
METHODOLOGY Open Access

An accurate and efficient experimental
approach for characterization of the
complex oral microbiota
Wei Zheng1†, Maria Tsompana2,3†, Angela Ruscitto4, Ashu Sharma4, Robert Genco4,5, Yijun Sun1,5*

and Michael J. Buck2,3*

Abstract

Background: Currently, taxonomic interrogation of microbiota is based on amplification of 16S rRNA gene sequences
in clinical and scientific settings. Accurate evaluation of the microbiota depends heavily on the primers used,
and genus/species resolution bias can arise with amplification of non-representative genomic regions. The
latest Illumina MiSeq sequencing chemistry has extended the read length to 300 bp, enabling deep profiling
of large number of samples in a single paired-end reaction at a fraction of the cost. An increasingly large
number of researchers have adopted this technology for various microbiome studies targeting the 16S rRNA
V3–V4 hypervariable region.

Results: To expand the applicability of this powerful platform for further descriptive and functional microbiome
studies, we standardized and tested an efficient, reliable, and straightforward workflow for the amplification, library
construction, and sequencing of the 16S V1–V3 hypervariable region using the new 2 × 300 MiSeq platform. Our
analysis involved 11 subgingival plaque samples from diabetic and non-diabetic human subjects suffering from
periodontitis. The efficiency and reliability of our experimental protocol was compared to 16S V3–V4 sequencing
data from the same samples. Comparisons were based on measures of observed taxonomic richness and species
evenness, along with Procrustes analyses using beta(β)-diversity distance metrics. As an experimental control, we
also analyzed a total of eight technical replicates for the V1–V3 and V3–V4 regions from a synthetic community
with known bacterial species operon counts. We show that our experimental protocol accurately measures true
bacterial community composition. Procrustes analyses based on unweighted UniFrac β-diversity metrics depicted
significant correlation between oral bacterial composition for the V1–V3 and V3–V4 regions. However, measures
of phylotype richness were higher for the V1–V3 region, suggesting that V1–V3 offers a deeper assessment of
population diversity and community ecology for the complex oral microbiota.

Conclusion: This study provides researchers with valuable experimental evidence for the selection of appropriate
16S amplicons for future human oral microbiome studies. We expect that the tested 16S V1–V3 framework will be
widely applicable to other types of microbiota, allowing robust, time-efficient, and inexpensive examination of
thousands of samples for population, phylogenetic, and functional crossectional and longitutidal studies.
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Background
Presently, there is growing interest in the study of human
microbiota, the consortia of microbes occupying the human
body, using 16S rRNA gene sequences as an omnipresent,
conserved, and phylogenetically informative housekeeping
genetic marker. This recent enthusiasm on dissecting the
microbiome has been triggered by important techno-
logical advances, and findings supporting that dysbiosis of
host-microbe interactions can affect a multitude of human
physiological processes [1–3] with some of these interac-
tions being causal [2, 4, 5]. However, our ability to taxo-
nomically characterize the microbiota using sequencing
data is still restricted by the lack of universally accepted
similarity thresholds [6] and the differential discrimin-
atory power of the nine 16S rRNA hypervariable
regions (V1–V9) [7] with no universally accepted re-
gion(s) [8]. A number of reports consistently support that
amplification of non-representative genomic targets can
heavily bias microbiome phylogenetic and diversity studies
leading to inconclusive or inaccurate results [7, 9, 10].
Thus, evaluation of the diagnostic power of the targeted
genetic markers is essential for accurate identification of
specific microbiota.
A commonly used genetic marker for culture-

independent characterization of microbial consortia is
the 16S rRNA hypervariable V1–V3 region, but its ap-
plication has been so far limited to protocols involving
the Roche/454 pyrosequencing platform (Branford,
CT, USA). The latest Illumina sequencing chemistry
using the MiSeq has extended the read length to
300 bp, enabling deep profiling of large number of
microbiome samples in a single paired-end reaction,
and providing similar read lengths to the Roche plat-
form at a fraction of the cost [11]. An increasingly
large number of researchers have adopted this tech-
nology for the study of various microbiota targeting
the 16S rRNA V3–V4 hypervariable region [12, 13].
To expand the applicability of this powerful Illumina
MiSeq sequencing platform, we standardized and
tested a high-throughput workflow for amplicon li-
brary construction and sequencing of the 16S rRNA
V1–V3 hypervariable region. Our analysis involved 11
subgingival plaque samples from diabetic and non-
diabetic human subjects suffering from periodontitis.
The efficiency and reliability of our experimental protocol
was compared to 16S V3–V4 sequencing data obtained
for the same samples. Comparisons were based on ob-
served taxonomic richness and species evenness, as repre-
sentative measures of within sample alpha(α)-diversity,
along with Procrustes analyses to assess whether beta(β)-
diversity estimates are dependent on the hypervariable
region used. In addition, we analyzed a total of eight tech-
nical replicates for the 16S V1–V3 and V3–V4 regions
from a single mock community with known bacterial

species and staggered rRNA operon counts, to evaluate
the effect of experimental and analytical error on our de-
veloped workflow.
Statistical comparison of expected and observed relative

species abundances from the mock community clearly sup-
ported that our experimental approach provides with an
accurate representation of true community composition.
Unweighted UniFrac measures of β-diversity for the
clinical samples strongly correlated for the two tested
16S rRNA hypervariable regions, demonstrating that
both amplicons offer an overall similar representation
of the human oral microbiota. However, examination of
α-diversity for the clinical samples showed that V1–V3
provides with higher phylotype richness, suggesting this
region offers with a deeper assessment of population
diversity and community ecology for the complex oral
microbiota. As current taxonomic interrogation of hu-
man microbiota is based predominantly on amplification
of 16S hypervariable regions, this study provides re-
searchers with valuable experimental evidence for the
selection of appropriate 16S amplicons for future human
oral microbiome studies and avoidance of resolution bias.
Also, our study highlights the library construction and
sequencing conditions necessary for generation of accept-
able quality 16S rRNA data. We expect that our tested
framework will be widely applicable to other types of
microbiota, allowing robust and time-efficient examin-
ation of thousands of samples for population genetic,
phylogenetic, and functional studies.

Results and discussion
The new Illumina sequencing 2 × 300 MiSeq platform
provides with a high-throughput system for in-depth
profiling of microbial consortia from clinical and envir-
onmental settings. It is superior compared to previous
sequencing chemistries (i.e., Roche/454 pyrosequencing
platform; Branford, CT, USA), since it offers the same
effective length of reads at a fraction of cost and time.
As interest in the study of microbiota has been growing
rampantly, many scientists have increasingly adopted
the new Illumina MiSeq chemistry to target the 16S
V3–V4 region for various microbiome studies [12, 13].
To expand the applicability of this new platform for
further population genetic, phylogenetic, and functional
microbial studies, we developed a reliable and efficient
workflow for amplicon PCR, library construction, and
sequencing of the 16S V1–V3 in the MiSeq. Our tested
protocol is based on the combination of Illumina over-
hang sequences with the 16S V1 (27F) forward [14] and
V3 (534R) reverse [15] primers (Table 1) and Nextera
XT indices, which allow multiplexing of up to 384 sam-
ples per MiSeq run.
To obtain a target coverage depth per sample, some-

one should consider the minimal number of mappable
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sequencing reads delivered by the MiSeq (~25 million
reads per run) and adjust accordingly the number of
multiplexed samples per flow cell. In addition, the clus-
tering density and % PhiX used have an effect on the
amount and quality of data generated. We have ob-
served that with the MiSeq 2 × 300 v3 chemistry, lower-
ing the final concentration of 16S sequencing libraries
while maintaining a 20 % PhiX decreases the overall
data output but increases the percentage of reverse
reads with acceptable quality metrics (Q30>70 %, inten-
sities ≥200) and improves the paired-end merging rate.
Thus, the final amount of merged paired-end data with
acceptable quality is a composite of the number of sam-
ples multiplexed, final concentration of sequencing li-
brary, and % PhiX control used. The target depth of
coverage depends highly on the specific goal of the mi-
crobial study. Deeper sequencing is normally required
to capture rare taxa in bacterial consortia or to differ-
entiate between similar environmental niches, whereas
increasing the depth of coverage does not seem to
benefit β-diversity analyses, and efforts should be fo-
cused on increasing the number of analyzed samples in
these cases [16, 17].
In our experimental workflow, we amplified and se-

quenced appropriate positive and negative controls, and
all reactions were carried out with water and plastic con-
sumables guaranteed as DNA-free. We regard these two
precautionary actions as crucial for the accurate and
representative characterization of microbial communi-
ties, as application of this protocol with uncertified
molecular biology reagents in our hands led consistently
to contamination with waterborne bacteria. This is in
agreement with a growing number of reports highlight-
ing the confounding effects of reagent and laboratory
contamination on sequence-based microbiome studies,
especially for samples with low microbial biomass (i.e.,
blood, bronchoalveolar lavage, and others) where con-
taminating microbial DNA can dominate the bacterial
population profile [18-24]. In light of all these findings,
we strongly advise the use of controls and reagents free
of nucleic acids with our current protocol, especially for
samples with limited starting bacterial load. For the lat-
ter samples, we also recommend increasing the volume
of “amplicon synthesis” reactions to 100 μl (by quadru-
pling the volumes of required reagents for the first PCR

amplification and bead-cleanup) to accurately capture
the bacterial composition of these challenging samples.
A number of publications have highlighted the dis-

torting effects of PCR amplification and sequencing on
16S rRNA-based microbial community profiling even
in the presence of routine sequence quality filtering
[25], raising the debate over how much of the “rare”
microbes are artifacts of experimental procedure [8].
In our study, we used high-proofreading Taq polymer-
ase, stringent quality filtering criteria, and operational
taxonomic units (OTU) clustering at 97 % all shown to
mitigate overestimation of microbial diversity [25, 26].
In addition, sequencing was based on Illumina chemistry
accepted to have lower sequence errors than pyrosequenc-
ing, in which homopolymers are the major source of in-
accuracy [27, 28]. To further alleviate concerns of PCR
bias and sequencing error artificially inflating our diversity
estimates and affecting disproportionally one of the tested
hypervariable regions, we analyzed a total of eight tech-
nical replicates of the 16S V1–V3 and V3–V4 regions
from a mock community with known species composition
and abundances. Our evaluation was an analysis of
qualitative and quantitative taxonomic composition to
test if our method accurately measures true community
composition while avoiding spurious additional OTUs.
Given no experimental error, the observed proportion
of OTUs per known bacterial species should align with
the expected proportion of the mock community. Our
results revealed that our experimental protocol accur-
ately measures the bacterial diversity present in the
mock community used (Table 2) with the V1–V3 offer-
ing the shortest distance from the expected relative
species proportions (Fig. 1).
The efficiency and reliability of our 16S V1–V3

protocol was also compared to V3–V4 sequencing data
obtained from 11 subgingival plaque samples from dia-
betic and non-diabetic human subjects suffering from
periodontitis. We first assigned OTUs to each of the 11
samples, using the closed-reference u-clust OTU pick-
ing protocol against the Greengenes and Human Oral
Microbiome Database (HOMD) core databases. OTUs
were also picked with the de novo protocol using two
different chimera-removal approaches. In all approaches,
OTU picking was done at the species level using a 97 % se-
quence similarity level cutoff, after applying strict sequence

Table 1 Primer sequences used for amplification of the 16S V1-V3 and V3-V4 region

16S region Name of primer Primer sequence

V1–V3 Illumina_16S_27F 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGAGTTTGATCMTGGCTCAG

Illumina_16S_534R 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATTACCGCGGCTGCTGG

V3–V4 Illumina_16S_341F 5′ -TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG

Illumina_16S_805R 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC
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quality filtering to improve taxonomic accuracy. All
employed quality-filtering steps were intended to miti-
gate the negative effects of PCR-based artifacts and
sequencing error on the estimation of population diver-
sity and are integral for accurate dissection of microbial
communities [29]. The final number of filtered OTUs
obtained with the taxonomy-dependent Greengenes
and HOMD approaches, and the de novo with uchime
or ChimeraSlayer for the V1–V3/V3–V4 amplicons
were 770/654, 543/469, 554/372, and 605/361, respect-
ively. The alpha rarefaction plots generated with the fil-
tered OTU tables from the above picking workflows are
shown in Fig. 2. For all OTU picking methods, the V1–V3
tested amplicon captured greater phylotype richness than
the V3–V4 region, with V1–V3 detecting 20 to 56 % more
OTUs than V3–V4 at the species level.
To compare the phylotype evenness detected by the two

amplicons, we estimated Pielou’s index J [30] from the
species taxonomic summaries generated in QIIME version
1.8.0 using the filtered OTU tables from the closed-
reference and de novo approaches for the V1–V3 and
V3–V4 regions (Fig. 3). Species evenness is the measure of

Table 2 Expected and observed relative species abundances of the mock community for the V1–V3 and V3–V4 regions using OTUs
picked with two closed-reference protocols

Type strains Expected relative
abundance (%)

Observed relative abundance (%)a

V1–V3 GG V3–V4 GG V1–V3 HOMD V3–V4 HOMD

Escherichia coli 21.91 11.94 (±0.68) 22.60 (±0.61) 15.88 (±0. 72) 22.78 (±0.62)

Rhodobacter sphaeroides 21.91 39.07 (±1.57) 12.27 (±0.52) 39.21 (±1.58) 12.33 (±0.52)

Staphylococcus epidermidis 21.91 29.93 (±0.92) 0.12 (±0.00) 30.10 (±0.94) 0.24 (±0.02)

Streptococcus mutans 21.91 2.96 (±0.39) 20.42 (±0.65) 3.00 (±0.41) 20.49 (±0.65)

Bacillus cereus 2.19 0.14 (±0.05) 2.30 (±0.07) 0.15 (±0.05) 2.33 (±0.07)

Clostridium beijerinckii 2.19 1.60 (±0.21) 4.01 (±0.16) 1.61 (±0.21) 4.08 (±0.17)

Pseudomonas aeruginosa 2.19 2.08 (±0.27) 1.16 (±0.17) 2.10 (±0.28) 1.17 (±0.17)

Staphylococcus aureus 2.19 3.39 (±0.19) 30.84 (±1.33) 3.45 (±0.20) 31.38 (±1.33)

Streptococcus agalactiae 2.19 1.13 (±0.13) 3.07 (±0.12) 1.14 (±0.13) 3.09 (±0.12)

Acinetobacter baumannii 0.22 0.15 (±0.06) 0.31 (±0.03) 0.15 (±0.06) 0.31 (±0.03)

Helicobacter pylori 0.22 2.89 (±0.12) 0.67 (±0.05) 2.90 (±0.12) 0.67 (±0.05)

Lactobacillus gasseri 0.22 0.01 (±0.01) 0.40 (±0.04) 0.01 (±0.01) 0.40 (±0.04)

Listeria monocytogenes 0.22 0.03 (±0.01) 0.20 (±0.01) 0.03 (±0.01) 0.20 (±0.01)

Neisseria meningitidis 0.22 0.05 (±0.02) 0.38 (±0.03) 0.05 (±0.02) 0.38 (±0.03)

Propionibacterium acnes 0.22 0.03 (±0.01) 0.01 (±0.00) 0.03 (±0.01) 0.01 (±0.00)

Actinomyces odontolyticus 0.02 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

Bacteroides vulgatus 0.02 0.02 (±0.02) 0.06 (±0.01) 0.02 (±0.02) 0.06 (±0.01)

Deinococcus radiodurans 0.02 0.00 (±0.00) 0.03 (±0.00) 0.00 (±0.00) 0.03 (±0.00)

Enterococcus faecalis 0.02 0.00 (±0.01) 0.02 (±0.00) 0.00 (±0.01) 0.02 (±0.00)

Streptococcus pneumoniae 0.02 0.00 (±0.01) 0.01 (±0.00) 0.00 (±0.01) 0.01 (±0.00)

Others 0 4.56 (±0.13) 1.10 (±0.06) 0.16 (±0.07) 0.01 (±0.00)
aAverage abundances and standard deviations are calculated based on four replicates

Fig. 1 Box plots of Euclidean distances between observed and
expected relative species abundances support accurate assessment
of true bacterial mock community composition. Euclidean distances
between observed and expected relative species abundances of a
mock bacterial community were calculated for four technical
replicates of the V1–V3 and V3–V4 regions using OTUs picked with
the closed-reference protocol against Greengenes (GG) and HOMD.
The x-axis represents the different amplicon/OTU picking method
used, and the y-axis represents the distance from expected values
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biodiversity that quantifies how equal a community is nu-
merically [31]. J takes values between 0 and 1, with values
closer to 1 representing more even quantities of the differ-
ent species within a community. Overall, for all four OTU
picking methods, V1–V3 showed lower phylotype even-
ness than V3–V4 although none of the pairwise compari-
sons were statistically significant. The t test P values for
comparisons based on closed-reference against Green-
genes, closed-reference against HOMD, de novo with
uchime, and de novo with ChimeraSlayer OTU picking
methods were 0.60, 0.36, 0.93, and 0.86, respectively. Al-
though the relationship between species richness and
evenness can vary in different ecological contexts and
has been controversial in the field of ecology [32],
more recent empirical studies have shown a significant

negative relationship between these two components of
diversity [33-35] in agreement with our findings.
To compare the overall differences in population struc-

ture across the 11 bacterial communities in relation to the
utilized genetic marker (V1–V3 versus V3–V4), we esti-
mated levels of β-diversity at the genus level using the rar-
efied closed-reference against Greengenes or HOMD and
the de novo with uchime or ChimeraSlayer OTU tables at
a 40,000 sequencing depth with the unweighted UniFrac
distance measure [36, 37]. The generated distance matri-
ces were visualized as three dimensional PCoA plots and
statistically compared with Procrustes transformations
[38] (Fig. 4). We found that conclusions derived from
PCoA plots were independent of the hypervariable region
used (P = 0.00 for all comparisons), indicating that the

Fig. 2 Taxonomic richness is greater for V1–V3 compared to V3–V4 based on four different OTU picking approaches. Alpha rarefaction plots for
V1–V3 and V3–V4 hypervariable regions were generated at the species level using the “observed number of OTUs,” a minimum rarefaction level of 1,
maximum rarefaction level of 100,001, and a step size of 5,000. Sequence sampling was repeated 10 times for each sample size. OTUs were picked
based on the a closed-reference OTU picking method against the Greengenes or b HOMD database, and c the de novo OTU picking with uchime or
d ChimeraSlayer chimera removal. The x-axis shows the number of sampled sequences, and the y-axis represents the number of observed OTUs. Red
lines depict taxonomic richness detected using the V3–V4 amplicon, and blue lines correspond to the V1–V3 amplicon. Error bars exhibit the standard
error of mean diversity at each rarefaction level across multiple iterations
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tested genetic markers provide with an overall similar
assessment of the subgingival microbiota.

Conclusions
In this study, we set out to expand the applicability of the
newest Illumina MiSeq powerful sequencing platform by
standardizing and testing a high-throughput workflow for
amplicon library construction and sequencing of the 16S
V1–V3 hypervariable region. V1–V3 data generated with
this protocol was compared to V3–V4 sequences gener-
ated from the same 11 subgingival plaque samples. Our
results demonstrate that our experimental protocol accur-
ately captures true community composition and that both
tested amplicons provide an overall similar profiling of the
human oral microbiota. However, V1–V3 provides with
greater phylotype richness and evenness than V3–V4 and
thus supports a more representative assessment of popula-
tion diversity and community ecology for oral bacterial
genera. This study provides researchers with valuable ex-
perimental insight for the selection of appropriate 16S
rRNA amplicons for future human oral microbiome stud-
ies and underlines the key experimental and bioinformat-
ics steps necessary for mitigating the effects of bacterial

contamination, PCR-based artifacts, and Illumina sequen-
cing error on sequenced-based microbiome analyses. We
foresee that the developed workflow will be widely useful
to the microbiome community for the high-throughput
and accurate and efficient profiling of samples at a reason-
able cost. This technology should prove especially useful
for time-sensitive microbiome studies involving critical
monitoring of environmental or clinical samples at sin-
gle or multiple timepoints or for pilot microbial studies
that could father larger investigations.

Methods
DNA extraction, 16S rRNA amplification, library construction,
and sequencing
Genomic DNA was extracted from 11 subgingival
plaque samples of diabetic and non-diabetic patients
with the Fast DNA kit and the FastPrep24-5G instru-
ment according to manufacturer’s recommendations
(MP Biomedicals, Santa Ana, CA). Briefly, 200 μl of
each oral plaque sample was lysed in 2-ml tubes con-
taining garnet particles and a ceramic sphere with 1 ml
of CLS-TC buffer, followed by homogenization in the
FastPrep24-5G instrument. Extracted DNA was purified

Fig. 3 Boxplots of Pielou’s index J for V1–V3 and V3–V4 OTUs support a negative relationship between observed oral sample species richness and
evenness. Pielou’s index J was estimated independently for all generated taxa summaries at the species level to evaluate species evenness
detected by the V1–V3 and V3–V4 regions. Analysis was based on OTUs picked based on the a closed-reference OTU picking method against the
Greengenes or b HOMD database, and c the de novo OTU picking with uchime or d ChimeraSlayer chimera removal. The x-axis shows the value
for Pielou’s index J, and the y-axis presents the amplicon regions tested. J takes values between 0 and 1, with values closer to 1 representing
more even quantities of the different species within a community
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with silica-based spin filters (FastDNA kit) and quanti-
fied with the Quant-iT PicoGreen ds DNA Assay Kit
(Invitrogen, Eugene, Oregon, USA).
Each DNA sample was subsequently used for 16S

amplification of the V1–V3 and V3–V4 hypervariable
regions using appropriate negative (UltraClean DNA-
free PCR water; MO BIO Laboratories, Inc., Carlsbad,
CA, USA) and positive (mouse fecal DNA) controls.
Specifically, metagenomic DNA was amplified using the
16S V1 (27F) forward [14] and V3 (534R) reverse [15],
and the 16S V3 (341F) forward and V4 (805R) reverse
[39] primer pairs with added Illumina adapter overhang
nucleotide sequences (Table 1). Amplicon synthesis was
performed using thermocycling with 8.5 μl of genomic

DNA, 2 μl of amplicon PCR forward primer (2.5 μM),
2 μl of amplicon PCR reverse primer (2.5 μM), and
12.5 μl of 2x KAPA HiFi HotStart Ready Mix (Kapa
Biosystems) at 95 °C initial denaturation for 3 min,
followed by 25 cycles of 95 °C for 30 s, 62.3 °C for 30 s,
and 72 °C for 30 s, and a final extension at 72 °C for
5 min. Reactions were cleaned up with Agencourt
AMPure XP beads (Beckman Coulter Genomics) accord-
ing to the manufacturer’s protocol. Attachment of dual
indices and Illumina sequencing adapters was performed
using 5 μl of amplicon PCR product DNA, 5 μl of Illumina
Nextera XT Index Primer 1 (N7xx), 5 μl of Nextera XT
Index Primer 2 (S5xx), 25 μl of 2x KAPA HiFi HotStart
Ready Mix, and 10 μl of PCR-grade water (UltraClean

Fig. 4 Procrustes analyses demonstrates significant correlation between oral bacterial composition obtained with the V1–V3 and V3–V4
regions. Procrustes analysis of the bacterial composition of V1–V3 (red) and V3–V4 (blue) regions was calculated using the unweighted
UniFrac metric. β-diversity distances were computed at the genus level using the a closed-reference OTU picking method against the
Greengenes or b HOMD database, and c the de novo OTU picking with uchime or d ChimeraSlayer chimera removal. For a given sample,
red lines connect to 16S sequence data from the V1–V3 region while blue lines connect to points generated from the V3–V4 sequence
data. The M2 fit reported is from a Procrustes transformation over the first two principal coordinates, while the P value is calculated from an empirically
determined distribution of M2 values over 10,000 Monte Carlo simulations.
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DNA-free PCR water; MO BIO Laboratories, Inc.,
Carlsbad, CA, USA), with thermocycling at 95 °C for
3 min, followed by 8 cycles of 95 °C for 30 s, 55 °C for
30 s, and 72 °C for 30 s, and a final extension at 72 °C
for 5 min. Constructed 16S metagenomic libraries were
purified with Agencourt AMPure XP beads and quanti-
fied with Quant-iT PicoGreen and the KAPA Library
Quantification Kit (KAPABIOSYSTEMS). Library qual-
ity control was performed with the Agilent Technolo-
gies 2100 Bioanalyzer to ascertain quality and average
size distribution.
Libraries were normalized and pooled to 4 nM based

on qPCR values. Pooled samples were denatured and di-
luted to a final concentration of 10 pM with a 20 % PhiX
(Illumina) control. Sequencing was performed using the
MiSeq Reagent Kit V3 in the Illumina MiSeq System. All
22 samples were multiplexed and sequenced in a single
lane on the MiSeq using 2 × 300 bp paired-end sequen-
cing. Sequencing reads were generated in less than 65 h.
Image analysis and base calling were carried out directly
on the MiSeq.

Mock community
A single aliquot of the microbial mock (synthetic)
community B [40], which contains genomic DNA from
20 bacterial strains with staggered ribosomal RNA
operon counts (10,000 to 10,000,000 copies per organ-
ism per μl), was used in this study. The bacterial strains
from which DNA was extracted were Acinetobacter bau-
mannii, strain 5377 (NC_009085), Actinomyces odontolyti-
cus, strain 1A.21 (NZ_AAYI02000000), Bacillus cereus,
strain NRS 248 (NC_003909), Bacteroides vulgatus, strain
NCTC 11154 (NC_009614), Clostridium beijerinckii, strain
NCIMB 8052 (NC_009617), Deinococcus radiodurans,
strain R1 (smooth) (NC_001263, NC_001264), Entero-
coccus faecalis, strain OG1RF (NC_017316), Escherichia
coli, strain K12, substrain MG1655 (NC_000913), Helico-
bacter pylori, strain 26695 (NC_000915), Lactobacillus gas-
seri, strain 63 AM (NC_008530), Listeria monocytogenes,
strain EGDe (NC_003210), Neisseria meningitides, strain
MC58 (NC_003112), Propionibacterium acnes, strain
KPA171202 (NC_006085), Pseudomonas aeruginosa, strain
PAO1-LAC (NC_002516), Rhodobacter sphaeroides, strain
ATH 2.4.1 (NC_007493, NC_007494), Staphylococcus aur-
eus, strain TCH1516 (NC_010079), Staphylococcus epider-
midis, FDA strain PCI 1200 (NC_004461), Streptococcus
agalactiae, strain 2603 V/R (NC_004116), Streptococcus
mutans, strain UA159 (NC_004350), and Streptococcus
pneumoniae, strain TIGR4 (NC_003028). All bacterial
members of the mock community have completely se-
quenced genomes and signify a variable range of %GC con-
tent and phylogenetic diversity. 16S amplification of the
V1–V3 and V3–V4 hypervariable regions, library construc-
tion, and sequencing were done as above using 2 μl of

genomic DNA for the amplicon synthesis step. Four tech-
nical replicates were performed for each hypervariable
region.

Primary 16S rRNA sequence analysis and operational
taxonomic unit picking
Primary processing of sequencing reads was done in the
context of Quantitative Insights Into Microbial Ecology
(QIIME, version 1.8.0) [41, 42]. Initially, demultiplexed
paired-end V1–V3 and V3–V4 sequence reads were
joined using fastq-join [43, 44] with the default QIIME
settings and sequences with ambiguous base calls were re-
moved. Following, primers and barcodes were trimmed
from the remaining sequences. Sequencing quality fil-
tering was performed using the FASTX toolkit [45] to
isolate sequences having over 90 % base calls with a
quality score ≥30.
OTUs were picked separately for the V1–V3 and V3–V4

quality-filtered datasets by taxonomy-dependent (closed-
reference based) and taxonomy-independent (de novo)
methods. Closed-reference OTU picking was done with
QIIME (version 1.8.0, pick_closed_reference_otus.py work-
flow) [41, 42]. In detail, sequence reads were clustered
against a 16S rRNA reference sequence collection with
taxonomy annotation using reference-based (uclust_ref)
OTU picking [46]. Greengenes (version 13_8) [47] and the
HOMD (version 13.2) [48] were used as reference sets sep-
arately. Identity thresholds were set to 97 % sequence simi-
larity for species level assignment. Input query reads with
hits in the reference sequence collection were given the
same taxonomic label as the best hit. Sequences with the
same labels were clustered into one OTU. Reads with no
hits in the reference sequence collection were excluded
from all downstream analyses.
In the de novo OTU picking protocol, reads were

clustered based on internal pairwise sequence similarity
rather than on an external sequence reference collec-
tion using ESPRIT-Tree [49]. The benefit of this de
novo OTU picking method is that all reads are clus-
tered and thus novel diversity can be detected. Cutoff
thresholds were set to 97 % sequence similarity for spe-
cies level assignment. Two different chimera identifica-
tion methods were applied using QIIME version 1.8.0,
namely uchime [50] as integrated in the usearch 6.1 [46]
pipeline and ChimeraSlayer [51], to identify artifactual
amplified sequences originating from multiple parental
sequences. PyNAST [52] was used to align representative
sequences as input for ChimeraSlayer. The latter uses
BLAST [53] to identify potential chimera parents and
computes the optimal branching alignment of the query
against these two parents. Representative OTUs picked
with the de novo protocols were assigned taxonomy using
BLAST [53] against the Greengenes (version 13_8) core
database and taxonomy. Following, OTU tables
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representing sample by observation matrices were gener-
ated and spurious OTUs (represented by less than 10 se-
quences) were discarded as a second level of quality
filtering. OTUs from clinical samples were aligned using
PyNAST [52] against the Greengenes (version 13_8) core
database [47], and multiple sequence alignments were
used for phylogenetic reconstruction using FastTree [54].

Comparison of mock community amplicon performance
based on expected operon frequencies
The 16S rRNA operon count numbers for the 20 bacter-
ial species of the microbial mock community B [40] were
provided from the Bei Resources “Certificate of Analysis
for HM-277D” [55]. To compare the reliability of our
experimental protocol in recovering the expected struc-
ture of the mock community, we computed Euclidean
distances between observed and expected relative species
abundances of the mock community [56] for the V1–V3
and V3–V4 regions using OTUs picked with the two
closed-reference protocols outlined above. Observed
relative species abundances were estimated by dividing
the observed number of 16S rRNA amplicon reads for
each species by the total number of reads per sample.

Comparison of subgingival plaque sample amplicon
performance based on measures of alpha(α)- and
beta(β)-diversity
For α-diversity analysis, samples were rarefied multiple
times in QIIME version 1.8.0, with a minimum sequence
read depth of 1, maximum of 100,001, and a step size of
5,000 reads per sample. Sequence sampling was repeated
10 times for each sample size. Results were plotted as
alpha rarefaction plots in QIIME version 1.8.0 using the
“observed number of OTUs” metric, to compare true
species richness of bacterial communities associated
with the two amplicons. Species richness is the measure
of α-diversity that is concerned only with the number of
species present in a community and not their relative
abundance. Taxa summaries were generated for OTUs
picked with the closed-reference and de novo protocols
using QIIME version 1.8.0 to obtain the relative sample
taxonomic abundance at multiple taxonomic levels.
Pielou’s index J [30] was estimated independently for all
generated taxa summaries at the species level using the
“evenness” [31] R package to evaluate species evenness
detected by the V1–V3 and V3–V4 regions. Species
evenness is the second evaluator of α-diversity, which
takes into account relative species’ abundances. Ob-
tained V1–V3 and V3–V4 J values were statistically
compared with the Student’s t test using the “t.test” R
package [57].
Beta-diversity analysis was computed at the genus level

for OTUs picked with each of the four protocols above,
using samples rarified to 40,000 reads per sample and the

unweighted UniFrac distance measure [36, 37] in QIIME
version 1.8.0 (beta_diversity.py). Three dimensional prin-
cipal coordinate analyses (PCoA) [58] plots were gener-
ated using the β-diversity distance matrices by running
the principal_coordinates.py script in QIIME. Procrustes
transformations (using the script transform_coordina-
te_matrices.py) [38] were applied in QIIME to compare
the compositional structure across the eleven clinical sam-
ples with two PCoA plots as input; one built from 16S
rRNA V1–V3 sequence data and the other from V3–V4
data. P values for Procrustes transformations were gener-
ated using 10,000 Monte Carlo simulations by comparing
the measure of fit, M2, between matched-sample PCoA
plots and the empirically determined distribution of M2

values. Because M2 values depend on sample size and data
structure, only the generated P values were used to com-
pare the Procrustes plots [59]. Results were visualized using
Emperor [60] in QIIME (make_emperor.py, −c/ –compar-
e_plots option). Both sets of coordinates were plotted in
the same figure, with corresponding points from each
tested amplicon connected with red (V1–V3) and blue
(V3–V4) lines.
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