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Ovarian cycling and reproductive state
shape the vaginal microbiota in wild
baboons
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Abstract

Background: The vaginal microbiome is an important site of bacterial-mammalian symbiosis. This symbiosis is
currently best characterized for humans, where lactobacilli dominate the microbial community and may help
defend women against infectious disease. However, lactobacilli do not dominate the vaginal microbiota of any
other mammal studied to date, raising key questions about the forces that shape the vaginal microbiome in non-
human mammals.

Results: We used Illumina sequencing of the bacterial 16S rRNA gene to investigate variation in the taxonomic
composition of the vaginal microbiota in 48 baboons (Papio cynocephalus), members of a well-studied wild
population in Kenya. Similar to prior studies, we found that the baboon vaginal microbiota was not dominated by
lactobacilli. Despite this difference, and similar to humans, reproductive state was the dominant predictor of
baboon vaginal microbiota, with pregnancy, postpartum amenorrhea, and ovarian cycling explaining 18% of the
variance in community composition. Furthermore, among cycling females, a striking 39% of variance in community
composition was explained by ovarian cycle phase, with an especially distinctive microbial community around
ovulation. Periovulatory females exhibited the highest relative abundance of lactic acid-producing bacteria
compared to any other phase, with a mean relative abundance of 44%. To a lesser extent, sexual behavior,
especially a history of shared sexual partners, also predicted vaginal microbial similarity between baboons.

Conclusions: Despite striking differences in their dominant microbes, both human and baboon vaginal microbiota
exhibit profound changes in composition in response to reproductive state, ovarian cycle phase, and sexual
behavior. We found major shifts in composition during ovulation, which may have implications for disease risk and
conception success. These findings highlight the need for future studies to account for fine-scale differences in
reproductive state, particularly differences between the various phases of the ovarian cycle. Overall, our work
contributes to an emerging understanding of the forces that explain intra- and inter-individual variation in the
mammalian vaginal microbiome, with particular emphasis on its role in host health and disease risk.
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Background
The composition of the human vaginal microbiome
varies considerably between individuals and within the
same individual over time [1, 2]. Such variation is im-
portant because it can have major consequences for a
woman’s vaginal health, disease risk, and fertility [3–5].
In contrast to humans, we know very little about the

causes and consequences of inter-individual variation in
the vaginal microbiomes of non-human mammals.
Furthermore, human vaginal microbiomes differ consid-
erably from those of other mammals, including other
primates [6], raising key questions about whether the
forces that shape the human vaginal microbiome are
unique to humans or are shared with other primates or
mammals. Answering this question is important to
understanding both (i) the generalizability of factors that
explain inter-individual variation in the vaginal micro-
biome in different species and (ii) the ways in which
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non-human primates can serve as useful models for
human vaginal microbial communities.
Unlike other primates, the human vaginal microbiota is

usually dominated by members of the genus Lactobacillus,
which typically comprise 70% or more of resident bacteria
[1, 2]. Lactobacilli dominance is important for under-
standing both the forces shaping the human vaginal
microbiome as well as its hypothesized functional proper-
ties. Specifically, lactobacilli produce lactic acid from the
breakdown products of glycogen (e.g., maltose) in vaginal
fluid [7–13]. This reaction creates an acidic environment
(pH ≤ 4.5) that is thought to protect women against sexu-
ally transmitted diseases (STDs) and inhibit the prolifera-
tion of opportunistic endogenous bacteria ([10, 14, 15],
reviewed in [4]). Indeed, the loss of a lactobacilli-
dominated community and subsequent increase in vaginal
pH can lead to the overgrowth of anaerobic bacteria,
referred to as bacterial vaginosis (BV), which is associated
with infertility, preterm birth, maternal infections, and
increased risk of STDs [3, 16–19].
In humans, a variety of endogenous and exogenous

factors alter the relative abundance of Lactobacillus and
vaginal microbial composition [20, 21]. In particular, es-
trogen stimulates the proliferation of the vaginal epithe-
lium, increasing available glycogen in the vagina [22, 23].
As such, the bacterial composition of the vaginal micro-
biome is strongly affected by normal fluctuations in es-
trogen that occur during puberty and menopause,
between reproductive states, and over the menstrual
cycle (e.g., [24–26]). In particular, estrogen peaks during
ovulation and this peak is linked to high relative abun-
dance of Lactobacillus spp., low microbial diversity, low
vaginal pH, and a stable bacterial community [2, 27, 28].
In addition to estrogen, sexual contact and exposure to
maternal bacteria during birth may also influence the vagi-
nal microbiome. During sexual contact, transmission of
novel bacteria or neutralization of vaginal acidity by sem-
inal fluid may impact the vaginal environment [29–33]. In
support, sexual promiscuity is linked to greater instability
in vaginal bacteria and increased risk of BV [20, 34, 35].
Additionally, close contact with the mother’s vaginal canal
during birth leads to the vertical transmission of maternal
vaginal bacteria to offspring [36–38].
In contrast to humans, the vaginal microbiota of non-

human primates (NHPs)—at least all NHPs studied to
date—have few lactobacilli (typically <2% of resident
bacteria) and much higher taxonomic diversity than
humans [6, 21, 39–42]. Given these differences, it is
unclear whether reproductive state, especially states
linked to relatively high or low estrogen levels, will also
be associated with predictable changes in NHP vaginal
microbiota. Similarly, the effects of sexual contact or
vertical transmission on NHP vaginal microbiota are not
well understood. To address these gaps, we tested the

association between reproductive state, ovarian cycle
phase, sexual behavior, and vertical transmission and
inter-individual differences in vaginal microbial compos-
ition in a well-studied population of wild baboons (Papio
cynocephalus) living in the Amboseli ecosystem in
Kenya. Similar to other NHPs, baboon vaginal micro-
biota are characterized by low levels of Lactobacillus
spp., high microbial diversity, and high vaginal pH com-
pared to humans [6, 39, 40, 43, 44]. Baboons also exhibit
well-documented changes in external genital morphology
that indicate female reproductive state and ovarian cycle
phase, including pregnancy, postpartum amenorrhea, and
four distinct stages of ovarian cycling (including ovulation;
Fig. 1) [45–47]. However, like humans, baboons reproduce
year-round: when not pregnant or in postpartum amenor-
rhea, baboons experience ~34-day ovarian cycles and can
conceive at any time of the year [48, 49]. Also similar to
humans, estrogen and vaginal glycogen are highest in
baboons around ovulation and decrease during anestrus
(i.e., menses)[46, 50–52]. Hence, if baboon vaginal micro-
biota experience dynamics similar to those in humans, we
would expect to observe relatively high levels of lactic
acid-producing bacteria during the periovulatory period
and relatively low levels during low estrogen periods such
as anestrus.
Our primary objective was to test the effects of repro-

ductive state and ovarian cycle phase on the microbial
composition of the baboon vaginal microbiome in order
to understand whether the reproduction-related changes
in baboon vaginal microbiota are parallel to those in
humans. In addition, we used data on the baboons’
sexual contacts and maternal relationships to test for
evidence of horizontal and vertical transmission in the
vaginal microbiota. We also explored other variables that
may shape inter-individual differences in baboon vaginal
microbiota, including kinship, age, dominance rank,
social group size (as a measure of available sexual part-
ners), and rainfall (which may affect bacterial exposures
in the environment). Finally, we measured vaginal pH in
a separate set of subjects from the same population to
understand the relationship between reproductive state
and vaginal pH. To our knowledge, this data set repre-
sents the largest sample size and the greatest sequencing
depth of the vaginal microbiota in a wild, non-human
mammal to date. Our results improve our understanding
of the factors that shape natural variation in the mam-
malian vaginal microbiome and provide valuable
groundwork for further investigation on how vaginal
microbiota contributes to host health and disease risk.

Methods
Study subjects
Study subjects for microbial analyses were 48 wild, adult
female baboons (Papio cynocephalus), living in five
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different social groups in the Amboseli ecosystem in
Kenya. Since 1971, this population has been intensively
monitored by the Amboseli Baboon Research Project
[53]. All study group members are individually recog-
nized based on morphological characteristics. Experi-
enced observers visit each study group two to three
times per week, year-round, during 5-hour monitoring
visits. During these visits, observers record information
on a wide range of demographic, reproductive, and
behavioral events, allowing us to correlate vaginal micro-
bial composition with reproductive status (Fig. 1) and
several other host traits, including history of sexual con-
tacts, maternal relationships, kinship, age, dominance
rank, social group size, and rainfall. Detailed information
on data collection for each of these variables can be
found in Additional file 1: Supplemental methods. A

table describing all metadata for each sample can be
found in Additional file 2: Table S1, with further infor-
mation on ovarian cycle phase at the time of sample
collection in Additional file 3: Figure S1.

Sample collection, 16S rRNA gene sequencing, and
sequence processing
We collected 52 vaginal swabs from 48 females between
2007 and 2010 (four individuals were sampled twice).
Samples were collected from sexually mature females
(range: 4–26 years; median: 8.5 years) that were anesthe-
tized using an anesthetic bearing dart [54, 55]. Subjects
were chosen opportunistically, but we excluded females
in the second half of pregnancy and those with
dependent infants (i.e., <270 days old). Once anesthe-
tized, a sterile cotton swab was inserted into the female’s

Fig. 1 Schematic representing the progression through reproductive states and ovarian cycle phases in baboons with sample sizes for this study
shown for each state/phase. Baboon drawings show the characteristics of the perineal sexual skin and the paracallosal skin associated with each
reproductive state. Ovarian cycling includes four phases: (i) swelling (n = 9 samples), during which the perineal skin begins to swell; (ii)
periovulation (n = 4 samples), which occurs at peak swelling, in the 5 days prior to deturgescence; (iii) deturgescence (n = 7 samples), when the
perineal skin deflates; and (iv) anestrus (n = 8 samples), which occurs when the sexual swelling has completely deturgesced (anestrus includes
days when females are menstruating). High levels of estrogen during periovulation stimulate the proliferation of the vaginal epithelium,
increasing available glycogen in the vagina [22, 23]. If conception occurs during ovarian cycling, females become pregnant (n = 12), during which
the color of their paracallosal skin changes from dark gray to pink [45]. After birth, the paracallosal skin of females in postpartum amenorrhea
(those who either give birth or miscarry, prior to resumption of ovarian cycling; n = 11) gradually returns to dark gray. One sample collected from
a female in the process of miscarrying is not included in the sample sizes shown in the figure
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vaginal canal, gently rotated several times, and placed in
1 ml of RNAlater (Qiagen, Valencia, CA, USA).
Samples were stored at ambient temperature in the field

and frozen at −20 °C upon arrival in the United States.
Bacterial DNA was extracted from the swabs using the
PowerSoil DNA Isolation kit (MO BIO Laboratories, Inc.,
Carlsbad, CA, USA), with modifications to the manufac-
turer’s instructions to accommodate the cotton swabs (see
Additional file 1: Supplemental methods). A 102 base pair
region of the 16S rRNA gene V4 region was amplified and
sequenced using the methods developed by Caporaso et
al. [56] with library preparation modifications by
Davenport et al. [57]. Samples were multiplexed and
sequenced in triplicate on three lanes of two Illumina
HiSeq2000 flow cells (CA, USA).
Initial quality filtering was performed using PRINSEQ

lite v.0.20.4 [58]. Sequences with ambiguous bases and/
or with mean Phred quality scores ≤25 were discarded.
To identify operational taxonomic units (OTUs), we
employed open reference OTU picking. Specifically,
representative sequences for first-round OTU-picking
were chosen using USEARCH v.7.0 [59] with an initial
OTU subsample depth of 2%. OTU clustering was com-
pleted using the UPARSE algorithm [60], which includes
chimera filtering [59]. Sequences that did not match
first-round OTUs were clustered and used as reference
sequences in second-round OTU-picking. To reduce the
risk of including OTUs that were PCR artifacts, all
OTUs that occurred in only one sample were removed.
Taxonomic identities were assigned to each OTU in
QIIME v.1.8.0 [61] using the RDP Classifier v.2.2 [62]
with the QIIME-formatted SILVA reference database
(release 123, available at https://www.arb-silva.de/down
load/archive/qiime/) [63, 64]. Use of Greengenes [65] as
the reference database produced qualitatively identical
results, but with higher rates of unclassified OTUs. To
verify that all sequences were from the 16S rRNA gene
V4 region, reference sequences were aligned using the
Python implementation of the NAST alignment algo-
rithm (PyNAST)[66], and sequences that did not align
were removed. To control for differences in sequencing
depth between samples, we normalized read counts
using cumulative-sum scaling implemented in the R
package metagenomeSeq [67, 68]. This OTU table was
used to calculate beta diversity and for differential rela-
tive abundance analyses. All analyses were repeated
using an alternative OTU table rarefied to 1,777,373
reads per sample, and there were no qualitative differ-
ences in the results (data not shown).

Statistical analyses
Predictors of alpha diversity
A full summary of all statistical analyses conducted in R
is included in Additional file 4. Using the pre-

normalized OTU table, we calculated the number of
unique OTUs in a sample (i.e., richness) and Shannon’s
diversity index, which accounts for the distribution of
OTU abundances (Additional file 2: Table S1). To test
predictors of microbial alpha diversity, we constructed
multivariate linear regression models for both alpha di-
versity metrics in R (version 3.2.2, R Foundation for Stat-
istical Computing, Vienna, Austria). We modeled the
following as fixed effects: sequencing read count (to con-
trol for variation in sequencing depth between samples),
age, reproductive state or ovarian cycle phase, domin-
ance rank, presence or absence of rainfall in the 30 days
prior to sample collection, the number of individuals in
a female’s social group at sample collection (i.e., social
group size), and level of promiscuity, estimated using
the average number of consortship partners per ovarian
cycle. Consortships are defined as sustained proximity
between an adult male and female with a turgescent
swelling [69]. Most sexual contact with intromission oc-
curs in the context of consortships [54, 70, 71]. Al-
though four individuals were sampled twice, we report
models without individual identity because variation in
alpha diversity among samples from the same female did
not differ significantly from samples between females
(Additional file 3: Figure S2). Furthermore, the inclusion
of individual identity as a random effect in our models did
not qualitatively change our results. Model selection was
performed using stepwise backward regression with the
stepAIC function from the R package MASS [72]. An
alpha value of 0.05 was used as a threshold for inclusion
in the final model.

Predictors of microbial beta diversity
To identify predictors of vaginal microbial similarity
between samples, we performed principal coordinates
analyses (PCoAs) and PERMANOVAs using Bray-Curtis
dissimilarity and weighted UniFrac distance [73]. Pre-
dictor variables in the PERMANOVAs included age,
reproductive state or ovarian cycle phase, dominance
rank, rainfall, social group size, and level of promiscuity.
Again, we did not include individual identity because
variation in beta diversity between samples from the
same female did not differ significantly from samples
between females (Additional file 3: Figure S3).

Testing for horizontal and vertical transmission
To test for horizontal transmission, we used partial
Mantel tests implemented in R package vegan [74] to
correlate the extent to which females shared the same
male consortship partners over their lifetime (partner
sharing) with estimates of vaginal microbial community
dissimilarity (i.e., Bray-Curtis and weighted UniFrac). Be-
cause similar sexual history between two vaginal samples
could be due to the samples being from the same host,
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from hosts living in the same social group, or from hosts
of similar age, we separately tested the correlations be-
tween microbial dissimilarity and each of the following
matrices: a binary matrix of individual identity (i.e., sam-
ples from same or different individual), a binary matrix
of social group co-residency (i.e., same or different social
group), and a matrix of the absolute difference in ages
between all pairs of sample dyads. For all partial Mantel
tests, we controlled for reproductive state and ovarian
cycle phase by including a third, binary matrix that indi-
cated whether pairwise samples were from the same or
different reproductive state or ovarian cycle phase. We
calculated P values for all partial Mantel tests based on
comparison of the observed Pearson correlation coeffi-
cient to Pearson coefficients calculated from 10,000
permutations.
To test for vertical transmission from mother to off-

spring, we used non-parametric Kruskal-Wallis tests to
compare vaginal microbial dissimilarity between samples
from maternal siblings (n = 10 sibling pairs) to the dis-
similarity between samples from paternal siblings (n = 15
sibling pairs) and unrelated pairs of individuals (n =
1049). If vertical transmission plays a strong role in
shaping female vaginal microbiota, microbial communi-
ties from maternal siblings should be significantly more
similar to each other than the communities of both pa-
ternal siblings and unrelated dyads. To test the effects
of pairwise genetic relatedness beyond mother-
offspring effects on vaginal microbiota, we used partial
Mantel tests to correlate a pedigree of both maternal
and paternal relatedness with pairwise microbial dis-
similarity, controlling for reproductive state.

Identifying taxa associated with different reproductive
states and ovarian cycle phases
We used linear discriminant analysis (LDA) effect size
(LEfSe; Galaxy v.1.0) to identify taxa that differed signifi-
cantly in relative abundance between reproductive states
and ovarian cycle phases. LEfSe is a method for high-di-
mensional biomarker discovery that combines standard
statistical tests (i.e., the Kruskal-Wallis rank sum test
and the pairwise Wilcoxon test) with linear discrimin-
ant analysis to detect taxa that explain the most vari-
ation between two or more classes [75]. We set the
alpha value for the Kruskal-Wallis test at 0.01 and the
threshold on the logarithmic LDA score at 3.0.

Determination of vaginal pH
To understand the relationship between reproductive
state and vaginal pH, we measured the vaginal pH of a
separate set of 20 female Amboseli baboons between
May and July of 2015 and 2016. None of these individ-
uals were included in the vaginal microbiota portion of
this study, and so we did not combine the pH data with

microbial data for any analysis. However, all subjects for
microbial and pH analyses came from the same wild
population and lived together in the same five social
groups, such that the pH data we collected should be
representative of vaginal tract pH in our study system
(as opposed to measurements from other species, popu-
lations, or captive animals). Measurements of pH were
collected following Thoma et al. [24]. Briefly, a pH-Fix
paper strip (pH 4.5–10.0, Macherey-Nagel, Düren,
Germany) was affixed to a sterile pediatric tongue de-
pressor and inserted into the vaginal canal with the aid
of a speculum. The tongue depressor was kept in the
vagina for 10 s and then the pH reading was taken
immediately following removal.

Results
Baboon vaginal microbiota consist of a core set of taxa
not dominated by Lactobacillus spp.
We generated a total of 188,665,626 reads from 48 female
baboons (n = 52 samples; 1,777,373–7,024,839 reads per
sample; mean = 3,628,185; Additional file 2: Table S1).
Taxonomic assignments revealed representatives of 29
bacterial and archaeal phyla (Fig. 2a). Of these 29, 11 phyla
were found in 100% (52/52) of samples, six of which had a
mean relative abundance greater than 1%, including: Fir-
micutes (33%), Fusobacteria (29%), Proteobacteria (13%),
Bacteroidetes (11%), Actinobacteria (10%), and Tenericutes
(3%) (Fig. 2a; Additional file 2: Table S2). Forty-three
genera were also found in all 52 samples, including mul-
tiple genera that have been linked to BV in humans, such
as Mobiluncus, Atopobium, Prevotella, Mycoplasma, and
Sneathia (Fig. 2b; Additional file 2: Table S2)[76].
As found in prior studies (e.g., [6, 43, 44, 77]), the

baboon vaginal microbiota had markedly lower levels
of lactobacilli than human vaginal microbiota. Lacto-
bacillus spp. occurred in only 85% (44/52) of baboon
samples, as compared to near 100% prevalence in
women (e.g., [1]). Moreover, the median relative abun-
dance of Lactobacillus spp. was only 0.00063% in ba-
boons (range: 0–0.93%), compared to a reported
median relative abundance of 96% in humans (range:
0%–99.9%) [1]. However, other lactic acid-producing
bacteria (LAB), including Streptococcus, Facklamia,
Aerococcus, and unclassified members of the order
Lactobacillales, were relatively abundant in all baboon
samples, with a mean relative abundance of 10% (±16%
SD; Fig. 2b; Additional file 2: Table S2). Finally,
approximately 12% of OTUs, comprising approxi-
mately 1.5% of reads, could not be classified beyond
the kingdom level, suggesting that a large number of
novel taxa colonize the baboon vagina. These unclassi-
fied OTUs were unlikely to be sequencing artifacts as
all appeared in more than one sample, and the
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distribution of their prevalence across samples closely
resembled the distribution of classified OTUs.

The composition of vaginal microbiota changes with
female reproductive state and ovarian cycle phase
Alpha diversity
Female reproductive state and ovarian cycle phase were
strongly correlated with Shannon’s diversity, but not
with OTU richness (Fig. 3a; Additional file 2: Table S3).
Shannon’s diversity was lowest in cycling females and
highest in females experiencing postpartum amenorrhea
(PPA), with some evidence for increasing Shannon’s
diversity throughout the first half of pregnancy (Fig. 3a;
Additional file 2: Table S3; Additional file 3: Figure S4).

Among the 28 females experiencing ovarian cycling (i.e.,
anestrus, swelling, periovulation, or deturgescence),
anestrous females had the highest Shannon’s diversity
(Fig. 3a; Additional file 2: Table S4), while OTU richness
was higher in both anestrous and periovulatory females
compared to swelling and deturgescent females (Fig. 3b;
Additional file 2: Table S4).
Aside from reproductive state and ovarian cycle phase,

we also found that social group size and rainfall in the
30 days prior to sample collection predicted microbial
alpha diversity. Females who were members of larger
social groups had lower Shannon’s diversity, compared
to those in smaller groups (Fig. 3c; Additional file 2:
Tables S3 and S4). This pattern may be caused by higher

Fig. 2 Relative abundance of bacterial and archaeal (a) phyla and (b) genera in the baboon vaginal microbiota by sample (n = 52). In panel a, each bar
represents one sample; colors depict the proportion of reads assigned to a particular phylum in each sample. Only phyla with ≥1% mean relative
abundance are shown. Phyla present at <1% are grouped into the category “Low abundance Bacteria”. Panel b shows a heatmap of the log10-
transformed relative abundance of bacterial genera. Only genera with ≥1% mean relative abundance are shown. Each column represents one sample.
Genera along the y axis were ordered based on hierarchical clustering by Euclidian distance. For both panels a and b, samples are ordered based on
female reproductive state and ovarian cycle phase (Fig. 1): PPA, postpartum amenorrhea; A, anestrus; S, swelling; O, periovulation; D, deturgescence; P,
pregnant; and MC, miscarrying. Matching lower case letters above bars and columns denote samples from the same individual
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rates of intromission, and hence more disruption of the
vaginal microbiota of females in larger versus smaller
social groups. In support, females in larger social groups
experienced more consortships and consortship partners
per ovarian cycle than females in smaller groups
(GLMMs: consortships: z value = 10.17, P < 10−16;
consortship partners: z value = 5.47, P = 4.62 × 10−8;
Additional file 3: Figure S5). Additionally, females
sampled in rainy months had significantly lower OTU
richness than females sampled in dry months, suggesting
that the external environment affects vaginal exposure
to bacteria (Fig. 3d; Additional file 2: Table S3). No
other factors, including female age, dominance rank,
or level of promiscuity predicted variation in either
alpha diversity metric.

Beta diversity
Female reproductive state and ovarian cycle phase were
also strongly correlated with the composition of vaginal
microbiota (Fig. 4; Additional file 3: Figure S6). Indeed,
differences in reproductive state explained 18 to 19% of
the variation in overall community composition (Fig. 4a;
Additional file 3: Figure S6A; PERMANOVAs: Bray-
Curtis: Pseudo-F = 5.24, P < 10−5; weighted UniFrac:
Pseudo-F = 5.71, P < 10−5). Among the 28 samples

collected during ovarian cycling, cycle phase explained
22 to 39% of the variation in microbial composition
(Fig. 4b; Additional file 3: Figure S6B; PERMANOVAs:
Bray-Curtis: Pseudo-F = 5.09, P < 10−5; weighted UniFrac:
Pseudo-F = 2.31, P = 0.0032). Of particular interest, peri-
ovulation, as compared to swelling, anestrus, and detur-
gescence, was associated with a distinct vaginal
microbiota, with significant differentiation along both
the 1st and 2nd principal coordinate axes of the PCoA
plot (green dots in Fig. 4b; Additional file 3: Figure S6B).

Bacterial taxa, including some linked to bacterial
vaginosis, vary in their relative abundance across female
reproductive states
Given the striking correlation between reproductive state
and community composition, we used LEfSe to identify
which taxonomic groups experienced the largest changes
in relative abundance when females transition from one
reproductive state to another. We first compared fe-
males in the ovarian cycling phase to those in the next
reproductive phase, pregnancy, and likewise compared
females in late PPA to those in ovarian cycling. Of the
29 phyla tested, taxa from 7 phyla (24%) showed signifi-
cant changes in relative abundance in at least one of the
two reproductive state comparisons (P ≤ 0.01; Fig. 5a).

Fig. 3 Plots summarizing major results of best supported multivariate linear regression models predicting Shannon’s diversity index and OTU richness
(Additional file 3: Tables S3 and S4). a Shannon’s diversity index versus reproductive state (n = 51) and ovarian cycle phase (n = 28). b OTU richness
versus ovarian cycle phase (c) Shannon’s diversity index versus social group size (d) OTU richness versus rainfall in the previous 30 days. C, ovarian
cycling; P, pregnant; PPA, postpartum amenorrhea; A, anestrus; S, swelling; O, periovulation; D, deturgescence. *P≤ 0.05; **P < 0.01; ***P < 0.001
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Compared to both pregnant females and those in PPA,
cycling individuals had elevated levels of common BV-
associated genera, including Sneathia, Prevotella, and
Mobiluncus [76]. Conversely, cycling females had rela-
tively low levels of multiple other taxa, including the
genus Cornebacterium 1, the LAB family Aerococca-
ceae—particularly from the genera Facklamia and Aero-
coccus—and multiple genera from the Clostridiales
family XI. Furthermore, there appeared to be a negative
relationship between the two dominant phyla Firmicutes
and Fusobacteria across reproductive states, with cycling
females exhibiting high levels Fusobacteria and low
levels of Firmicutes, and PPA females displaying the op-
posite trend (Fig. 5a).

The periovulatory period is associated with elevated
Lactobacillales
Because community composition varied within the
phases of the ovarian cycle (Fig. 4b), we also used LEfSe
to identify the microbial taxa that exhibited the greatest
changes in relative abundance during periovulation or
anestrus relative to other cycle phases. These two phases
may exhibit particularly distinct microbial communities
because they represent the periods of maximum and
minimum estrogen and vaginal glycogen within the
ovarian cycle [46, 50–52]. Overall, samples from perio-
vulatory females exhibited significantly higher relative
abundance of Bacilli, especially members of the lactic
acid-producing order Lactobacillales (mean: 44 ± 10%
SD), and significantly lower relative abundance of the
family Fusobacteriaceae, as compared to the other three
cycle phases (Fig. 5b). Indeed, there was a striking trade-
off in relative abundance between Firmicutes and

Fusobacteria throughout the ovarian cycle, with high
levels of Firmicutes and low levels of Fusobacteria
around ovulation and the opposite pattern at the detur-
gescence to anestrus transition (Additional file 3: Figure
S8). Additionally, compared to swelling, periovulating,
and deturgescing females, anestrous individuals had sig-
nificantly higher levels of genera from the Clostridiales
family XI, the phylum Proteobacteria—particularly from
the genus Haemophilus—and lower levels of the BV-
associated genera Mobiluncus and Prevotella (Fig. 5b).

Vaginal pH fluctuates over the ovarian cycle
The unique taxonomic composition associated with
periovulation, especially the high relative abundance of
lactic acid-producing bacteria, suggests that vaginal pH
might be lowest in the time period around ovulation. To
test the relationship between reproductive state and va-
ginal pH, we measured vaginal pH in a separate set of
20 female baboons living in the same social groups as
the original subjects. Vaginal pH varied significantly
across the reproductive states (pH range: 5.5–9.0), with
the lowest vaginal pH in females with swollen, turges-
cent sexual skins, and the highest vaginal pH in females
experiencing pregnancy and postpartum amenorrhea
(Kruskal-Wallis test: H = 11.78, P = 0.019; Additional file
3: Figure S8). This finding suggests that vaginal pH fluc-
tuates across the ovarian cycle, with pH falling to more
acidic levels as females approach ovulation.

Sharing sexual partners predicts vaginal microbial
similarity, but vertical transmission does not
While reproductive state and ovarian cycle phase exerted
dominant effects on vaginal microbiota, we also tested

Fig. 4 Principal coordinates plots based on Bray-Curtis dissimilarities for vaginal microbial communities as a function of (a) reproductive state (n = 52)
and (b) ovarian cycle phase (n = 28). Boxplots are included to help visualize differences between reproductive states and ovarian cycle phases across
principal coordinates axes 1 and 2
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for evidence of horizontal and vertical transmission in
shaping vaginal microbial communities. In the case of
horizontal transmission, we predicted that females who
share the same sexual partners should exhibit more
similar vaginal microbiota than females who do not
share sexual partners. In support, we found that females
with more overlap among partners in their lifetime
consortship profiles tended to have slightly more

similar vaginal microbial communities, controlling for
reproductive state and ovarian cycle phase, than females
with less overlap among partners (partial Mantel tests:
Bray-Curtis dissimilarity: r = 0.052, P = 0.046; weighted
UniFrac: r = 0.043, P = 0.076; Additional file 2: Table S5).
This pattern could not be explained by individual identity,
similarity in age, or social group co-residency (Additional
file 2: Table S5).

Fig. 5 Bubble plots representing all vaginal bacterial taxa that have significant differences in relative abundance between reproductive states and
ovarian cycle phases as identified by LEfSe. Pairwise comparisons included (a) ovarian cycling versus pregnancy (C vs. P), ovarian cycling versus
postpartum amenorrhea (C vs. PPA), (b) periovulation versus anestrus, swelling, and deturgescence (O vs. ASD), and anestrus versus swelling,
periovulation, and deturgescence (A vs. SOD). Circle size is proportional to each taxon’s average relative abundance and circle color differentiates
between phyla. Significant comparisons (P≤ 0.01) are noted on the right side of the plot
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With respect to vertical (mother-offspring) transmis-
sion, we predicted that maternal siblings would exhibit
more similar vaginal microbiota than paternal siblings or
unrelated females. However, we found no evidence that
vertical transmission affects the microbial composition
of the baboon vaginal cavity in adulthood. Controlling
for female reproductive state and ovarian cycle phase,
pairwise samples from maternal siblings did not have
more similar vaginal microbial communities than sam-
ples from paternal siblings or unrelated individuals
(Kruskal-Wallis tests: Bray-Curtis dissimilarity: H =
0.25, P = 0.88; weighted UniFrac: H = 0.77, P = 0.68). We
also found no evidence that overall pairwise genetic
relatedness between all the female baboons in our data
set explained similarity in vaginal microbial communi-
ties (partial Mantel tests: Bray-Curtis dissimilarity: r =
0.015, P = 0.30; weighted UniFrac: r = 0.018, P = 0.26
Additional file 2: Table S5).

Discussion
To date, the majority of research on the vaginal micro-
biome of non-human primates has used captive animals
(e.g., [6, 39, 41–43, 78]). Recently, several authors have
called for greater use of wild subjects in studies of the
microbiome, in part because of strong effects of captivity
on host-associated microbial communities [79–81]. The
study described here is, to our knowledge, only the third
to investigate vaginal microbiota composition in wild pri-
mates; notably, the previous two studies were restricted to
small sample sizes and lacked of information on host
reproductive state [6, 77]. Thus, this work represents the
most comprehensive investigation of inter-individual
variation in the vaginal microbiota in a wild, non-human
primate population.
All primates studied to date, in either captive or wild

settings, lack the Lactobacillus spp. dominance typically
found in human vaginal microbiota, raising questions about
whether the forces that shape the human vaginal micro-
biome are also important in other primates and mammals.
Despite low relative abundance of lactobacilli, we found
that many of the same predictors of human vaginal micro-
biota are also important in wild baboons. Specifically,
reproductive state and ovarian cycle phase—especially
ovulation—were linked to distinct vaginal microbial com-
munities, which may have consequences for functional
aspects of the vaginal microbiome. In addition, females with
similar sexual histories also had more similar vaginal
microbiota. Together, these results suggest that, despite
large differences in vaginal community composition, similar
forces influence the communities of humans and non-
human primates, laying important groundwork for further
comparative work on how vaginal microbiota contribute to
host health and disease risk across primates.

Responses of the vaginal microbiota to host reproductive
state and ovarian cycle phase
In humans, reproductive state (cycling, pregnancy, or
postpartum amenorrhea) is the dominant force shaping
the vaginal microbiome [26, 82–84]. These effects are
primarily attributed to changing levels of estrogen,
which affect the abundance of glycogen in vaginal
mucus—a key resource for energy metabolism by lacto-
bacilli [85]. Similar to humans, we found that reproduct-
ive state is also the primary driver of inter-individual
variation in baboon vaginal microbiota, and many of the
patterns we observe are consistent with the idea that
fluctuations in estrogen and glycogen drive baboon vagi-
nal microbial dynamics. For instance, like humans,
glycogen is lowest in baboon vaginal mucus during both
pregnancy and postpartum amenorrhea and highest
during ovarian cycling [52]. Paralleling this pattern, the
family Aerococcaceae, particularly the genus Facklamia,
is prolific during pregnancy and PPA in female baboons,
but rare during ovarian cycling. Since Aerococcaceae
cannot metabolize glycogen directly and variably fer-
ment maltose [86], the low relative abundance during
cycling suggests this taxa is being outcompeted by other
bacteria, such as Sneathia and Prevotella, that can
metabolize glycogen directly and thus may thrive in a
glycogen-rich environment (or, conversely, be more
easily outcompeted by Facklamia in a glycogen-poor
environment) [87, 88].
Within cycling female baboons, estrogen and vaginal

glycogen fluctuate across ovarian cycle phases, with the
highest levels around ovulation and lowest during anes-
trus [46, 50–52]. We find that the relative abundance of
lactic acid-producing bacteria (LAB) follows a similar
pattern, with an increase around ovulation and decrease
during anestrus. Such changes are expected to reduce
lactic acid production, and indeed, in baboons, we ob-
serve lower vaginal pH during the swelling phase of the
ovarian cycle compared to anestrus. Similar patterns of
vaginal pH have been observed over the human men-
strual cycle, with a drop in pH during the follicular
phase, and an increase during menses [27, 89].
It is worth noting that our findings differ from a prior

study on the vaginal microbiota of cycling female ba-
boons [43]. In contrast to our results, Uchihashi et al.
[43] found no differences between females experiencing
different ovarian cycle phases. There are two possible
reasons for this finding. First, Uchihashi et al. studied
captive baboons, and prior work has found that host-
associated microbial communities can be altered by
captivity [40]. Second, and probably more importantly,
Uchihashi et al. did not make fine-scaled distinctions
between different female ovarian cycle phases. For
instance, Uchihashi et al. combined swelling, periovula-
tory, and deturgescence phases into a single category
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(“cycling”) and separated menstruating females from
those that we termed anestrus (i.e., “non-cycling”).
When we reanalyze our data based on Uchihashi et al.’s
categories, we still observe significant differences in
community composition between cycling and non-cycling
females, but there were no significant differences in com-
munity composition between menstruating and non-
menstruating females. Combining across cycle phases is
common in the literature because it can be challenging to
assign female mammals to the correct ovarian cycle phase.
However, our results highlight the importance of these
characterizations for understanding variation in the
vaginal microbiota.

The role of lactic acid-producing bacteria during
ovulation
Consistent with previous work, we find that Lactobacillus
is rare in the baboon vaginal microbiota, especially com-
pared to humans [6, 39, 40, 43, 44]. From a functional
standpoint, aspects of human physiology may make the
human vagina more lactobacilli-friendly than other ani-
mals. For example, humans have significantly higher
glycogen and lactic acid levels in vaginal fluid compared
to macaques [90]. From an evolutionary perspective,
differences in the vaginal microbiome between humans
and NHPs may have arisen as a result of variation in
sexual behavior and disease risk [6, 21]. Specifically, con-
tinual sexual receptivity and long intromission may expose
humans to more pathogens (particularly STDs) compared
to NHPs, leading to selection for a lactobacilli-dominated
community [6, 21]. By extension, since STDs are not
unique to humans, one might predict that NHPs should
have the most protective microbial community when
sexual activity and disease risk are greatest [91, 92]. For
example, in baboons, the majority of sexual contact takes
place within the second half of the swelling phase and
periovulation [48]. Correspondingly, we observe the high-
est levels of LAB during this period, and find that BV-
related bacteria are abundant during the periovulatory
period, indicating that ovulation may be a time of high
disease risk. In a separate data set, we also observe the
lowest vaginal pH near this time; however, even the lowest
vaginal pH measurements we recorded (pH = 5.5) were
higher than what is considered protective and healthy in
human women, whose vaginal pH typically ranges from
3.5 to 5.0 [1, 11, 85]. This suggests that defense mecha-
nisms other than pH may also be at work in baboons,
such as competitive exclusion, production of bacteriocins
and other antimicrobial compounds [93, 94], and micro-
bial interaction with the host immune system [95].
In addition to a possible protective function, the unique

microbial community associated with the periovulatory
phase may also have implications for sexual attraction.
While male baboons typically identify sexually receptive

females based on visual signals, such as sexual swellings
[48], there is debate about how males choose one ovulat-
ing female over another (e.g., [96]). Vaginal microbiota
may generate unique olfactory cues that signal ovulation,
female ‘quality’, or likelihood of conception [97]. Indeed,
work in a wide range of animals, including humans,
suggests that many bacteria produce volatile compounds
that can convey information about their hosts [98, 99].
For example, in humans, levels of volatile organic acids,
including lactic acid, change over the human menstrual
cycle [2], which may influence the attractiveness of female
vaginal secretions [100].

Transmission of vaginal bacteria
Past work in a wide range of animals indicates that mi-
crobial transmission occurs between sexual partners and
from mother to offspring during birth [92, 101, 102].
While we find no evidence that vertical transmission
exerts long-term effects on the vaginal microbiota of
adult female baboons, our results do suggest that sexual
contact leads to horizontal transmission of baboon vagi-
nal bacteria. It is well established that copulation facili-
tates the spread of pathogens, and that multiple sexual
partners can further increase the risk of infection [103,
104]. However, recent work suggests that commensal,
and even beneficial, bacteria are also being transmitted
between partners during sexual contact [102]. Thus,
more promiscuous mating systems may promote expos-
ure to these beneficial microbes [105]. In humans, there
is some evidence for the sharing of commensal bacteria
between sexual partners [30, 31], but, to our knowledge,
our study provides the first evidence in a non-human
primate that sharing sexual partners can result in similar
commensal microbial communities. Interestingly, our
results also suggest that an increased number of sexual
partners may perturb the vaginal microbiota and reduce
microbial alpha diversity. Indeed, in humans, promiscu-
ity has been linked to greater instability in vaginal
bacteria [20] and BV [106, 107]. However, it is yet to be
determined whether these changes are due to the intro-
duction of novel bacteria or neutralization of the vaginal
environment due to repeated insemination [29].

Conclusions
Like other non-human primates, baboons lack the
Lactobacillus spp. dominance typically found in the
human vaginal microbiome. Despite this difference and
similar to humans, we found that reproductive state
was the strongest predictor of the baboon vaginal
microbiota, with effects on both microbial composition
and pH. These results highlight the importance of
accounting for fine-scale differences in reproductive
state and emphasize the need for future studies to in-
clude this information whenever possible. Moreover, we
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found that during ovulation, the baboon vaginal micro-
biota exhibited traits reminiscent of those observed in
humans, which are believed to defend against patho-
gens. This included the highest levels of lactic acid-
producing bacteria, which predicts the lowest vaginal
pH. Overall, our findings suggest that the vaginal
microbiome of humans and baboons are under similar
selective forces, which indicates these forces may be
fundamentally important to many mammals. However,
the unique nature of the human vaginal microbiome
suggests that other factors shape vaginal microbial
communities in humans. Future work should focus on
disentangling the evolutionary pressures common to all
mammals and those that are unique to humans.
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