the current
version of NanoARG, data submitted to the system is
stored privately. To start using the service, users are re-
quired to register an account with their email address,
which allows them to manage and control submitted
samples and projects. Users can voluntarily share their
projects with other users by sharing additional email
addresses. To create a project, a few parameters, such as
name, description, and biome type (Fig. 2b), are required.
Inside each project, users can add new samples, run new
analyses, or remove or rerun existing samples (Fig. 2c).

a b c

Fig. 1 NanoARG architecture. a The front end is the link between users and the analytical tools, allowing raw data upload and result visualization.
b A back end RESTful API manages the data, triggers the analysis, and monitors the status of the analysis. c The computing cluster module
processes the data and executes ARG, MGE, MRG, and taxonomic profiling
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NanoARG provides several types of visualizations to
interpret the results and allows users to download results
(e.g., absolute and relative abundances, co-occurrence
network associations, taxonomy annotations, and ARG
context patterns) in a tabular format containing the fields
required for tuning the results (E-value, identity percentage,
and coverage). These tables can be used for further pro-
cessing and statistical analysis. The NanoARG website was
developed using the Google Angular 5 framework (https://
angular.io), the back end was developed under the Node.js
framework (https://nodejs.org/en/). Finally, the computing
pipeline was developed using the Luigi framework, allowing
the monitoring and rescheduling of jobs that failed during
execution (https://github.com/spotify/luigi).

Required data types
NanoARG requires users to upload nanopore reads in
FASTA format [53], thus requiring that the users have
already preprocessed the raw fast5 files from the nanopore

sequencing device. This step can be done using a base-
calling program such as Albacore [54], Metrichor [32], or
Nanocall [55], with a sequence extractor toolkit such as
poretools [56]. Barcode recognition and read sorting by
barcodes can be conducted along with base calling. Before
submitting data to the system, users must provide simple
metadata consisting of sample name, biome, location, and
comments and can also manually enter details about
DNA extraction methodology, if so desired. Then, follow-
ing four simple steps (insert metadata, upload files, set up
parameters, and execute), users can submit the data and
initiate analysis (Fig. 2a).

Data processing
Once the data is uploaded to the computing cluster, it is
processed by several modules that perform a set of tasks
to obtain annotation profiles for ARGs, MGEs, MRGs,
and associated taxa (Fig. 3). The status of the analysis can
be easily monitored through the user interface (Fig. 2c).

a

c

b

Fig. 2 User interface. a Steps and metadata required to upload samples to NanoARG. b Projects are organized based on the creation date and
visualized as a timeline post. c List of samples under a project displaying basic metadata (biome), the monitor variable (status), and the three
actions that can be performed by users
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Clustering of local best hits for annotating ARGs, MRGs,
and MGEs
Traditionally, the analysis of long sequence reads, such as
assembled contigs, is achieved by first identifying open
reading frames (ORFs) within the sequences [23, 57–59]
and then searching (e.g., by utilizing BLAST) the ORFs
against a database for functional annotation. While nano-
pore sequences are analogous to long contigs, the high
sequencing error rate can limit detection of ORFs. There-
fore, NanoARG deploys DIAMOND [60] to align reads
against the corresponding databases. Then, it clusters all
the local best hits into regions and determines the anno-
tation of each region using either the best hit approach or
the DeepARG prediction [26], as shown in Fig. 4. Specifi-
cally, DIAMOND [60] is run with permissive parameters
(E-value 1e−5, identity 25%, coverage 40%, and --nk
15000), while bedtools [61] is used to cluster the local best
hits in each read into regions. Table 1 describes the data-
bases, methods, and parameters used in NanoARG. The
resulting regions/clusters are then annotated for ARGs,
MRGs, and MGEs, as detailed below.

ARG module
Following the clustering procedure of the local best hits to
identify putative regions of interest (Fig. 4), NanoARG uses
the DeepARG-LS model, a novel deep learning approach
developed by Arango-Argoty et al. [26] to detect and quan-
tify ARGs within the regions. A fundamental advantage of
the DeepARG model is its ability to recognize ARG-like
sequences without requiring high sequence identity cutoffs,
which is especially useful for nanopore sequences with high
sequencing error rates. The DeepARG-LS model is applied
with permissive parameters, specifically, an identity cutoff
of 25%, a coverage of 40%, and a probability of 0.5, to
predict that a region corresponds to an ARG.

Abundance of ARG classes and groups is estimated by
the copy number of ARGs. To enable comparison of ARG
abundance across samples, analogous to the approach
described by Ma et al. [58], the copy number of ARGs is
normalized to the total gigabase pairs (Gbp) of the sample
to obtain the relative ARG abundances:
Ai ¼ Ci

Cg
(1),

where Ci corresponds to the total count of ARG i
(copies of the ARG) and Cg corresponds to the size of
the data set in Gbp, that is, Cg = Γ/μg, where Γ is the total
number of nucleotides in the library and μg = 1 × 109

corresponds to 1 Gbp.

MRG module
To annotate MRGs, NanoARG queries the BacMet data-
base [62]. Following clustering of the local best hits to
identify putative regions of interest (Fig. 4), NanoARG
identifies and categorizes clusters to MRGs according to
their best hits. Absolute (copy number) and relative
abundances of MRGs are computed using Eq. (1).

MGE database and annotation module
MGEs were identified from the National Center for
Biotechnology Information (NCBI) non-redundant
database by using a keyword search [63]. Thus, genes
related to any of the following keywords—transposase,
transposon, integrase, integron, and recombinase—were
labeled as associated MGEs. In addition, a set of integrases
and class 1 integrons (IntI1) were added from the
integron-integrase (I-VIP) database [64]. All sequences
were clustered using CD-HIT [65] with an identity of
90%. The resulting MGE database consists of 227,640
genes. Similar to the annotation strategy adopted for
MRGs, nanopore reads are annotated using the MGE

Fig. 3 General overview of the NanoARG pipeline. FASTA input reads are processed by five modules to annotate reads according to ARGs, MRGs,
MGEs, and other functional genes and taxonomic affiliation. Annotations are then processed through several stages to achieve the desired
analysis (relative abundance, network analysis, co-occurrence, and putative pathogens). All analyses are packed into a JavaScript Object Notation
(JSON) file that can be easily streamed using an http request
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database and relative abundance of MGEs is computed
using Eq. (1).

Taxonomic annotation module
Nanopore reads are classified according to taxonomic
lineage using Centrifuge [66], a fast and accurate meta-
genomic classifier that uses the Burrows-Wheeler trans-
form (BWT) and FM-index. Centrifuge is executed with
default parameters (--min-hitlen 25 -f -k 50). Taxonomic
relative abundance is estimated by Centrifuge using an
expectation maximization (EM) algorithm similar to the
one used in Cufflinks [67] and Sailfish [68]. This allows
the abundance estimation to be sensitive to genomes
that share nearly identical genomic regions. Therefore,
each nanopore read is assigned to a particular taxonomic
lineage. In addition, nanopore reads not successfully
processed by Centrifuge were labeled as unknown.

Co-occurrence of ARGs, MGEs, and MRGs
To support users in exploring the co-occurrence of
ARGs, MGEs, and MRGs in nanopore data sets,
NanoARG reports all reads that contain at least one
ARG, along with its neighboring genes. This data is
presented in a tabular format, where each entry contains
the start position, end position, gene coverage, percent
identity, e-value, strand (forward or reverse), and taxa
corresponding to each read. Furthermore, NanoARG
provides a gene map that depicts the gene arrangement,
which is useful for visualizing the gene’s co-occurrence
and context. Overall co-occurrence patterns are depicted
as a network, where nodes represent genes, node sizes
represent the number of occurrences, edges between
nodes represent genes’ co-occurrence, and edge thick-
ness depicts the number of times the co-occurrence
pattern is observed in the data set. Links among nodes
are added according to their co-occurrence among

Fig. 4 Annotation pipelines. a Identification of ARGs: input nanopore reads are aligned to the DeepARG database using DIAMOND. Alignments
are clustered based on their location and annotations are performed using the DeepARG-LS model. b Local Best Hit Approach: identification of
the functional genes within the nanopore reads. Alignments are clustered based on their location and the best hit for each cluster is selected.
Resulting alignments are filtered out based on sequence alignment quality

Table 1 NanoARG modules, parameters, and methods

Module Database Method Parameters

ARGs DeepARG-db DeepARG-LS --iden 25 --prob 0.5 --cov 0.4

MGEs NCBI-NR + I-VIP Diamond --evalue 1e-5 --iden 25 --nk 15000

MRGs BacMet Diamond --evalue 1e-5 --iden 25 --nk 15000

Taxonomy Bacteria, Aarchaea, Viruses, Human Centrifuge default

Pathogens ESKAPE + WHO Pattern matching to NCBI Taxa ID –NA
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the nanopore reads. The network is rendered using
cytoscape.js [69].

World Health Organization priority pathogens
The World Health Organization published a list of patho-
gens that are of particular concern with respect to the
spread of antimicrobial resistance [70]. This list consists of
three priority tiers, namely, critical, high, and medium, as
described in Table 2. Similarly, the ESKAPE database
houses multidrug-resistant pathogens that are critical to
human health [71]. These two resources are employed by
NanoARG to identify the potential presence of critical
pathogens in sequenced samples. Briefly, nanopore reads
are matched against sequences available for critical patho-
gens by examining the NCBI taxonomic identifier down-
loaded from the NCBI taxonomy website. Note that
NanoARG refers to these hits as “potential” pathogens
because the presence of true pathogens cannot be con-
firmed without higher resolution methods, such as whole
genome sequencing and viability confirmation.

Application of NanoARG to nanopore sequencing
datasets
To demonstrate NanoARG’s capability for profiling
ARGs in the context of other relevant genes, four DNA
extracts obtained from the influent sewage and activated
sludge of three different wastewater treatment plants
(WWTPs) were sequenced using the MinION nanopore
sequencing platform and analyzed together with four
publicly available nanopore metagenomic data sets using
NanoARG (see Table 2 and Additional file 3).

Nanopore sequencing of WWTP samples
Four WWTP samples (two influent sewage, two acti-
vated sludge) were collected from three WWTPs located
in Hong Kong (HK_INF and HK_AS), Switzerland
(CHE_INF), and India (IND_AS). Samples were pre-
served, transported, and subjected to DNA extraction
using a FastDNA SPIN Kit for Soil (MP Biomedicals) as
described by Li et al. [72]. DNA was purified with the
Genomic DNA Clean & Concentrator kit (Zymo Re-
search, Irvine, CA), and its concentration was quantified
with the Qubit dsDNA HS Assay Kit (Thermo Fisher
Scientific). DNA for each sample was pooled from tripli-
cate extractions with equal mass. Pooled DNA was
further purified and concentrated to meet the quality
and quantity requirement for library preparation. The
purity of DNA was then checked using a NanoPho-
tometer Pearl (Implen, Westlake Village, CA) via the
two ratios of A260/280 and A230/260. Each DNA sam-
ple (1000 ng) was prepared individually for sequencing
using the 1D Native Barcoding Genomic DNA kit (with
EXP NBD103 & SQK-LSK108; Oxford Nanopore Tech-
nology) following the manufacturer’s protocol. Each
sample was sequenced with a R9.4 flow cell for 24–48 h
without local base calling. Sequence reads were base
called using Albacore (v 1.2.4).

Results and discussion
NanoARG is an online computational resource designed
to process long DNA sequences for the purposes of an-
notating and co-locating ARGs, MGEs, and MRGs, and
to identify their taxonomic hosts. Publication-ready fig-
ures and tables derived from these annotations can be
directly produced, thus facilitating various dimensions of
environmental monitoring and sample comparison.

Visualization and data download
The NanoARG service provides a range of visualization
options, including bar charts (Fig. 5a), tables (Fig. 5b),
gene mapping charts (Fig. 5c), and co-occurrence net-
works (Fig. 5d) that display individual and combined
analyses of ARGs, MGEs, and MRGs. Results can be
downloaded from the tables and configured to include
all data, without any filtering. This enables users to
deploy their own filtering criteria and customize analyses.

Effect of error correction in the detection of ARGs
To examine the effect of error correction in the detection
of ARGs by NanoARG, HFS sample nanopore sequences
were analyzed with and without error correction. The
complete data set (library B) was downloaded from the
poreFUME repository, including the raw nanopore reads
(HFS-raw) along with the corrected reads after the pore-
FUME pipeline (HFS-poreFUME). In addition, the raw
nanopore reads were also corrected (HFS-CANU) using

Table 2 Twelve species of pathogenic bacteria prioritized by
the World Health Organization (WHO) as representing
substantial antibiotic resistance concern. WHO classification is
based on the three categories according to the impact on
human health and need for new antibiotic treatments

Importance Pathogen Confer resitance to

Critical Acinetobacter baumannii Carbapenem

Pseudomonas aeruginosa Carbapenem

Enterobacteriaceae Carbapenem, ESBL-producing

High Enterococcus faecium Vancomycin

Staphylococcus aureus Methicillin, vancomycin

Helicobacter pylori Clarithromycin

Campylobacter spp. Fluoroquinolone

Salmonellae Fluoroquinolone

Neisseria gonorrhoeae Cephalosporin, fluoroquinolone

Medium Streptococcus pneumoniae Penicillin

Haemophilus influenzae Ampicillin

Shigella spp. Fluoroquinolone
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the correction module from the CANU assembler. These
three data sets were submitted to the NanoARG pipeline
for annotation.
Figure 6 a shows that the alignment bit score of all the

ARGs is increased after read correction by both CANU
and poreFUME algorithms compared to the raw un-
corrected reads. Here, “high coverage” ARGs are those
ARGs with ≥ 10 read hits whereas “low coverage” ARGs
have fewer hits. For the CANU-correct algorithm, the
bit scores of “high coverage” ARGs such as CTX-M,
TEM, aadA, aac(6′)-I, and ermB ARGs were signifi-
cantly improved (Fig. 6b–d) compared to the raw reads.
Similarly, the bit scores of “low coverage” ARGs, such as

CARB, ermF, fosA3, mel, and tetQ, also showed an
improvement after read correction (Fig. 6e–g).
Figure 6 h depicts the intersection of ARG annotation

by NanoARG among the three data sets (HFS-raw, HFS-
CANU, HFS-poreFUME). ARGs with a minimum cover-
age of 80% and an identity greater than 30% were used
for this comparison. Altogether, 22 unique ARGs were
detected in the HFS-poreFUME data set, 32 in the HFS-
raw data set, and 33 in the HFS-CANU data set. Out of
the 22 ARGs detected in HFS-poreFUME, two ARGs
(abeS and CARB) were not identified in the HFS-raw
sample. Further examination revealed that these genes
were actually detected in the HFS-raw data set but were

Fig. 5 Visualization of NanoARG report. a Absolute abundances (read counts) are shown as bar charts as well as read length distribution and
taxonomic counts. b Tabular data: results are also shown in tables containing all the relevant information for each annotation (E-value, coverage,
identity, strand (forward, reverse), taxonomy, group, etc.). c Nanopore Read Map: this visualization organizes the gene matches in a linear format
showing the co-occurrence patterns for each nanopore read with at least one ARG. d Co-occurrence Network of ARGs, MGEs, and MRGs: this
interactive visualization allows users to drag and drop nodes to visualize the co-occurrence patterns in the sample
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removed after applying the filtering criteria described
above. These two genes were also detected following the
error correction step (HFS-CANU); indeed, all ARGs
that were detected in HSF-poreFUME were also identi-
fied after applying the error correction algorithm with
CANU. Although there were three uniquely identified
ARGs in the HFS-raw data set (FosC2, LuxR, emrK) and
four uniquely identified ARGs after CANU correction
(CARB, OXY, abeS, vanH), the results show that there
was a transition in the annotation from raw to corrected
reads. Thus, reads were reassigned to other ARGs with
higher alignment and classification scores. For instance,
raw reads containing the CTX-M gene were reassigned
to the OXY gene with higher alignment scores in the
HFS-CANU data set. The CARB gene was detected in
both HFS-raw and HFS-CANU data sets. However, the
coverage of this gene in the HFS-raw data set was below
the 80% cutoff used for the analysis and therefore was
removed from the list, whereas it was successfully de-
tected in the HFS-CANU data set, showing an improve-
ment in the alignment coverage. The reads containing
the fosC2 gene in the HFS-raw sample were reassigned
to the fosA gene in the HFS-CANU data set with higher
alignment bit scores (73–126.3, respectively). Interest-
ingly, the vanH gene was detected exclusively on the
HFS-CANU data set. These results show that the cor-
rection step enhances the detection of ARGs in MinION
nanopore sequencing samples.
To validate the read correction approach on a more com-

plex sample than HFS, one WWTP sample (CHE_INF)
subjected to direct shotgun metagenomic sequencing was
selected for further validation of the effect of the error cor-
rection algorithm. The metagenomic data set was processed
using CANU correct and submitted along with the raw

data sets to NanoARG for annotation. poreFUME was not
performed for this analysis because of dependency errors
present during execution of the pipeline. Figure 7 a shows
the bit score distribution of the ARG alignments for both
raw and corrected reads. Notably, the correction algorithm
did not significantly improve (p = 0.22) the overall ARGs
bit score of the alignments for this more complex sample.
Figure 7 b shows the intersection of the detected ARGs for
the WWTP sample with and without correction. Among
the majority of ARGs detected by NanoARG in both
raw and corrected reads, three were detected after read
correction, but not in the raw reads (OKP-A, bcrA,
otrC). To observe the effect of coverage depth for each
ARG, a closer examination of the individual ARGs did
not indicate enhancement of alignment scores for genes
with the greatest number of hits, such as ompR and
mexT (Fig. 7c–d), or for ARGs with low numbers of
hits, such as sul1 and kdpE (Fig. 7e–f ). Because the
overlap between the ARGs detected in the raw and cor-
rected reads is greater than 95% (Fig. 7b), NanoARG
was not further configured to perform error correction
and lets users decide whether to upload raw, corrected
reads, or assembled contigs. Users can find information
about error correction and how to perform it using
CANU on the NanoARG website.
The DeepARG-LS model deployed by NanoARG for

ARG detection was extensively validated in its original
development [26]. To further validate with respect to
nanopore sequencing concerns, we examined the effect of a
range of error rates (5%, 10%, 15%, 20%, 25%, and 30%) and
read lengths (1 kb, 5 kb, 10 kb, 15 kb, and 20 kb) on ARG
detection (see Additional file 3 for details). Our simulation
results demonstrated that error rates had little effect on
overall ARG detection (Additional file 3: Figure S1) and

a b c d

e f g h

Fig. 6 Comparison of error correction approach applied to a functional metagenomic sample. Comparison against raw reads and error-corrected
reads using CANU correct and poreFUME. p values were computed between the different distributions using a t test. a Bit score distribution of all
ARG alignments. b–d Comparison between raw and corrected reads using CANU correct for ARGs with high depth. e–g Bit score distribution for
raw and corrected reads for low depth ARGs. h Venn diagram showing discovered ARGs by raw and corrected reads by CANU and poreFUME
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also on different ARG classes when each ARG class is
considered separately (Additional file 3: Figure S2). The
observation of high sequencing error rate having little effect
on ARG detection was expected, given that DeepARG has
been shown to be capable of identifying ARGs that have
low sequence identity to known ARGs. For example,
among 76 novel beta lactamase genes that had less than
40% identity to known beta lactamase genes and were dis-
covered and verified experimentally [26], the DeepARG-LS
model was able to identify 65 (= 85% accuracy, see [26] for
details). Simulation results for read length indicate that the
longer the read length, the more likely ARGs are detected
(e.g., when read length reaches 10 kb or longer, more than
60% of the ARGs could be detected, see Additional file 3:
Figure S3 for details). As the nanopore sequencing techno-
logy improves over time, longer reads are expected which
will in turn benefit downstream sequence analyses.
To check the effect of time and consistency for the dis-

covery of ARGs in nanopore samples using NanoARG,
several data sets from the LSS sample were analyzed, in-
cluding comparison of nanopore- versus Illumina-derived
and whole-genome versus shot-gun data sets. Specifically,
a study of lettuce spiked with Salmonella enterica (LSS)
consisted of the following data sets: LSS-WGS (whole-
genome sequencing), LSS-M (shotgun metagenomics),
LSS-1.5hN (nanopore sequencing after 1.5 h), and LSS-
48hN (nanopore sequencing after 48 h). To facilitate com-
parison, the short reads from LSS_WGS and LSS-M were
first assembled using spades [31] with default parameters.

Assembled scaffolds were subsequently submitted to
NanoARG for annotation. The MinION nanopore se-
quencing libraries were first error corrected using CANU
correct algorithm prior to submitting to NanoARG. To
evaluate the accuracy of ARG detection, alignments were
compared relative to a threshold identity cutoff greater
than 80% and an alignment coverage greater than 90%
from the LSS-WGS sample. A total 28 ARGs passed these
filtering criteria, and further analyses were benchmarked
against these 28 ARGs assuming a high level of confidence
in their identity. Out of these 28 ARGs, two genes (mdtB
and bcr) were not detected in the Illumina shotgun meta-
genomic dataset (LSS-M). When comparing the 28 bench-
mark ARGs set against the 1.5-h nanopore LSS-1.5hN
sample, only four ARGs were detected (aac(6′)-I, mdfA,
mdtG, mdtM) in the nanopore dataset. This result sug-
gests that although nanopore sequencing offers a real-
time alternative, the detection of specific ARGs would still
require several hours. Still, when examining the 48-h
nanopore sample (LSS-15hN), 25 out of the 28 bench-
mark ARGs were discovered. Interestingly, mdtB, one of
the three undiscovered benchmark ARGs (mdtA, mdtB,
and mdtC) from the LSS-48hN was not found by either
the Illumina shotgun metagenomics sample (LSS-M) or
the nanopore samples. These three ARGs were noted to
pertain to the same antibiotic resistance mechanism.
Overall, this analysis demonstrates general consistency of
detection of ARGs in Illumina and nanopore sequencing
libraries using NanoARG.

a

d e f

b c

Fig. 7 Effect of error correction on analysis of an environmental sample (WWTP influent). a Bit score distribution for all ARGs detected by NanoARG
using the raw and CANU corrected reads. b Venn diagram showing the intersection of detected ARGs from raw and corrected reads. c–d Examples of
the effect of correction in individual ARGs with high number of hits comparing the raw and corrected reads. e–f Effect of correction in ARGs with few
hits from the raw and corrected data sets
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Application of NanoARG to nanopore sequencing data
NanoARG provides users with a master table that con-
tains the absolute and relative abundances of ARGs,
MRGs, MGEs, and taxonomy annotations for each
sample under a particular project. Relative abundances
are computed as described in Eq. 1. Key attributes of
this table are summarized in the following subsections,
using eight nanopore sequencing data sets as examples.

ARG abundance
WWTP samples contained the greatest number of reads
(> 687,835), whereas human-derived samples (HIU, HFS)
were comprised of much fewer reads (< 67,658) (See
Table 3 for details). Figure 8 shows relative abundances
of ARGs in the eight data sets. HFS contained the highest
relative ARG abundance, likely due to the sample prepar-
ation approach that intentionally targeted genomic content
associated with antibiotic resistance [73]. Comparatively,
the direct shotgun metagenomic sequenced environmental
samples had much lower ARG relative abundance. Among
the WWTP samples, HK Influent and HK Effluent ranked
the greatest in terms of relative abundance of ARGs.
In considering specific subcategories of resistance, the

HFS sample contained the greatest relative abundances of
beta lactamase, aminoglycoside, tetracycline, trimetho-
prim, fosfomycin, streptothricin, quinolone, and MLS
antibiotic classes (Fig. 8). Note that these categories were
also prominent in the WWTP and glacier samples, but to
a lesser extent than in HIU and the LSS samples. In
addition, although the multidrug category is highly abun-
dant in HIU and LSS, it has the lowest relative abundance
in the HFS sample. Interestingly, although HFS contained
the highest relative abundance of total ARGs, the WWTP
samples had the highest diversity of antibiotic resistance
classes measured as the number of uniquely identified
antibiotic types (Fig. 8). For instance, sul1 was one of the
most prevalent ARGs detected in WWTP samples [74].
However, sul1 was not found in the GEM sample. This is
consistent with the sul1 gene being an anthropogenic
marker of antibiotic resistance [75, 76]. Similarly, GEM
has lower diversity of beta lactamase genes (4 beta

lactamase ARGs) than the WWTP environments (25–237
beta lactamase ARGs). ARGs from acriflavine, triclosan,
aminocoumarin, tetracenomycin, rifampin, and puro-
mycin antibiotic classes were only detected in the WWTP
and LSS samples. HK_INF and HK_AS indicated the high-
est relative abundance of ARGs compared to IND_AS and
CHE_INF (Fig. 9a). Particularly, the HK_AS sample
showed a decrease compared to HK_INF in the abun-
dance of multidrug and aminoglycoside resistance genes,
but an increase in the beta-lactamase, MLS, and trimetho-
prim antibiotic types.

MGE abundance
For its MGE reference database, NanoARG curates a
collection of genes related to mobility, including trans-
posases, integrases, recombinases, and integrons, in
addition to a curated database for the class 1 integron
intI1 [64]. Transposases are the prominent MGEs across
all samples (Fig. 9b). Interestingly, the HFS sample
shows the lowest relative abundance of MGEs. The Sal-
monella-spiked sample along with the heavily infected
urine sample shows a lower MGEs relative abundance
compared to the environmental samples (WWTP and
glacier). Note that the glacier sample, GEM, contained
the lowest MGE abundance compared to the WWTP
samples. Interestingly, GEM also has the lowest diversity
of MGEs (integrases, transposases, and other MGEs)
when compared to other samples. This suggests that
there may be a lesser degree of HGT in relatively
pristine environments, such as glaciers, than in heavily
anthropogenically influenced environments, such as
WWTPs. Further, the class 1 integron intI1, which has
been proposed as an indicator of anthropogenic sources
of antibiotic resistance [10], is also consistent with this
trend. The integron intI1 was detected in all samples,
except in the GEM sample, likely because glaciers are
under less anthropogenic pressure such as antibiotics
usage or wastewater discharges. In addition, intI1 in the
HIU sample was ranked to be the highest in relative
abundance, which is expected given the clinical context
of this sample.

Table 3 Sample collection, metadata, and total number of reads for all validation samples

Samples Biome Sample labels Number of reads Reference Type of sample

Hong Kong activated sludge Wastewater HK_AS 3,307,368 This study Complex microbial community

Hong Kong influent Wastewater HK_INF 2,724,813 This study Complex microbial community

Switzerland influent Wastewater CHE_INF 687,835 This study Complex microbial community

India activated sludge Wastewater IND_INF 1,925,639 This study Complex microbial community

Artic glacier extreme metagenome Glacier GEM 344,966 Edwards, 2016 Complex microbial community

Heavily infected urine Human associated HIU 36,510 Schmidt, 2017 Enriched microbial community

Hospital fecal sample Human associated HFS 67,658 van der Helm, 2017 Enriched microbial community

Lettuce spiked Salmonella Plant surface LSS 211,806 Hyeon, 2018 Enriched microbial community
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Fig. 8 Relative abundance of antibiotic resistance classes for all biomes. Each cell in the heatmap corresponds to a particular antibiotic, biome
pair. Color represents the copy number of ARGs divided by 1 Gbp on a logarithmic scale

a b c

Fig. 9 Relative abundance computed as copy of genes per 1Gpb of a antibiotic resistance classes, b MGEs, and c MRGs
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MRG abundance
MRG profiles were markedly distinct when comparing
trends among samples relative to ARG profiles. The HFS
sample has the lowest number of MRGs, with only merP
and merT, part of the mercury transport mechanism
[62] (Fig. 9c). In contrast, LSS and HIU samples carried
the highest relative abundance of MRGs. The lack of
MRGs in HFS could be the result of the sample pre-
paration and/or lack of direct selection pressures rele-
vant to MRGs. Notably, the HFS sample carried high
beta lactamase, aminoglycoside, tetracycline, and MLS
abundance, contrasting with low multidrug relative
abundance. WWTP samples showed a different trend
compared to MGEs and ARGs. The CHE_INF sample
has the lowest relative abundance of MRGs compared to
other WWTP samples. Although CHE_INF has also the
lowest ARG relative abundance, its MRG abundance was
less than half that of any other WWTP sample, suggesting
that the CHE_INF sample had less exposure to heavy
metal compounds.

Taxonomy profile
The HIU sample indicated Escherichia coli as the domin-
ant species, which is expected given that a strain of MDR
E. coli had been spiked into the urine prior to DNA
extraction and analysis [43] (see Fig. 10d). Similarly,
Salmonella enterica was found to be most abundant
in the food sample metagenome (LSS), consistent
with known S. enterica contamination of this sample

[77]. The results of the HFS sample provide the opportu-
nity to evaluate how the NanoARG taxonomic profiling
performs with distinct approaches of library construction.
Specifically, the HFS study [42] was designed to maximize
chances of ARG detection, not to profile taxonomy. Thus,
it makes sense that the nanopore taxonomy profile con-
sists largely of E. coli, the expression host, and other taxa
that likely represent the original source of the transformed
ARGs, e.g., Klebsiella pneumoniae, Serratia marcescens,
and Enterococcus faecium (see Fig. 10b). A surprise with
respect to the species distribution in the WWTP samples
was substantial detection of human DNA (see Fig. 10e–h).
In one of the influent samples, Homo sapiens was the
dominant species (see Fig. 10f–g). This host DNA is also
observed to a lesser extent in the spiked samples (LSS,
HIU). Surprisingly, the HFS sample did not contain
detectable human DNA, suggesting that the technique
employed in this study to specifically enrich ARGs during
library preparation was successful for enriching ARGs.

ARG neighboring gene analysis
Long nanopore sequences allow the inspection of ARG
linkage patterns and the context of neighboring genes. For
instance, Fig. 11 shows that the sulfonamide ARG sul1
appears in different contexts depending on the WWTP
sample and its host. Also, sul1 is almost exclusively co-
located together with integrase/recombinase, along with
genes that have been found in plasmids, consistent with
theory that sul1 is an indicator of HGT. sul1 was

a b c d

e f g h

Fig. 10 Taxonomic distribution of validation samples representing distinct biomes. a Phylum distribution of WWTP samples. b–h Bar plots with
the total number of reads classified at the species taxonomy level for each validation sample
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commonly observed together with an integrase/recombi-
nase gene, followed by an aminoglycoside (aadA) gene,
a determinant of quaternary ammonium compound

resistance gene (qacE), which is also consistent with
prevailing understanding of typical class 1 integron
operon architecture [78]. Interestingly, this pattern seems

Fig. 11 ARG patterns and contexts. Different patterns of ARGs for the WWTP samples (influent and activated sludge). I/R integrase/recombinase,
sul1* uncharacterized protein in sul13’ region, aqcE quaternary ammonium compound-resistance protein, Eth* putative ethidium bromide
resistance protein
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to be modified in E. coli from two of the activated sludge
environments (HK and IND), where the integrase/recom-
binase and the aadA region is interrupted by the insertion
of a beta lactamase (OXA) gene. This linkage pattern
differs from the one observed in Hydrogenophaga sp. PBC
from the CHE influent. This sul1 gene analysis is only one
example of how NanoARG facilitates the inspection of
colocation of ARG together with other genes of interest
on the same DNA strand. Users can dig deeper to identify
other patterns of interest and discover signals of ARG
dissemination. The full co-occurrence result can be down-
loaded for further analysis.
Figure 12 shows the ARG co-occurrence network for

all samples. ARGs are linked if they co-occur within the
same read and ARGs that appear only once are not
shown. GEM, with a small number of ARGs belonging
to only multidrug and trimethoprim classes, has no
ARG co-occurrence (Fig. 12a). The WWTP samples
show a common pattern of co-occurrence between beta-
lactamases and aminoglycoside genes, indicating the
high potential of these genes to be carried simul-
taneously. The HFS sample was dominated by amino-
glycosides and beta lactamase genes, whereas LSS was
dominated by multidrug genes and glycopeptide genes.

Critical bacterial pathogens
Another important feature of NanoARG is the ability to
putatively identify pathogens based on similarity to avail-
able DNA sequences in databases (see Table 2) and to
assess their association with ARGs. For instance, DNA
sequences corresponding to two of the three pathogens

classified as having “critical importance” by the World
Health Organization, Acinetobacter baumannii and
Pseudomonas aeruginosa, were detected in all WWTP
samples (see Table 4, Additional file 1: Table S1 and
Additional file 2: Table S2). In contrast, DNA sequences
corresponding to Enterobacteriaceae (carbapenem-resist-
ant pathogen) were only detected in one WWTP sample
(HK_INF). In addition, the HK_INF sample contained
DNA sequences with high similarity to Neisseria gonor-
rhoeae. Pseudomonas aeruginosa was estimated to be
the most abundant pathogen in the “critical” category
across all samples and is particularly abundant in the
IND_AS sample. No pathogen-like DNA sequences were
found in the GEM sample, consistent with our expect-
ation of a relative lack of anthropogenic influence.
NanoARG clearly holds promise as a tool for screening
for the potential presence of pathogens pertaining to
various levels of priority. Further, the potential for puta-
tive pathogens to carry ARGs, MRGs, and MGEs can be
readily assessed. However, it is important to emphasize
that further culture-based and molecular-based analysis
are required as follow-up to confirm the presence of
viable and virulent pathogens.

NanoARG usage recommendation
Note that the various analyses provided by NanoARG
are not restricted to nanopore sequencing reads. In fact,
NanoARG can be applied to any set of long DNA
sequences (> 1000 bp long). For instance, sequences
from different technologies such as PacBio long-read
sequencing or assembled contigs from short sequencing

Fig. 12 a–h ARG co-occurrence network for all samples
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reads can be directly processed in NanoARG. Depending
on specific research needs, different studies may have
different requirements, e.g., some require more stringent
criteria, whereas others are less. Thus, to allow for flexi-
bility and customization, NanoARG provides users re-
sults produced by relaxed annotation parameters so that
they can filter the results further to meet their specific
needs. One caveat is that, because NanoARG uses the
DeepARG-LS model to predict/detect ARGs, it inherits
DeepARG’s limitation in that it cannot be used to iden-
tify ARGs whose resistance is conferred by SNPs or a
small number of mutations from nonARGs [26]. For
nanopore metagenomic data, because of the high error
rate, it can be difficult to determine whether the diffe-
rences in sequences are caused by real mutations or
sequencing errors. Therefore, nanopore metagenomic
sequencing might not be the ideal platform for identi-
fying the ARGs that confer resistance through SNPs or a
small number of mutations, unless a very high depth of
coverages can be achieved.

Conclusions
NanoARG is a public Web service dedicated to the analysis
of ARGs from nanopore MinION metagenomes and is the
first, to our knowledge, configured for analysis of environ-
mental samples. While the platform was specifically deve-
loped for the analysis of environmental metagenomes
generated from nanopore sequencing technologies, here
we demonstrate that it also has broad potential for other
types of data sets. As validated here using a combination of
publicly available and in-house DNA sequence libraries,
NanoARG can be used to profile ARGs in any biome,
while also providing context of other co-located genes,
such as MGEs, MRGs, and taxonomic markers. NanoARG
provides a user-friendly interface for the analysis of any set

of long DNA sequences (including assembled contigs),
facilitating data processing, analysis, and visualization. Un-
like other services dedicated exclusively to antimicrobial
resistance (e.g., WIMP), NanoARG offers analysis of MRGs
and MGEs while also enabling taxonomic annotation,
identification of pathogen-like DNA sequences, and net-
work analysis for assessing corresponding co-occurrence
patterns. Further, integration with deep-learning based
DeepARG facilitates a local strategy for annotating genes
from long nanopore reads. Specifically, implementation of
permissive parameters allows high flexibility for the detec-
tion of homologous genes, which helps overcome high
error rate characteristic of nanopore sequences.

Availability and requirements
NanoARG is a publicly available Web platform accessible
at https://bench.cs.vt.edu/nanoarg. Users are required to
create an account before uploading sequences to the
platform. Finally, NanoARG accepts any type of long
sequences in FASTA format.
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Additional file 1: Table S1. Pseudomonas aeruginosa-like identified
nanopore reads. (XLSX 4 kb)

Additional file 2: Table S2. Acinetobacter baumannii-like identified
nanopore reads. (XLSX 4 kb)

Additional file 3: Nanopore sequencing data sets. Figure S1. The effect
of sequencing error rates on the performance of NanoARG for the
detection of ARGs. Figure S2. The effect of error rates on the performance
of NanoARG for each antibiotic class. Figure S3. Effect of read length on the
identification of ARGs. Y-axis is the success rate in identifying true ARGs.
(DOCX 441 kb)
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Table 4 List of critically important bacterial pathogens
putatively identified in the WWTP samples

Pathogen-like sequences CHE_INF IND_INF HK_INF HK_AS GEM

Acinetobacter baumannii 3 (4) 4 (6) 12 (16) 6 (6) 0 (0)

Pseudomonas aeruginosa 7 (6) 58 (74) 12 (13) 7 (11) 0 (0)

Enterobacteriaceae 0 (0) 0 (0) 2 (2) 0 (0) 0 (0)

Enterococcus faecium 0 (0) 0 (0) 0 (0) 1 (1) 0 (0)

Staphylococcus aureus 0 (0) 0 (0) 0 (0) 1 (1) 0 (0)

Helicobacter pylori 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Campylobacter spp. 0 (0) 0 (0) 0 (0) 1 (1) 0 (0)

Salmonellae 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Neisseria gonorrhoeae 0 (0) 0 (0) 3 (6) 0 (0) 0 (0)

Streptococcus pneumoniae 0 (0) 0 (0) 1 (1) 0 (0) 0 (0)

Haemophilus influenzae 0 (0) 0 (0) 1 (1) 0 (0) 0 (0)

Shigella spp. 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

*Notation: number of reads (number of ARGs)
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