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Gut metagenomes of type 2 diabetic
patients have characteristic single-
nucleotide polymorphism distribution in
Bacteroides coprocola
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Abstract

Background: Gut microbes play a critical role in human health and disease, and researchers have begun to
characterize their genomes, the so-called gut metagenome. Thus far, metagenomics studies have focused on
genus- or species-level composition and microbial gene sets, while strain-level composition and single-nucleotide
polymorphism (SNP) have been overlooked. The gut metagenomes of type 2 diabetes (T2D) patients have been
found to be enriched with butyrate-producing bacteria and sulfate reduction functions. However, it is not known
whether the gut metagenomes of T2D patients have characteristic strain patterns or SNP distributions.

Findings: We downloaded public gut metagenome datasets from 170 T2D patients and 174 healthy controls and
performed a systematic comparative analysis of their metagenome SNPs. We found that Bacteroides coprocola,
whose relative abundance did not differ between the groups, had a characteristic distribution of SNPs in the T2D
patient group. We identified 65 genes, all in B. coprocola, that had remarkably different enrichment of SNPs. The first
and sixth ranked genes encode glycosyl hydrolases (GenBank accession EDU99824.1 and EDV02301.1). Interestingly,
alpha-glucosidase, which is also a glycosyl hydrolase located in the intestine, is an important drug target of T2D.
These results suggest that different strains of B. coprocola may have different roles in human gut and a specific set
of B. coprocola strains are correlated with T2D.
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Background
Human gut microbiota are critical to human health and
have been related to various disease conditions, such as
obesity [1], diabetes [2–4], cirrhosis of the liver [5], inflam-
matory bowel disease [6], atopic dermatitis [7], and
pulmonary inflammation [8]. Next-generation sequencing
(NGS) and bioinformatics technologies provide access to
the genetic information of the entire microbiome and thus
enable systematic investigation of its composition and
functional genetics.

A number of metagenomics studies have compared
the relative abundance of bacterial species or pathway
enrichment between patients and healthy controls
(HCs). However, little work has been done to elucidate
strain-level variations or single-nucleotide polymor-
phisms (SNPs) in the metagenome. Because even slight
nucleotide variations can alter the pathogenic behavior
and antibiotic resistance of bacteria [9–11], analyses of
genomic variations (i.e., SNPs, insertions, and deletions)
and structural variation of the metagenome are import-
ant for understanding microbiome biology.
Regarding strain-level variation in the microbial meta-

genome, Schloissnig and colleagues proposed a workflow
for analyzing metagenomics datasets at the strain level
and described the genomic variation landscape of human
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gut microbial genomes [12]. Subsequently, Greenblum et
al. detected extensive variations in strain-level copy-
numbers in the human gut microbiome [13] and Zhu et
al. reported considerable differences (based on gene
deletions) in the gene content of strains within the same
species in the human gut [14]. Tropism and persistence of
different oral Neisseria strains have also been studied
using metagenomics sequencing [15]. Although genomic
variation of microbiomes is well documented by these
studies, association of strain-level metagenomics findings
with human diseases has been limited.
Type 2 diabetes (T2D) is a complex metabolic disorder

afflicting hundreds of millions of people worldwide [16].
Because T2D is related to diet and digestion, the role of
gut microbiota in T2D initiation and progression is of
great interest. Previous large-scale T2D-related metage-
nomics research has shown that the proportion of
phylum Firmicutes and class Clostridia cells in the
microbiome is significantly reduced in T2D [2] and that
the gut microbiota of T2D patients tends to have fewer
butyrate-producing bacteria, such as Roseburia intestinalis
and Faecalibacterium prausnitzii [3].
To the best of our knowledge, no prior study has

resolved the association between T2D and the gut
microbiome at a strain or SNP level. Here, we utilized a
public NGS dataset resource and performed a compara-
tive study examining the SNPs of gut metagenomes in
T2D patients relative to HCs.

Methods
T2D and control dataset
Raw NGS datasets of DNA obtained from fecal samples
of 170 T2D patients and 174 HCs in China [3] were
downloaded from the NCBI Sequence Read Archive
(total data, 1.2 terabases; average sample size, 3.5 giga-
bases; accession numbers SRA045646 and SRA050230).
To reduce SNP false positives, we trimmed abnormal
bases and filtered low-quality reads as described in detail
previously [12]. For each base (A, T, G and C), a mean
number of base calls (f ) across all sites and a standard
deviation (SD) were calculated. Starting from the first
site at 5′ end, the site was trimmed if the base call num-
ber for a base was beyond f ± 2 × SD. The trimming at
5′ end was terminated until encountering a site with all
base call numbers within the range. Next, Trimmomatic
[17] was used to remove adapters and trim low-quality
bases (<Q20) at the 3′ end (parameters: -phred33 ILLU-
MINACLIP:adapters.fa:1:0:7 TRAILING:20 SLIDING-
WINDOW:5:10 MINLEN:45 AVGQUAL:20). A total of
1.04 terabases of data remained after quality control pro-
cedures were completed. Clinical information and other
characteristics of the 344 individuals included in the
analysis were obtained from [3] and [18].

Bacterial reference genome determination
We first determined a set of bacterial reference genomes for
samples included in this study. Metaphlan2, which is based
on approximately 17,000 reference genomes [19], was
employed to profile the bacterial species in each sample. Ge-
nomes of species that were identified by metaphlan2 in at
least four samples were included in the reference set for the
alignment analyses. The genome sequences of all of these
species were downloaded from the NCBI assembly database
and are listed in Additional file 1: Table S1.

Selecting species and genes with sufficient supporting reads
Clean reads were aligned to the whole reference set with
Burrows-Wheeler Aligner-maximal exact match (BWA-
MEM) [20] in default settings, and only unique align-
ments were outputted. Species with sufficient supporting
reads were selected with a cutoff of ≥40% of the refer-
ence genome being covered by a ≥10× depth in at least
20 samples in both the T2D and the control groups. For
genes, the cutoff was ≥80% gene sites with ≥10× depth
in at least 10 samples in each group. Only the species
and genes that met these criteria were subjected to sub-
sequent SNP analyses.

SNP and intra-sample variation calling and filtering
Two tools, BCFtools [21] and VarScan2 [22], were applied
to identify SNPs of the metagenome. The alignment of du-
plicates by BWA-MEM was first marked and filtered in
Picard [23]. Then, SAMtools [24] was used to generate
“mpileup” files from the SAM-formatted alignment files.
The mpileup files were employed as input files for both
BCFtools and VarScan2. The parameters used for
BCFtools and VarScan2 were “-vmO z –V indels” and
“pileup2snp min-coverage 10, p value 0.05, min-avg-qual
15,” respectively. SNPs detected by both the tools were se-
lected. SNPs were further filtered with the requirements
of a ≥0.5 mutated allele (relative to that in the reference
genome) frequency, ≥4× supporting reads for the variant,
and strand bias of sequencing bases less than tenfold in
both BCFtools and VarScan2. Namely, when genome sites
with heterozygosity were found in a sample, the major
allele was used for the SNP analysis.
To address the heterozygosity or intra-sample varia-

tions, mutated allele frequencies (MuAFs) of variant
sites were obtained for analysis under polyclonal
scenario. The MuAFs of sites were defined as the mean
values of outputs by BCFtools and VarScan2, which were
highly correlated (R2 = 0.997). To examine whether
intra-sample variations affect the result, SNPs with a
>0.8 MuAF were selected for a parallel SNP analysis.

Annotation of genes and SNPs
Gene ontology (GO) annotations of each genome were
downloaded from Uniprot [25]. SNPs were annotated in
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SnpEff [26] with the -eff parameter. The genome annota-
tion files used by SnpEff were obtained from GenBank.

Phylogenetic tree construction based on whole-genome
level SNPs of B. coprocola
Based on the reference genome of B. coprocola (reference
strain DSM 17136, GenBank accession GCA_0001
54845.1), genome regions with >20% samples not having
valid coverage (≥10× depth) were discarded. If ≤20% of
the samples had invalid coverage in a region, the bases in
that region in those samples were labeled as “N.” Then,
the nucleotides at SNP sites from the samples were ex-
tracted to generate a pileup file. Phylogenetic trees were
constructed based on the whole-genome level aligned
SNPs by using randomized axelerated maximum likeli-
hood (RAxML) v8.2.9 (100 bootstrap replicates), with
GTR model of nucleotide substitution, γ-distributed rates
among sites, and Felsenstein correction for ascertainment
bias [27, 28]. The parameters for RAxML were “-#100 –m
ASC_GTRGAMMA –f a.” Rooting was undertaken by
using RAxML with “-f I” option. Trees were drawn with
the R package ggtree [29].

Phylogenetic tree construction of genes
The nucleotide sequences of genes were obtained by
aligning reads to corresponding full-length genes of the
reference genome. For a given gene, gene regions were
discarded if with >20% samples not having valid cover-
age (≥10× depth) and the coverages of full-length genes
are listed in Additional file 1: Table S4. If ≤20% of the
samples had invalid coverage in a region, the bases in
that region in those samples were labeled as “N.” Then,
the full-length genes, except the discarded regions, were
aligned. The phylogenetic trees of genes were con-
structed by using RAxML v8.2.9 with settings as these
for whole-genome level, but without ascertainment cor-
rection. The two clusters are separated at the root of the
phylogenetic tree.

Clustering of samples by mutated allele frequencies of
sites
For a given samples, the sites of bacterial genome and
gene with a >0.2 MuAFs were selected. For all samples,
we obtained a matrix with the column denoting site po-
sitions and the rows denoting samples. If there was no
variation or MuAFs <0.2, the MuAFs were set to 0.
Then, hierarchical clustering and affinity propagation (AP)
clustering [30] were applied to the matrix. The hclust
function of stat package in R v3.3.0 was used for hierarch-
ical clustering with parameters “method = complete,” and
the output tree was drawn by ggtree. For AP clustering,
APcluster in R v3.3.0 was employed with parameters “K =
2.” The clusters generated by AP clustering were visual-
ized by using Cytoscape v3.5.0 [31]. For each node, the

top five edges connecting the nodes with the largest simi-
larity are shown.

Statistical analysis
Relative abundance of species and genome/gene dens-
ities were compared between the T2D group and control
group with the Mann-Whitney test. Fisher’s exact test
was performed to test for bias of SNP sites and sample
enrichment inferred from the phylogenetic tree and clus-
ters by AP clustering. Hypergeometric test was applied
for one-tailed test for enrichment of biased SNP sites at
gene level. The q value with Storey and Tibshirani’s
method (R package qvalue v1.43.0) was applied for mul-
tiple testing correction [21] to identify species and genes
with significantly biased SNP distribution.

Results
Based on gut metagenomics data from 344 individuals
(170 T2D patients and 174 healthy controls), we identified
a total of 356 bacterial species (Additional file 1: Table S1;
Additional file 2: Figure S3) and their relative abundances.
Consistent with previous reports, we found that, relative
to the HC group, the T2D group had lower proportions of
phylum Firmicutes, class Clostridia, and butyrate-
producing bacteria (Additional file 2: Figure S1) [2, 3].
Relative abundance did not differ between the groups for
270 of the 356 species (75.8%) analyzed (Mann-Whitney
test, p > 0.05; Additional file 1: Table S2).
We selected 20 bacterial species with sufficiently sup-

porting NGS reads in a sufficient number of samples
(see “Methods” section, Additional file 1: Table S3) for
analysis of SNP distribution. Based on the reference ge-
nomes of these 20 species, a total of 5.94 million SNPs
were identified, of which 99.65% were bi-allelic and
0.35% were tri-allelic. The distributions within these 20
species of the normalized bi-allelic SNP densities calculated
for genome regions with valid coverage (>10×) in the T2D
and HC groups are reported in Additional file 2: Figure S2.
The SNP density distribution differed significantly be-
tween the T2D and HC groups (Mann-Whitney test,
p = 0.0083, q = 0.0258) for only one of the 20 species,
namely, Bacteroides coprocola (reference strain DSM
17136, Genbank accession GCA_000154845.1). How-
ever, the mean relative abundance of B. coprocola for
the T2D group (9.10 ± 7.09%) was similar to that for
the control group (8.91 ± 7.16%; Mann-Whitney test,
p = 0.9646) in the samples with sufficient reads. More-
over, B. coprocola was prevalent and identified in
31.98% (110/344) of all the samples, ranked the top
24th among the 356 species.
A phylogenetic tree of the samples that was con-

structed based on the B. coprocola SNPs revealed a
biased distribution of T2D patients versus HCs (Fig. 1).
The intra-tree distance (quantified based on average
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pairwise patristic distance) among T2D individuals’ ge-
nomes (0.0079) was smaller than that of controls
(0.0109) and that determined for the total sample pool
(0.0103). We further examined variation distribution of
B. coprocola under polyclonal scenario. We found that
94.00% of variations in B. coprocola had a >0.8 MuAF
(Additional file 2: Figure S4). We also built a phylogen-
etic tree based on SNPs with >0.8 MuAFs (Additional
file 2: Figure S5) and clustered samples by MuAFs of
variations (Additional file 2: Figure S6). The results are
consistent and imply that T2D patients may share a spe-
cific set of B. coprocola strains.
Examination of the SNP distributions of the protein-

coding genes of the selected 20 gut bacteria revealed that
51,579 genes in the 20 microbe species had valid cover-
age with sufficient prevalence (see “Methods” section).
Among them, we identified 1300 genes (2.52%) with sig-
nificantly differentiated SNP densities between T2D and
control samples (Mann-Whitney test, q < 0.05;
Additional file 1: Table S4). All but one of these genes
were found in B. coprocola, whose reference genome
contains 4291 protein-coding genes. The one gene
(EFQ08025.1) not in B. coprocola was from Faecalibac-
terium cf. prausnitzii. With the reference strain of B.
coprocola DSM 17136, we observed that generally there
are more SNPs in the HC group compared to those in
the T2D group at the gene level (1268/1300, Additional
file 1: Table S4).

To select the genes with the most differentiated SNP
distributions, we examined the group bias of each SNP
site (Fisher’s exact test, p < 0.05) and identified 65 B.
coprocola genes with significant enrichment of biased
SNPs against the 1300 genes as a background (hypergeo-
metric test, q < 0.05). Phylogenetic trees constructed
based on the nucleotide sequences of the 65 genes are
shown together with their associated gene SNP distribu-
tions; the top two genes with the most differentiated
SNP distribution are shown in Fig. 2 and the rest of the
genes in Additional file 3. Interestingly, we observed
clear assemblage of the trees for 49 of these 65 genes
into two distinct clusters. The T2D samples enriched in
one cluster and the other dominantly consisted of HC
samples (Fisher’s exact test, p < 0.05). The most biased
gene encodes a glycosyl hydrolase (GenBank accession
EDU99824.1) with a biased SNP ratio of 0.59, and the
second encodes a response regulator receiver domain
protein (GenBank accession EDV02303.1) with a ratio of
0.48. Both of these genes had a biased distribution of T2D
versus HC samples in the two tree clusters (Fisher’s exact
test, p < 0.05). For example, 88.89% (16 of 18) and 93.75%
(15 of 16) of cluster 1 for the genes EDU99824.1 and
EDV02303.1 were from HCs, respectively. Meanwhile,
T2D samples were enriched preferentially in the second
cluster (18 of 20 for EDU99824.1 and 18 of 19 for
EDV02303.1). We further found that 9.08% of the SNPs in
EDU99824.1 and 26.46% of the SNPs in EDV02303.1 were

Fig. 1 Phylogenetic tree based on B. coprocola SNPs. Red and blue branches indicate T2D samples and HC (i.e., normal) samples, respectively. The
boxplot graph of SNP density for B. coprocola in each sample group is shown in the inset graph
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non-synonymous, and non-synonymous SNPs were differ-
entially distributed between the two clusters (Fisher’s
exact test, p = 0.02431, p = 1.97E−09, respectively). Similar
to genome-level analysis under polyclonal scenario, the
samples were clustered by MuAFs of each gene. The re-
sults also indicated the enrichment of T2D samples in one
of the clusters (Additional file 1: Table S5; Additional file
2: Figure S7–S8 for top 2 genes; Additional file 4 for the
rest 63 genes). The annotations of the 65 genes with sig-
nificant enrichment of biased SNP sites between the T2D
and control groups are shown in Additional file 1: Table
S4. Interestingly, the products of 25 genes (25/65, 38.46%)
are annotated to be localized to the cell membrane.

Conclusion
The present analysis of a Chinese metagenomics dataset
revealed that the gut microbiota of T2D patients and
HC individuals had different SNP distributions. The gut
microbe species B. coprocola, which had a similar

relative abundance between the T2D and HC groups, ex-
hibited biased SNP distribution at both the genome and
the gene level. Our phylogenetic analysis yielded 49 B.
coprocola genes that had characteristic SNP distribution
in T2D patients. Two of these genes (EDU99824.1
ranked first and EDV02301.1 ranked sixth) encode gly-
cosyl hydrolases. Glycosyl hydrolases of bacteria play
vital roles in degradation of cellulose and starch and
hence generate sugars. Interestingly, alpha-glucosidase,
which is also a glycosyl hydrolase located in the brush
border of the small intestine, is an important drug target
of T2D. Therefore, it is possible that EDU99824.1 and
EDV02301.1 in T2D-related strain and control strain
may have different glycosyl hydrolase properties, which
is worthwhile to be investigated in the future.
B. coprocola was previously reported to have high SNP

density in the gut microbiota [12]. But the correlation
between its SNPs and diseases had not been investigated.
Our results indicate that a specific set of B. coprocola

Fig. 2 Phylogenetic trees and SNP distributions of the genes EDU99824.1 (a) and EDV02303.1 (b). Samples in clusters 1 and 2 are indicated by
light blue and pink shading, respectively. The lines aligned to tree leaves represent corresponding gene sequences with sufficiently covered reads,
with missense (red dot) and silent (green dot) SNPs indicated. The bar graphs above the gene sequences show the number of SNPs found at each
site (aligned to each bar) in the T2D group (red bars above the axis) and the HC group (blue bars below the axis). Fisher’s exact test results for
2 × 2 contingency tables are shown in the upper left of each panel
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strains may be associated with T2D and further suggest
that strain-level bacterial colonization of the gut and the
potential restorative influence of probiotic supplements
should be investigated in T2D therapeutic research.
As is shown, intra-sample variations affect very slightly

on our results. However, assuming one strain type per
sample may not be general, and intra-sample variations
should not be overlooked in strain-level analysis of
metagenomics.

Additional files

Additional file 1: Table S1. The taxonomic lineages of the 356
bacterial species and accessions of their reference genome assemblies.
Table S2. Species with significantly different abundance profiles between
the T2D and HC groups. Table S3. Detailed descriptive information for 20
bacterial species with sufficiently supporting NGS reads in a sufficient
number of samples. Table S4. Summary of the 1300 genes found to have
significantly different SNP densities between the T2D and HC groups. The
top 65 genes with the most differentiated SNP distributions between the
groups are highlighted in light green. Table S5. Intra-tree distances and
enrichment analysis based on phylogenetic trees, hierarchical clustering
trees, and affinity propagation clustering for the selected 65 genes. Table
S6. SNP densities, intra-tree distances, and numbers of the most biased
genes under different mutated allele frequency (MuAF) thresholds (>0.2,
>0.5, and >0.8). (XLS 766 kb)

Additional file 2: Figure S1. Validation of relative abundance
distribution in the T2D and HC groups. Figure S2. Comparisons of SNP
densities in 20 gut bacterial species between the T2D and normal
groups. Figure S3. Brief flowchart for bioinformatics analysis of
metagenomics NGS data at strain level. Figure S4. Distributions of MuAFs
at variant sites of B. coprocola in T2D (A), HC (B) and all (C) samples with
sufficient NGS reads. Figure S5. Phylogenetic tree of B. coprocola strains
based on variant sites with >0.8 MuAFs. Figure S6. Results of AP
clustering and hierarchical clustering based on MuAFs of variant sites in
B. coprocola. Figure S7. Distributions of MuAFs at variant sites in
EDU99824.1 (A) and EDUV02303.1 (B). Figure S8. Results of AP clustering
and hierarchical clustering based on MuAFs of variant sites. (PDF 761 kb)

Additional file 3: Phylogenetic trees of the 63 genes, except the top
two, of the 65 genes with the most differentiated SNP distribution. Each
tree is in a separate JPG file named by the GenBank accession of the
corresponding gene. (RAR 13817 kb)

Additional file 4: Results of AP clustering, MuAF distributions and
hierarchical clustering for 63 genes in the most differentiated SNP
distribution except the top two genes. For a given gene, the clusters of
AP clustering, MuAF distribution, and hierarchical tree are presented in
separated files named by its GenBank accession, within the folders of
APclusterTrees, MuAFhistogram, and HlustTrees, respectively. For gene
EDV02481.1, samples were failed to be clustered into two clusters, so it
has no AP clustering result. (RAR 14532 kb)
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