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Microbiota fingerprints lose individually
identifying features over time
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Abstract

Background: Humans host individually unique skin microbiota, suggesting that microbiota traces transferred from
skin to surfaces could serve as forensic markers analogous to fingerprints. While it is known that individuals leave
identifiable microbiota traces on surfaces, it is not clear for how long these traces persist. Moreover, as skin and
surface microbiota change with time, even persistent traces may lose their forensic potential as they would cease
to resemble the microbiota of the person who left them. We followed skin and surface microbiota within households
for four seasons to determine whether accurate microbiota-based matching of individuals to their households could
be achieved across long time delays.

Results: While household surface microbiota traces could be matched to the correct occupant or occupants with 67%
accuracy, accuracy decreased substantially when skin and surface samples were collected in different seasons, and
particularly when surface samples were collected long after skin samples. Most OTUs persisted on skin or surfaces for
less than one season, indicating that OTU loss was the major cause of decreased matching accuracy. OTUs that were
more useful for individual identification persisted for less time and were less likely to be deposited from skin to surface,
suggesting a trade-off between the longevity and identifying value of microbiota traces.

Conclusions: While microbiota traces have potential forensic value, unlike fingerprints they are not static and may
degrade in a way that preferentially erases features useful in identifying individuals.
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Background
The transfer of personal skin microbiota traces to sur-
faces has been called a microbial ‘fingerprint’ [1, 2],
reflecting both the individuality of skin microbiota [3]
and the potential of such traces for use in forensic
identification. Identification of individuals from their
microbiota traces (hereafter ‘microbiota matching’)
has been demonstrated with traces left on computer
keyboards and mice [1], mobile phones [4], and house-
hold surfaces [5, 6]. However, an important forensic
property of fingerprints is that they can persist un-
changed on surfaces for long periods, allowing people
to be reliably matched to fingerprints they deposited
on a surface some time ago. Little attention has been
given to the time for which identifiable microbiota
traces persist on surfaces, and given that an individual’s

skin microbiota can change significantly within weeks or
months [7, 8], it is unclear whether an individual’s current
skin microbiota would be similar enough to an older
microbiota trace for a reliable identification to be made.
As interest in the forensic potential of microbiota match-
ing continues to grow, it is important that this practical
limitation be investigated.
This study attempted microbial matching of individuals

to their places of residence based on comparison of skin
microbiota to household surface microbiota traces, to
determine whether accurate microbial matching could be
achieved even with large time delays between skin and
surface sampling. While sources including outdoor air and
pets [9, 10] can contribute to residential surface micro-
biota, occupant skin contributes a large proportion or
majority of surface microbiota [5, 11, 12]. Occupants’
skin microbiota rapidly colonise a newly occupied resi-
dence, and a person leaving a residence can cause a decline
in microbiota similarity within days [5], suggesting that
household surface assemblages closely track changes in
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occupant skin microbiota. This study also examined Oper-
ational Taxonomic Unit (OTU) stability on skin and sur-
faces and applied survival analysis to determine whether
the value of OTUs in identifying individuals was related to
their temporal stability and chance of deposition from skin
to surface.

Results and discussion
We collected microbiota samples from household sur-
faces, household air and residents’ skin in nine Hong
Kong residences throughout 2014 (Table 1) and deter-
mined the microbiota compositions through 16S rRNA
gene analysis. The taxonomic composition of surface
samples confirmed that the majority of household sur-
face microbiota originated from occupant skin. The
most abundant family across all surface samples was
Moraxellaceae, dominated by the skin - colonising
genus Acinetobacter. Among the ten most abundant
families were also the human skin-associated Staphylococ-
caceae, Micrococcaceae, Corynebacteriaceae and Strepto-
coccaceae. However, there were also abundant populations
of families likely derived from environmental sources such
as soil and vegetation, including Sphingomonadaceae,
Methylobacteriaceae, Pseudomonadaceae, Rhodobactera-
ceae and Xanthomonadaceae. We note that the 515F/
806R primer set used in this study may underrepresent
the phylum Actinobacteria, including the important hu-
man skin genus Propionibacterium [13]. Future investiga-
tions of microbiota matching may benefit from using
additional or alternative primer sets better suited for hu-
man taxa. Using the list of indicator families for household
microbiota sources developed by Dunn et al. [9], on average
10% (SE 0.52%) of surface microbiota abundance comprised
OTUs from human skin-associated families, followed by
4.1% (SE 0.28%) for human oral cavity, 2.2% (SE 0.14%)
for leaf, 1.6% (SE 0.15%) for human stool and 0.34% (SE
2:2� 10�2 %) for soil (Fig. 1a; Kruskal-Wallis p < 0.05).
We also used the Bayesian software tool SourceTracker

[14] to estimate the proportional contributions of skin and
household air to surface microbiota (Fig. 1b). On average,
60% (SE 1:1� 10�2%) of each surface sample’s microbiota
was estimated to originate from occupant skin (within-sea-
son comparisons), compared to 17% (SE 8:8� 10�3%) from
air, 7:6� 10�3 % (SE 6:3� 10�4 %) from negative control
samples and 23% (SE 7:5� 10�3%) from unknown sources
(Kruskal-Wallis p < 0.05). Finally, we examined whether an
occupant’s skin microbiota resembled surface micro-
biota from their residence more than surface microbiota
from other residences (Fig. 1c). On average, skin and sur-
face samples from the same residence and season were
more similar (mean weighted UniFrac [15] distance 0.21,
SE 1:1� 10�3 ) than those from different residences in the
same season (mean 0.24, SE 3:8� 10�4 ), a significant
difference (Mann-Whitney p < 0.05). This confirms that
household occupants in particular rather than human skin
sources in general (via, for example, outdoor air, which in
Hong Kong supports a large population of skin-associated
phyla [16]) are the major source of household surface
microbiota, as previously reported [5, 11, 17]. Skin samples
from cohabiting individuals were also slightly but signifi-
cantly more similar (mean weighted UniFrac distance 0.19,
SE 1:2� 10�3 , within-season comparisons, Mann-Whitney
p < 0.05) than samples from non-cohabiting individuals
(mean 0.23, SE 3:2� 10�4 ), suggesting some degree of
microbiota exchange between individuals and/or via a com-
mon shared reservoir (e.g. household surfaces).
We used SourceTracker to perform microbiota match-

ing of individual occupants (or, in the case of multi-
occupant households, groups of occupants) to their
households, as previously described [5, 6]. When skin
and surface samples collected at the same time were
used, the correct occupant or occupants were identified
in 67% of cases (Fig. 2a), in keeping with the 58–77%
accuracy rates previously reported for this method [5, 6].
The accuracy rate was highly sensitive to the number of
individuals or groups of individuals to which a household

Table 1 Summary of collected samples

Sample property Values (number of samples)

Type Air (144), skin (380), surface (288)

Season Winter 2014 (203), Spring 2014 (203), Summer 2014 (203), Autumn 2014 (203)

Residence Admiralty A (68), Fortress Hill (68), Ma On Shan (108), Quarry Bay (88), Sai Wan (88),
Sha Tin Wai (88), Tai Koo (108), Tuen Mun B (108), Wu Kai Sha (88)

Site Bed headboard surface (36), bedroom air (36), blanket surface (36), forehead skin (76),
fridge door seal surface (36), kitchen air (36), kitchen ventilator surface (36), left forearm
skin (76), left palm skin (76), living room air (36), remote control surface (36), right forearm skin (76),
right palm skin (76), shower curtain surface (36), toilet air (36), toilet flush button surface (36),
TV screen surface (36)

Individual (skin only) Admiralty A z (20), Fortress Hill z (20), Ma On Shan w (20), Ma On Shan x (20), Ma On Shan y (20),
Quarry Bay y (20), Quarry Bay z (20), Sai Wan y (20), Sai Wan z (20), Sha Tin Wai x (20), Sha Tin Wai y (20),
Tai Koo x (20), Tai Koo y (20), Tai Koo z (20), Tuen Mun B w (20), Tuen Mun B x (20), Tuen Mun B y (20),
Wu Kai Sha w (20), Wu Kai Sha y (20)
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could be matched. When microbiota matching was
repeated against randomly selected subsets of potential
matches, accuracy increased linearly as the size of the
subset decreased, reaching 94% when there were only two
possible matches (Additional file 1: Figure S1). This im-
plies that in any practical forensic application of microbial
matching, careful selection of the pool of potential
matches may be one of the most important determinants
of accuracy.
When we used surface samples collected a season or

more after skin samples, the rate fell, with no accurate

matches made after a delay of three seasons. Likewise,
when we used skin samples collected after surface sam-
ples, the accuracy fell to 33% for delays of two or three
seasons. While accuracy decreased with delay in both
directions, skin-after-surface delays tended to yield a
higher accuracy rate than surface-after-skin delays of the
same magnitude. This effect of delay on matching is
consistent with previous reports that the human skin

Fig. 2 Effect of sampling delay on microbiota matching and UniFrac
distance between skin and surface samples. Sampling delay is the
number of seasons’ difference between the collection of skin and
surface samples, with a positive delay indicating surface samples
were collected after skin samples, while a negative delay indicates
skin samples were collected after surface samples. a Accuracy of
SourceTracker-based microbiota matching of skin to surface samples.
Accuracy is determined as the proportion of residences for which
SourceTracker estimated the correct set of occupants’ skin microbiota
as the major source for the residences’ surface microbiota. b Weighted
and c unweighted UniFrac distances between skin and surface samples
from the same household. Samples with smaller distances have more
similar community compositions. Dark line represents the mean of
distances between all pairwise combinations of one skin sample and
one surface sample from the same household. Vertical grey lines give
the standard deviations

Fig. 1 Summary of evidence that occupant skin is the major source
of household surface microbiota. Boxes extend from first to third
quartiles; notches indicate median and 95% CI (estimated as
median �1:58� IQR=

ffiffiffi

n
p

); whiskers indicate highest value within
third/first quartiles �1:5� IQR; points indicate outliers. a Relative
abundance in each surface sample of OTUs belonging to families
identified by Dunn et al. [9] as indicative of human skin, human
oral cavity, leaf, human stool and soil. b SourceTracker-estimated
contribution of skin or air samples (same season) or negative
control (blank) samples to microbiota in all household surface
samples. c Weighted UniFrac distances between skin and surface
samples (same season), showing distances between samples within
the same residence or between different residences. A lower value
indicates more similar microbiota
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microbiota changes with time [7, 8] and that microbiota
traces deposited on surfaces begin to degrade within
hours even in the absence of cleaning or other mechan-
ical removal [18]. In this study, as the residences were
continuously occupied, the most likely mechanisms for
OTU loss are cleaning and other household activities as
well as displacement of older traces by newly acquired
skin OTUs. In other circumstances, such as the depos-
ition of a trace in a public space or in a space vacated
soon after the deposition, the degradation of identifying
traces may occur faster in the absence of continuous de-
position from the original host.
We confirmed these results by comparing UniFrac

distances between skin and surface samples, another
method that has been successfully employed for micro-
biota matching [1]. The mean distance between skin
and surface samples from the same household was lowest
for samples taken contemporaneously, and increased with
increasing delay between skin and surface sampling in
both directions (Fig. 2b, c), with the exception of a small
decrease in the weighted UniFrac distance between skin-
after-surface delays of two to three seasons. Weighted but

not unweighted UniFrac distances were generally lower
for skin-after-surface delays than surface-after-skin delays
of the same length of time, similar to the skewed distribu-
tions of SourceTracker matching accuracy.
While this skew could be attributed to technical vari-

ation in sampling and/or sequencing, this would most
likely produce random variation in accuracy rates and
UniFrac distances rather than a systematic skew. Add-
itionally, technical variation would not explain why the
weighted but not unweighted UniFrac distances exhibit
this skew. An alternative explanation is that OTUs tend
to persist longer on skin than on surfaces. If OTUs were
frequently exchanged between skin and surfaces, creat-
ing a shared OTU pool, but these OTUs persisted for
longer on skin than on surfaces, over time skin micro-
biota would more resemble the past shared pool and
therefore past samples of both types. To examine the
persistence of OTUs on skin and surfaces, each OTU in
each sample was mapped to the season in which it was
first observed (Fig. 3). In both skin and surface sam-
ples, an average of 32% of OTUs in non-winter samples
had been present in the sampled body site or household

Fig. 3 Seasonal OTU stability on a skin and b surface. Read counts have been normalised across samples. Counts represent means across a
individuals or b residences
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surface in winter, the season in which observations
began. While each season after winter saw an influx of
new OTUs (mean 58% of OTUs per sample), these same
OTUs consistently declined to comprise an average of
19% per sample in the following season. This suggests
that both skin and surface microbiota contained popula-
tions of stable OTUs that persisted for many seasons,
comprising ~30% of the OTUs present at any time, as
well as transient OTUs that persisted for one season or
shorter. OTUs that persisted for more than one season
comprised a slightly but significantly (Mann-Whitney p
< 0.05) higher proportion by relative abundance of skin
samples (mean 83% per sample) than surface (81%),
while OTUs present in all four seasons comprised a
mean abundance of 60% of skin samples but 57% of sur-
face samples (Mann-Whitney p < 0.05). This may explain
the skewed distributions of both microbiota matching
accuracy and weighted UniFrac distances over different
sampling delays, as the higher abundance of stable
OTUs on skin could cause shared microbiota to persist
for longer on skin than on surfaces. This would also ac-
count for the lack of skew in the distribution of un-
weighted UniFrac distances, as this distance varies with
OTU diversity but not abundance.
We hypothesised that some OTUs are more useful for

microbial matching than others, as they uniquely iden-
tify or are strongly associated with an individual or sub-
set of individuals. However, by virtue of their specificity,
these OTUs may be particularly susceptible to loss from
skin microbiota [7], failure to be deposited on a surface
as a microbiota trace, or loss from a deposited trace. To
test whether this is the case, we used two measures of
the identifying potential of OTUs, indicator value [19]
and hitting set membership, and examined the relation-
ship between these measures and OTU stability and de-
position from skin to surface. Hitting sets [7], as applied
to microbiota matching, are algorithmically determined
minimal sets of OTUs that uniquely identify individuals

within a cohort, thereby making membership of an OTU
in a hitting set a useful marker of that OTU’s value in
microbiota matching. Franzosa et al. reported that while
hitting sets are relatively stable across time in gut and
oral microbiota, allowing up to 80% accurate re-
identification of individuals over time, skin microbiota
OTU hitting sets are relatively unstable and do not
permit accurate identification on repeat sampling [7].
We found a similar result in this dataset (Additional
file 1: Figure S2), consistent with the hypothesis that
the decreasing accuracy of microbiota matching over
time is related to the loss of highly identifying OTUs.
While the family Moraxellaceae was the most com-
monly represented in the hitting sets, as it was among
all skin microbiota, overall the taxonomic distribution
of hitting set OTUs did not closely resemble that of
the total skin microbiota, with non-skin-associated
families such as the Sphingomonadaceae, Rhodobac-
teraceae and Weeksellaceae among the most common
hitting set members (Additional file 1: Table S1).
We used Cox proportional hazard models to relate

OTU abundance, indicator value and hitting set mem-
bership to the probability of an OTU being lost from
either skin or surfaces, or of being deposited from skin
to surface in a microbiota trace. Abundant OTUs were
substantially less likely to be lost from either skin or
surface (Fig. 4), with OTUs in the 99th abundance per-
centile <0.1× as likely to be lost relative to the baseline
probability. OTUs with higher indicator values and
OTUs that belonged to hitting sets were more likely to
be lost from skin, with an indicator value >0.9 (high spe-
cificity and fidelity) associated with a 4.4× increase in
the probability of being lost from a sample, and mem-
bership in a hitting set associated with a 1.5× increase.
Given that the failure of hitting sets to successfully re-
identify individuals over time is largely driven by false
negatives (Additional file 1: Figure S2), this implies that
the degradation of skin hitting set performance over

Fig. 4 Effects of OTU properties on the probability of OTU loss and deposition events. OTU abundances were binned by rank percentile, with a
higher percentile bin indicating a more abundant OTU, and indicator values by value, with a higher value indicating an OTU more specific for
and faithful to an individual’s microbiota. OTUs with the ‘hitting set member’ property are those found to be most useful for uniquely identifying
an individual and body site. Error bars represent 95% confidence intervals. A hazard ratio >1 indicates that the covariate increases the probability
of the event relative to the baseline, while a value <1 indicates the covariate decreases the probability. No hazard ratios were calculated for the
0–69th abundance percentiles, indicator values between 0 and 0.2 or for non-membership of the hitting set, as the coefficients associated with
these covariates are implicit by exclusion from the other covariate levels. The x-axis has been log10 scaled
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time is driven mainly by loss of identifying OTUs, rather
than by hitting set OTUs becoming more prevalent and
thereby less useful for identification [7]. Surface OTUs,
by contrast, were 0.84× as likely to be lost if they
belonged to an individual’s hitting set, although more
likely to be lost if they had a high indicator value.
One explanation for the preferential loss of identifying

OTUs from skin is simply that they tend to be less abun-
dant and are therefore less stable over time. While the posi-
tive correlation between abundance and stability would
tend to support this, other factors suggest that this explan-
ation is insufficient: the hazard model included terms for
OTU abundance; indicator value was significantly positively
correlated with abundance across all OTUs, individuals and
seasons (Pearson’s r = 0.20, p < 0.05); and the hitting set
algorithm prioritises abundant OTUs. It is more likely that
identifying OTUs tend to be transients, acquired by an indi-
vidual through chance environmental encounters to which
other individuals were not exposed. Because these transient
OTUs are less likely to be adapted to the skin environment
and would not have their populations replenished by repeat
exposure, they would be more exposed to eventual loss
regardless of their abundance.
Abundant OTUs were also more likely to be deposited

from skin to a household surface, with OTUs in the
99th percentile of abundance having 3.9× the baseline
probability. More abundant OTUs have more cells avail-
able for deposition but also tend to persist for longer
and thereby have increased time in which a chance
deposition event can occur. Hitting set membership and
lower indicator value slightly decreased the probability
of a deposition event relative to the baseline, although
the probability increased slightly with increasing indica-
tor value with values between 0.9–1 having 1.6× baseline
probability. This may reflect a slightly higher probability
of a deposition event when an OTU is found on a higher
proportion of an individual’s body sites, one of the prop-
erties measured by indicator value.

Conclusions
This study suggests that the frequently invoked analogy
between microbiota traces and fingerprints is misleading:
unlike a fingerprint, skin microbiota changes over time
both on the host and in microbial traces left on surfaces.
Moreover, these changes are not random but select
against low-abundance microorganisms as well as those
most useful in identifying the individual who left the
trace. Additional work is needed to better quantify the
persistence of microbiota traces and how persistence
depends on environmental factors. This study was only
able to detect OTU loss on seasonal timescales; a similar
study with a temporal resolution of hours or days could
better quantify the expected lifespan of a trace. Further,
this study examined only one type of indoor environment,

a continually occupied residence where occupants were in
frequent contact with household surfaces and input from
other sources was comparatively unimportant. Forensic
applications of microbiota matching may require the use
of traces from other environments, such as public spaces
or spaces with a significant microbial input from environ-
mental sources, and for which data on matching accuracy
is currently lacking.

Methods
Sample collection and DNA sequencing
Sample collection, genomic DNA (gDNA) extraction
and sequencing were conducted as previously described
[6]. Briefly, skin, surface and air samples were collected
from a range of residences in Hong Kong across four
seasons in 2014 (Table 1). Participants were instructed to
maintain normal household routines, including cleaning
schedules, during the study period. The V4 region of the
16S rRNA gene was amplified with the 515F/806R primer
pair [20]. Library construction and paired-end sequencing
were performed by the Health GeneTech Corporation
(Taoyuan, Taiwan).

OTU formation
Read quality control and OTU formation were performed
following the UPARSE pipeline [21] using USEARCH ver-
sion 8.1.1861. Raw sequencing reads were trimmed to a
uniform length of 138 bp and filtered for a maximum of 1
expected error per read using the USEARCH command
fastq_filter. These parameters were selected to maximise
read retention while minimising expected errors, based on
empirical analysis of the raw reads with the USEARCH
command fastq_stats. Reads shorter than 138 bp or with
≥1 expected error after trimming were discarded. Forward
and reverse reads were separated based on the identity of
the first five nucleotides with the primer sequences, with
sequences that did not perfectly match either primer in
these positions discarded. As the paired ends did not over-
lap enough to allow reliable merging by alignment, only for-
ward reads were used for subsequent analysis. Reads were
dereplicated with a custom perl script, and dereplicated
sequences were clustered at 97% sequence similarity with
the USEARCH command cluster_OTUs to form OTU
representative sequences, with singleton OTUs excluded.
Probable chimeric OTU representative sequences were
identified with the USEARCH command uchime_ref with
the -strand plus option against the RDP classifier training
database (downloaded 2 November 2015 from drive5.com/
uchime/rdp_gold.fa). Reads were recruited to OTUs using
the USEARCH command usearch_global with parameters
-strand plus, -id 0.97, -maxaccepts 8, -maxrejects 64 and
-top_hit_only. Consensus taxonomic lineages were assigned
to OTUs with the QIIME [22] version 1.9.1 script assign_-
taxonomy.py against the Greengenes [23] version 13_8 97%
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similar 16S database. OTU representative sequences were
aligned against the aligned Greengenes 97% similar 16S
database with PyNAST [24] and the QIIME script align_-
seqs.py, and a tree constructed with FastTree [25] and the
QIIME script make_phylogeny.py. With each batch of sam-
ples submitted to the sequencing facility, a kit control (i.e.
DNA extracted from an unused swab or filter in parallel
with samples [12]) was also submitted (total of nine kit con-
trol samples). Reads from these controls were not included
in OTU formation, but control reads were subjected to the
same quality control steps as sample reads and recruited
against the OTU representative sequences generated from
sample reads. A control OTU table was produced using a
custom script that excluded OTUs matching any of the fol-
lowing conditions: representative sequence identified as
chimeric; singleton OTU; representative sequence failed
PyNAST alignment; OTU assigned to class ‘Chloroplast’ or
family ‘mitochondria’. Following Flores et al. [26], any OTU
found at ≥5% relative abundance in any control sample was
designated a likely contaminant (Additional file 1: Figure
S3). The relative abundance threshold (≥5%) was set higher
than that used by Flores et al. (≥1%) due to the larger num-
ber of kit controls in this study. The final disposition of all
reads sequenced for this project (including those removed
for quality control purposes) is given in Additional file 1:
Figure S4. A sample OTU table was produced that ex-
cluded OTUs matching any of the above conditions as well
as likely contaminant OTUs (Additional file 2: Table S2).
To account for differences in sequencing depth between
samples, all samples were normalised by random subsamp-
ling to the number of reads in the most depauperate sample
(1381 reads). To confirm that skin was the major source of
surface OTUs, the Bayesian SourceTracker method [14]
was used to estimate the proportional contributions of oc-
cupant skin and household air to surface samples within
each household and season. Kit control samples were in-
cluded as potential sources as a negative control.

Microbiota matching
To confirm that microbiota comparison could be used
to reliably match occupants to residences, and to investi-
gate the effect of sampling delay on matching accuracy,
SourceTracker was used to estimate the proportional
contributions of occupant skin microbiota (‘sources’) to
household surface microbiota (‘sinks’). Source estimation
and scoring of match accuracy were performed as previ-
ously described [6]. Briefly, input OTU tables were pre-
pared for all pairwise combinations of residence and
season, with surface samples from the target residence
in all seasons as sinks, and skin samples from occupants
of all residences in the target season as potential sources.
This arrangement made available all skin samples within
each season as potential sources for each surface sample,
without permitting sources to be drawn from multiple

seasons. OTUs present in <10% of samples within each
input table were excluded. Source contributions were
estimated using the SourceTracker script sourcetracker_-
for_qiime.R (v1.0, downloaded 4 November 2015 from
https://github.com/danknights/sourcetracker/archive/v1.0.
tar.gz) with default settings. Each sink sample was consid-
ered to have an accurate match if the source contribution
for occupants of that residence was greater than for occu-
pants of any other residence (following Lax et al. [5]). The
proportion of sink samples with accurate matches for each
sampling delay (number of seasons between collection of
skin and surface samples, expressed as an integer between
−3 and +3) was taken as the accuracy rate for that delay.
To investigate the effect of the number of possible matches
on matching accuracy, microbiota matching with no season
delay was repeated with separate random subsets of two,
four, six and eight potential individuals or groups of individ-
uals (including the correct match) selected as potential
matches for each residence. Accuracy rates were calculated
for each subset size as above. Weighted and unweighted
UniFrac [15] distances were calculated between all samples
using the QIIME script beta_diversity.py with default
settings.

OTU stability and deposition
OTU hitting sets [7] for each individual and body site
were constructed to determine the stability of uniquely
identifying OTUs and to explore the utility of hitting sets
for microbiota matching. Hitting sets were generated with
Franzosa et al.’s [7] python script idability.py (downloaded
13 December 2015 from https://bitbucket.org/biobakery/
idability/get/default.tar.gz), run with the –meta_mode
relab option to optimise for metagenome-like data in rela-
tive abundance format. The stability of winter hitting sets
as unique identifiers across seasons was determined by
running idability.py with the –codes flag, which attempts
to re-identify individuals based on hitting sets.
Cox proportional hazard models [27] were used to

determine the effect of a set of OTU properties on the
stability of OTUs on occupant skin and household
surfaces and on the deposition of OTUs from skin to
surfaces. Proportional hazard models fit the instantan-
eous probability of an event (the ‘hazard’, in this case an
OTU loss or deposition event) as a function of selected
covariates, which can be either fixed or time-dependent.
A useful property of these models is that as long as the
baseline hazard function does not vary with time (i.e. the
hazard varies only on some proportional combination of
the covariates; the ‘proportional hazards assumption’),
the proportional effect of each covariate on the hazard
(the covariate’s ‘hazard ratio’) can be determined even if
the baseline hazard is unknown. A second useful prop-
erty is that these models allow for right-censored obser-
vations, where the period of observation may expire
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before an event is observed. These properties make pro-
portional hazards models well suited for studying OTU
stability and deposition over a fixed period.
Three models were created for this study. The first (the

‘skin stability’ models) examined the loss of skin OTUs as
a function of time-dependent covariates representing
OTU abundance, indicator value and membership in a
hitting set for the modelled occupant body site. Each
OTU on each body site served as a separate observation.
Relative abundances were binned into four percentile
ranges of increasing relative abundance (0–69th percen-
tiles, 70–89th percentiles, 90–98th percentiles and 99th
percentile) within each model (i.e. within each occupant
body site). The OTU indicator value (IndVal [19]), a
weighted measure of the OTU’s specificity (the proportion
of the total abundance of that OTU that is found on the
occupant) and fidelity (the proportion of body sites on
that occupant in which the OTU is found), was calculated
for each occupant in each season with the indval function
of the R package labdsv [28] and binned into four ranges
(0–0.2, 0.2–0.6, 0.6–0.9, 0.9–1). The hitting set member-
ship covariate was a logical (true/false) value representing
whether the OTU was a member of a hitting set for the
modelled occupant and body site, in the season in which
the OTU was first observed. The final covariate was the
OTU’s indicator value (0–1; non-significant values masked
to 0) for the modelled occupant. For each OTU, the obser-
vation period began in the season in which the OTU was
first observed on the modelled occupant and body site
and ended either in the last season in which it was ob-
served (loss event) or in autumn (right-censoring with no
loss event). If an OTU was not observed for an interim
season(s) but then returned, this interim was not counted
as a loss event.
The next set of models examined the stability of OTUs

on household surfaces. Only OTUs found in at least one
skin sample from an occupant of the modelled residence
in any season as well as at least one surface sample from
the modelled residence and surface in any season were
included. This constrained the models to consider only
OTUs that likely originated from occupant skin rather
than other sources. Each OTU on each household surface
served as a separate observation. Covariates were included
for OTU abundance, indicator value (maximum value
among occupants of that residence) and hitting set mem-
bership (of a hitting set for any occupant of that resi-
dence). Determination of loss events and right-censoring
were as for the skin stability models.
The final model set investigated OTU deposition from

skin to surface as a function of the same set of covariates
used in the skin stability model. Each OTU on each
body site served as a separate observation. The model
covariates were set as with the skin stability models, and
response variable was a deposition event, defined as an

observation of the skin OTU on at least one household
surface in the same or a later season as that of first ob-
servation on skin. OTUs present on a modelled surface
before they were first observed on any occupants’ skin
were excluded from the model.
All models were fit with the coxph function from the R li-

brary survival (version 2.38 [29, 30]) using survival objects
built with the Surv function with right-censoring. Survival
objects were constructed in the right-censored counting
format, with each transition between seasons represented
by an interval with associated covariate values for the sea-
son beginning that interval and a response variable repre-
senting whether a loss or deposition event occurred at the
end of the interval. Significance for each covariate was de-
termined as the two-tailed p < 0.05 of the observed Wald
statistic (z, ratio of the fitted coefficient to its standard
error) under the null hypothesis of a hazard ratio of 1 (i.e.
no effect), with non-significant covariates rejected.

Additional files

Additional file 1: Table S1. Taxonomy of hitting set OTUs. Each
assignment of an OTU to an individual’s hitting set is counted once
(‘Count’); OTUs assigned to more than one hitting set are counted more
than once. ‘Source’ indicates families listed as indicative of a particular
source environment, following the scheme of Dunn et al. [9]. Figure S1.
Microbiome matching accuracy as a function of the number of potential
matches. For each household for which matching was performed, random
subsets of two, four, six and eight potential matches (individuals or groups
of individuals) were randomly selected for SourceTracker-based microbial
matching. Accuracy was determined as the proportion of residences for
which SourceTracker estimated the correct set of occupants’ skin microbiota
as the major source for the residences’ surface microbiota. Figure S2.
Accuracy of winter hitting sets in identifying individuals in later seasons.
Sets that identified both the correct individual and one or more additional
individuals were classified as ‘true positive + false positive’; sets that did
not identify the correct individual but did identify one or more other
individuals were classified as ‘false negative + false positive’. Figure S3.
OTUs identified as likely contaminants, based on their abundance in
the negative control (blank) samples. Taxonomy is given to the binomial level
where available. Figure S4. Final disposition of all raw reads sequenced for
this project. Reads were assigned to an OTU and included in the analysis
(‘Assigned OTU’), or excluded for one of the following reasons: failed to be
clustered in a non-singleton OTU (‘No OTU assignment’), likely chimeric
(‘Chimera’), assigned to OTU found in high abundance in negative controls
(‘Contaminant’), assigned to OTUs with non-bacterial phylogeny (‘Chloroplast’
or ‘Mitochondria’), assigned to OTU that could not be aligned for phylogenetic
tree construction (‘Failed alignment’), failed initial read quality control (‘Failed
QC’), unused mate pair (‘Reverse’), unable to be unambiguously identified as a
forward or reverse read (‘Unsorted’) or belonged to a negative control sample
(‘BlankForward’, ‘BlankReverse’ or ‘BlankUnsorted‘). (PDF 123 kb)

Additional file 2: Table S2. OTU table. Final OTU table generated from
the sequencing data, following all quality control steps. ‘Count’ gives the
number of reads for a given OTU identified in a given sample. For skin
samples, indicator value, indicator p value, and whether the OTU was a
member of a hitting set for that individual in that season are indicated.
‘NA’ values indicate properties not relevant to a given sample (e.g. air
samples are not associated with an individual). (TSV 30906 kb)
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