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Abstract

Background: As modern humans, we spend the majority of our time in indoor environments. Consequently,
environmental exposure to microorganisms has important implications for human health, and a better understanding
of the ecological drivers and processes that impact indoor microbial assemblages will be key for expanding our
knowledge of the built environment. In the present investigation, we combined recent studies examining the
microbiota of the built environment in order to identify unifying community patterns and the relative importance of
indoor environmental factors. Ultimately, the present meta-analysis focused on studies of bacteria and archaea due to
the limited number of high-throughput fungal studies from the indoor environment. We combined 16S ribosomal
RNA (rRNA) gene datasets from 16 surveys of indoor environments conducted worldwide, additionally including 7
other studies representing putative environmental sources of microbial taxa (outdoor air, soil, and the human body).

Results: Combined analysis of subsets of studies that shared specific experimental protocols or indoor habitats
revealed community patterns indicative of consistent source environments and environmental filtering. Additionally,
we were able to identify several consistent sources for indoor microorganisms, particularly outdoor air and skin,
mirroring what has been shown in individual studies. Technical variation across studies had a strong effect on
comparisons of microbial community assemblages, with differences in experimental protocols limiting our ability to
extensively explore the importance of, for example, sampling locality, building function and use, or environmental
substrate in structuring indoor microbial communities.

Conclusions: We present a snapshot of an important scientific field in its early stages, where studies have tended to
focus on heavy sampling in a few geographic areas. From the practical perspective, this endeavor reinforces the
importance of negative “kit” controls in microbiome studies. From the perspective of understanding mechanistic
processes in the built environment, this meta-analysis confirms that broad factors, such as geography and building
type, structure indoor microbes. However, this exercise suggests that individual studies with common sampling
techniques may be more appropriate to explore the relative importance of subtle indoor environmental factors on
the indoor microbiome.
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dynamics

Background
The microorganisms in, on, and around our bodies com-
prise a large portion of the biodiversity we encounter
in our lives. Our microbial associates impact our health,
both positively and negatively. Understanding the pro-
cesses that structure indoor microbial communities is an
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important endeavor, since we spend the bulk of our time
indoors and likely exchange many of our microbial pas-
sengers with various indoor habitats. In recent years, the
scientific community has begun to recognize the impor-
tance of characterizing such human-associated habitats,
with increasing numbers of studies seeking to determine
the biodiversity, ecology, and public health implications of
microbial assemblages present in the built environment.
Investigations to date have included assessments of pub-
lic restrooms [1, 2], hospitals [3–7], residences [8–18],
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university classrooms and office buildings [5, 19–22], arti-
san cheesemaking facilities [23], athletic facilities [24, 25],
museums [5, 26], metropolitan subways [27–29], and even
the evolutionary context of microbes indoors [30].
These individual studies typically target a specific loca-

tion in order to elucidate the interrelationship between
microbial communities and various environmental fac-
tors. Most recently, community assemblages have been
described by targeting short fragments of ribosomal RNA
(rRNA) genes and noncoding regions, such as the 16S
rRNA gene in bacteria and archaea and the internal tran-
scribed spacer (ITS) region in fungi. Gene fragments are
amplified and sequenced from the pool of species present
in environmental DNA samples, followed by data analyses
that describe the community assemblage observed within
a sample (α-diversity) as well as how much diversity is
shared between different samples (β-diversity).
There is both promise and peril in combining separate

studies into a meta-analysis. Individual efforts to char-
acterize the microbes we encounter in buildings have
shown that geography [10], building design and ventilation
[31, 32], and occupant presence and activity [19, 20, 31, 32]
can all contribute as drivers of indoor microbial com-
munities. On the one hand, concurrent evaluation of
these—and additional—studies has the potential to reveal
large-scale biological trends and patterns in microbial
community composition. On the other hand, there are
several recognized limitations [33], with the dominant
question being—can we detect true biological differences
over the background of technical variation that exists
across studies? In the case of microbial datasets, technical
variation is defined as differences caused by experimen-
tal protocols, including but not limited to differences in
the nature of the samples, DNA extraction methods, PCR
amplification protocols, target genetic locus, sequencing
primers, and sequencing platform. Differential experi-
mental protocols can introduce significant bias and poten-
tially obscure any meaningful biological patterns that may
be observed across studies.
In this study, we conducted a meta-analysis of publicly

available microbial datasets utilizing high-throughput
sequencing (454, Illumina platforms) to investigate com-
munity patterns in the built environment. Additionally,
supplementary datasets representing potential “source
habitats” (human microbiome, outdoor environments)
were analyzed alongside datasets from the indoor envi-
ronment. Specifically, we aimed to address the following
questions: (1) Are there consistent mechanisms evident
across studies (biogeography, building operations, etc.)
structuring microbial communities indoors? (2) Can we
identify consistent source habitats for microbial com-
munities in the built environment? (3) Are fungal and
bacterial communities structured by the same processes
across studies?

Results and discussion
We compiled high-throughput 16S rRNA sequence data
from 23 different studies, including 16 studies from built
environments and seven from potential source environ-
ments, such as soil, the human microbiome, and outdoor
air. We found that targeted biological comparisons were
generally successful when using subsets of studies that
shared a common experimental approach. Source track-
ing identified air and, to a lesser extent skin, as sources for
indoor air, although for many samples, the sources were
unidentified. In making comparisons across the entire set
of studies, it was apparent that every dataset considered
was unique in some aspect of habitat, sampling proto-
col, DNA extraction and amplification method, target
16S region, sequencing platform, or resulting sequencing
depth and quality. Although our analysis approach mir-
rored that of other recent meta-analyses [33–35], unlike
other studies, we found that technical variation across
built environment studies overshadowed biological varia-
tion. This strong study-level effect was consistent across
adjustments to the analysis pipeline. We conclude by dis-
cussing these findings in context of recommendations for
future studies.

Biological insights
Studies with shared habitats
We looked for subsets of studies that examined identi-
cal habitats across broad geographic areas. The common
indoor habitats were limited to bathrooms and kitchens,
so for this analysis, we included four studies: South Korea
homes [11], Colorado restroom surfaces [1], Colorado
kitchen surfaces [12], and North Carolina homes [9].
For the human microbiome, some evidence exists that

the same body sites across individuals are generally more
similar to one another than different skin sites within a
single individual [36]. We hypothesized that, much like
the human body, kitchens and restroomswere the surfaces
that were likely to reveal consistent microbial community
patterns, since both rooms are among the most likely to
accumulate moisture on surfaces, and they receive simi-
lar periodic inoculation from microbe-rich sources (such
as humans and food). As with skin, site-level similarity
has been noted across residential surfaces for bacteria
[1, 9, 12, 14]. For the subset of studies considered here,
bacterial communities generally did reflect their respec-
tive surface (Fig. 1). For instance, regardless of the study,
we found that communities from toilets were more sim-
ilar to other toilets than to other surfaces in kitchens
or restrooms. Each surface or room type was domi-
nated by bacterial OTUs consistent with the most likely
human-influenced source. For example, plant chloro-
plasts, presumably food-based, were the dominant type
in kitchens, representing 17 % of sequences, while in
the bathrooms, chloroplasts represented only 3.6 % of
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Fig. 1 Bacterial community distance within and between indoor
surfaces. A subset of studies from similar indoor environments was
analyzed (Colorado kitchen surfaces, Colorado restroom surfaces,
South Korea restroom and kitchen surfaces, and North Carolina kitchen
and restroom surfaces), and figures show the density of unweighted
UniFrac pairwise distances (a) within restrooms, within kitchens, and
between restrooms and kitchen, as well as (b) within toilets, within
fridges, and between toilets and fridges. Results indicate that the
bacterial OTUs found on these surfaces tend to be more similar to
each other than between surfaces

sequences. Conversely, skin-associated bacteria such as
Propionibacterium acnes, Corynebacterium, and Strepto-
coccus were dominant in the bathroom and less abundant
than more environmental-associated bacteria Acinetobac-
ter in kitchens, regardless of geographic location (South
Korea, Colorado, and North Carolina).

Source tracking
Source tracking is a Bayesian approach to estimate the
proportion of a given “sink” community sample that is
comprised of OTUs from a potential “source” sample [37].
For this study, sources were deemed to be outdoor air, soil,
and human-associated samples (skin, feces, mouth, urine).
Broadly, outdoor air and unidentified sources dominated

the sources for indoor air environments (Fig. 2a); outdoor
air averaged a mean proportion of 0.52 (range 0.003–0.98)
while unknown averaged 0.43 (range 0.016–0.99). Skin
was the next most identified source with a mean pro-
portion of 0.03 (range 0–0.25). Indoor surface environ-
ments, compared to airborne assemblages, tended to be
more strongly sourced from human-associated taxa, with
an average proportion of skin of 0.17 (range 0–0.96),
and outdoor air contributing a similar amount (0.14;
range 0–0.95). In looking within indoor surface types,
individual sources became more important. For example,
urine and feces were observed to be a more dominant
source in bathrooms compared to other areas (Fig. 2a).
Thus, from the biological perspective, source tracking
results largely support the intuitive understanding of envi-
ronment representing the most common source popula-
tions for microbial taxa that get dispersed indoors. These
results also largely mirror what has been shown in indi-
vidual studies (e.g., [9, 14, 17, 19, 32]).
From the perspective of combining studies in meta-

analysis, our results suggest that site-specific sources may
be particularly important for air environments (Fig. 2b).
Although limited in number, two studies of bacteria in
indoor air also had outdoor air samples [15, 32], and one
study of settled dust was also accompanied by localized
outdoor source samples representing air [9]. For these
studies, outdoor air accounted for a mean proportion of
0.59 compared to 0.14 for those studies without study-
specific designed outdoor source samples. Another study
conducted in the same building [19] as a previous study
that did include specific outdoor air samples [32] also
showed a high proportion of outdoor air as the source.
Thus, generic outdoor air sources were less informative
that site-specific ones, indicating that bacteria in outdoor
air can be highly localized [15, 32]. Moreover, we also
observed differences in the power of generic sources to
identify sources depending on the target variable region
(Fig. 2b). Overall, this exercise suggests that processing
even a few comparable outdoor samples alongside built
environment samples may be much more effective for
accurately identifying sources of indoor microbes ver-
sus analyses relying on a more extensive set of outdoor
samples from another study.

Technical variation in indoor microbiome studies
When considering all studies together in principal coor-
dinate analyses, a strong study effect is the most clearly
discernible pattern, particularly when taxonomic-based
metrics of ecological distance are used (Additional file 1:
Figure S1) rather than a phylogenetically informed met-
ric (Fig. 3a). While the results herein are presented based
on UniFrac analysis, we discuss implications of this choice
below. Clustering by study is perhaps unsurprising, since
there are many opportunities for variations in sample
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Fig. 2 Sources tracking of indoor environments. A subset of samples from each of the studies (see Table 1) was analyzed using the SourceTracker
algorithm to apportion microbial sources for different “sinks” of indoor settings. Prominent sources were outdoor air, skin, soil, and laboratory kits
(a), although the likelihood of identifying sources varied strongly by study. b Those studies that were more likely to have sources identified were
those that originally included source environment samples (using their own sampling and laboratory methods—denoted by asterisk in the figure),
contained samples that were more strongly sourced from skin, or targeted the same variable region as those in the source samples

collection in the built environment depending on the
study question being addressed (Table 1). For example,
across studies, samples were collected from such differ-
ent building types as homes, classrooms, hospitals, and
industrial settings. Collection material included swabs of
surfaces, vacuumed floor dust, and air subjected to fil-
tration. For studies using swab sampling, collections were
from such varied surfaces as toilet seats, kitchen counters,
and door trims, and the material of the swab itself also
varied across studies. All measured experimental param-
eters had a significant effect on community composition.
The factors with the largest explanatory power for bacte-
rial communities were individual study (R2 = 0.4; Fig. 3a),
geolocation, and specific sampling matrix (the physical
sample type, e.g., dairy countertop versus toilet versus pil-
low, etc; R2 = 0.38), as well as general sampling matrix
(Fig. 3b; source of the sequenced material differentiating
air, surfaces, dust, and water; R2 = 0.18), and the use of
the building (Fig. 3c; R2 = 0.17). Individual studies were
generally carried out in a single location with a single
type of sampling method, so these top most explanatory
variables were correlated with each other. For example,
individual study were linked to geolocation (R2 = 0.20)
and building type (R2 = 0.49). Thus, while we were able to
reveal biological variation within the built environment,
the inter-study variation hindered our ability to identify
consistent mechanisms (e.g., biogeography and specific
building operations).
To explore the individual taxa driving patterns observed

in the PCoA, we used bi-plots, which display the subset
of bacterial taxa exerting the most influence over commu-
nity clustering and separation patterns. The top ten taxa

associatedm with indoor environments were recognizable
as microbes associated with humans (e.g., Corynebac-
terium, Streptococcus, Enterobacteriaceae, Staphylococ-
cus, Propionibacterium, Lactococcus) and outdoor habitats
(e.g., Streptophyta [likely plant pollen], Pseudomonas,
Acinetobacter, and Sphingomonas) (Fig. 3a).

Implications of analysis workflow
Given the large differences in approaches to sampling
the indoor environment that magnified technical varia-
tion across studies, we wanted to explore how choices
in the analysis workflow might have influenced this out-
come. Specifically, we discuss database representation,
ecological distance metrics, and OTU picking strategy.

Database representation
We used closed-reference workflows to generate oper-
ational taxonomic units (OTUs) using the Greengenes
database, since it is not currently possible to conduct de
novo OTU picking on datasets that include separate 16S
gene regions. However, this choice potentially introduces
a consequential bias since studies varied in the percentage
of sequences that matched the reference database (Fig. 4).
For instance, humanmicrobiome studies tended to be well
represented (greater than 90 % assigned), while soils were
very poorly represented (most samples were less than
50 %; see Table 1). This variation is not entirely surprising,
since different environments are unequally represented
in the GreenGenes database; a large scientific effort has
focused on human-associated microbes in recent years,
while in contrast, the genetic diversity present in most
natural ecosystems remains largely uncharacterized. Most
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Fig. 3 Principal coordinate analysis (PCoA) of bacteria in the 16 “sink” studies in this meta-analysis. Communities are compared using the
unweighted UniFrac distance metric. a Studies cluster generally by study identity, and the top ten indicator taxa (triangles) are indicative of
human-associated bacteria as well as outdoor-derived taxa. b Bacterial community composition also tend to group by the matrix type (the physical
sample type) as well as the way the building is used (c)

built environments in our meta-analysis ranged between
these two extremes, which is to be expected since build-
ings include microbes sourced from both humans and
outdoor environments to differing extents. While this
study-level variation is interesting in itself, it may intro-
duce a bias when using closed-reference OTU picking to
compare across disparate studies and environments.

Choice of analysis metrics
Analysis of complex multivariate community data often
necessitates the use of a distance or dissimilarity met-
ric to compress many dimensions of variability into a
single pairwise comparison. Four such metrics com-
monly used in sequence-based microbial community
studies are Jaccard, Bray-Curtis, Canberra, and UniFrac
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Table 1 Studies included in this meta-analysis

Study Total no. Target PCR Sequencing DNA extraction Avg. sequence Avg % assignment Sampling Geolocation Sampling Sourcetracker Citation Data
name of samples region primers platform method length (bp) of sequences method sites assignment source

per study per sample

California 59 V1–V2 8f_357r 454 GS Phenol:Chloroform 314 58.67 % (+/− 13.79 %) Air (settle Albany, CA, Rooms in apartment Sink/source [14] Contributed
residence FLX plus MoBio PowerSoil plate) USA building (living room, by author
air (Berk)a DNA isolation kit balcony, bedroom,

bathroom)

California 86 V4 515f_806r Illumina ZR96 Fecal DNA 252 67.73 % (+/− 14.76 %) Surface Davis, CA, Rooms in industrial Sink [23] Qiime
dairyb MiSeq extraction kit (cotton USA cheese processing database

swab) building (wagon wheel
room, scooping room,
production room,
brine_main room,
bloomy_rind room,
drying room, aging
room, packaging room)

California 147 V4 515f_806r Illumina ZR96 Fecal DNA 252 53.94 % (+/− 10.22 %) Surface Sacramento, Hospital (neonatal Sink [3] Qiime

NICU (Sac)b MiSeq extraction kit (cotton CA, USA intensive care database
swab) units) surfaces

and devices

Colorado 285 V4 515f_806r Illumina MoBio PowerSoil 89 67.9 % (+/− 27.1) Surface Boulder, Kitchens in family Sink [12] Qiime
kitchen HiSeq2000 DNA isolation kit (cotton CO, USA homes database
surfacesa,b,c swab)

Colorado 126 V1–V2 27f_338r 454 GS MoBio PowerSoil 232 91.6 % (+/− 7.46 %) Surface Boulder, Public restrooms Sink [1] Qiime
restroom Junior DNA isolation kit (cotton CO, USA database
surfacesa,b,c swab)

France 3 V2–V3 535f_789r 454 GS QiaAmp 228 92.23 % (+/− 1.86 %) Air Paris, Hospital, Sink [5] Contributed
building air FLX (filter) France museum, by author

Titanium office building

South Korea 28 V1–V3 9f_541r 454 GS FastDNA SPIN 120 60.8 % (+/− 17.68 %) Surfaces Seoul, Rooms in Sink [11] Qiime
homesc Junior extraction kit (Easy Korea family homes database

Swab Kit) (kitchen,
bathroom)

California 30 V1–V2 27f_338r 454 GS DNeasy 221 94.22 % (+/– 4.67 %) Surface San Diego, Hospital (neonatal Sink [7] Qiime
NICU (SD) FLX Tissue Kit (cotton CA, USA intensive care units) database

swabs)

California 55 V1–V2 27f_338r 454 GS DNeasy 227 93.95 % (+/− 4.07 %) Surface San Francisco, Office building Sink [22] Qiime
office FLX Tissue Kit (cotton CA; New York, objects database

swabs) NY; Tucson, AZ
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Table 1 Studies included in this meta-analysis Continued

Oregon 173 V4 515f_806r Illumina MO BIO 130 85.67 % (+/− 7.83 %) Dust Eugene, OR, University building Sink [47] Contributed
university MiSeq PowerWater (vacuum USA (office, storage, by author
dust DNA Isolation filter) classroom, food

Kit service)

North 384 V4 515f_806r Illumina directPCR 109 86.37 % (+/− 15.91) Surface (Rayon- Raleigh- Homes Sink/source [9] Qiime
Carolina HiSeq tipped swab) Durham Area, (condominium, database
homesc 2000; NC, USA low-rise apartment,

Illumina family homes)
MiSeq

France 3 V2–V3 Custom 454 GS Custom 263 87.42 % (+/− 0.58 %) Air Paris, France Art museum Sink [26] Contributed
museum FLX (cyclone by author
air Titanium sampler)

Oregon 321 V4 515f_806r Illumina MO BIO 127 85.77 % (+/− 5.54 %) Air Eugene, OR, University Sink/source [19] Contributed
classroom MiSeq PowerWater (filter) USA classroom by author
airb DNA Isolation

Kit

Oregon 62 V4 515f_806r Illumina MO BIO 127 91.41 % (+/− 4.00 %) Surfaces Eugene, OR, USA University Sink [19] Contributed
classroom MiSeq PowerWater classroom by author
surfacesb DNA Isolation

Kit

Austria 24 V1–V2– 27f_1492r; 454 GS Custom XS 236 94.66 % (+/− 3.72 %) Surfaces (BiSKits Austria Hopital Sink [6] Contributed
ICU V3–V4– 515f_927r FLX PC and nylon- (intensive by author

V6–V9; V4 plus flocked swabs) care unit)

Connecticut 15 V3–V4 331f_797r 454 GS FLX MoBio PowerMax 508 68.34 % (+/− 3.52 %) Vacuum (dust New Haven, University N/A [20] Contributed
classroom air Titanium Soil DNA and air), HVAC (air) CT, USA classroom by author

Extraction Kit

Colorado 9 V1–V2 27f_338r 454 GS MoBio UltraClean 225 83.38 % (+/− 20.64 %) Air (filter) Steamboat Aerial source Source [52] Qiime
mountaintop air FLX PlantDNA Springs, CO, USA of biota database

Titanium Isolation Kit (atmosphere)

Ireland 168 V4 520f_802r 454 GS FLX QIAGEN kit 221 93.83 % (+/− 3.16 %) Surface Cork, Ireland Human gut (source) Source [53] Qiime
elderly gut Titanium (feces sample) database

Colorado 602 V1–V2 27f_338r 454 GS MoBio PowerSoil 229 92.76 % (+/− 4.56 %) Surface Boulder, Human body Source [36] Qiime
body sites FLX DNA isolation kit (cotton CO, USA sites (source) database

Titanium swab)

Europe/Africa 29 V4–V5 784f_1061r 454 GS FLX Custom 247 93.24 % (+/− 3.17 %) Surface Boulpon, Burkina Human gut Source [54] Qiime
children gut Titanium proteinaseK (feces Sample) Faso; Florence, Italy (source) database

phenolchloroform
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Table 1 Studies included in this meta-analysis Continued

Colorado 182 V1–V2 27f_338r 454 GS FLX MoBio UltraClean 228 94.78 % (+/− 3.5 %) Surface Boulder, CO, USA Human palms Source [43] Qiime
undergraduate PlantDNA Isolation Kit (cotton swab) (source) database
palmsa

N + S America 89 V1–V2 27f_338r 454 GS FLX MoBio PowerSoil 231 47.4 % (+/− 5.96 %) Soil USA, Puerto Rico, Outdoor source Source [55] Qiime
soils Titanium DNA isolation kit Peru, Argentina, of biota (soil) database

Canada

Colorado 1071 V1–V2 27f_338r Illumina GAIIx MoBio PowerSoil 128 87.00 % (+/− 15.42 %) Surface Boulder, CO, USA Human and dog Source [56] Qiime
family DNA isolation kit (cotton swab) body sites (source) database

We combined high-throughput sequence data from 23 published, publicly available studies characterizing the built environment (sink) or studies that characterize potential sources of microbial dispersal into the built environment
habitat (source). The Sourcetracker method requires a priori assignment of the samples in each of the studies as either an ecological source or sink, as indicated in the Sourcetracker Assignment column; three studies included source
samples in their study design
aIncluded kit controls
bStudy also used in Open-reference OTU picking
cShared habitats study
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Fig. 4 The proportion of sequences assigned to a reference database varies by study. Datasets from the human body (denoted by asterisk in the
figure) and buildings with heavy dispersal from the human body tended to be better represented in the GreenGenes database, while soil and
general outdoor sources were not as well represented. The numbers in parentheses show the number of samples in each study

(including both the weighted and unweighted variations)
[38]. The first three are classical taxonomic metrics
that assume equal relationships among organisms [39],
whereas UniFrac incorporates and emphasizes the phylo-
genetic relationships among OTUs.
For many microbial community studies, taxonomic

metrics can be desirable due to their ability to identify
non-phylogenetic differences. For instance, the Jaccard
metric can be evaluated as the simple proportion of
taxa shared between two samples. The Bray-Curtis and
Canberra metrics are both commonly used for their abil-
ity to prioritize shared distributions of the most abundant
or rare taxa, respectively. The UniFrac metrics (weighted
and unweighted), on the other hand, are heavily utilized in
microbiome studies where broad-scale phylogenetic dif-
ferences are important, such as when comparing the skin
to gut microbiome where strong habitat differences favor
entire functional groups or phylogenetic lineages. The
trade-off is that a phylogenetic metric might miss out on
subtle community differences when comparing very simi-
lar environments, while taxonomic metrics are inherently
naive of functional community shifts.
Since the choice of distance/dissimilarity metric can be

consequential, we compared the four metrics for their
ability to overcome technical variation that results when
disparate datasets are combined. Consistent with previous
attempts [33–35], the unweighted UniFrac metric con-
sistently succeeded in eliminating at least some of the

technical variation in our dataset, while study-to-study
variation was overwhelmingly evident when employing
any of the taxonomic metrics. Although there is no clear
method to determine how well a metric reduces study-
to-study variation, we evaluated metrics based on two
characteristics: (1) the extent to which individual studies
overlapped with other studies from similar environments,
such as when comparing surface communities on toilets
(Fig. 5), and (2) the distribution of dissimilarity values
(Additional file 2: Figure S2). This second criterion is
crucial when comparing disparate studies with poten-
tially very few OTUs in common, which results in many
pairwise observations at or near 1, as opposed to the rela-
tively normal distribution when using UniFrac. Given that
the unweighted UniFrac clearly masked some important
sources of technical variation (such as sequencing proto-
cols in Fig. 5), it yielded a normal distribution of pairwise
comparisons. Since our questions in the present study
were constrained to broad phylogenetic patterns, we felt
confident using the UniFrac metric for all analyses.

OTU picking strategy
Qualitative conclusions based onto the two OTU-picking
strategies were similar, in that patterns were generally
consistent regardless of clustering method (Fig. 6). More-
over, the taxa indicative of each of the two environments
overlapped between the two OTU-picking strategies.
This exercise was useful for confirming that comparisons
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Fig. 5 Difference between taxonomic and phylogenetic distance methods. Points from four studies of similar indoor environments (restroom and
kitchen surfaces) are colored by study and analyzed by the Canberra community distance (a) and unweighted Unifrac (b). Similarly, points colored
by sequencing protocols (including different primers and platforms) differ according to the Canberra distance (c) and the unweighted Unifrac (d)

between studies appear to be robust to slight differences
in analysis parameters.
By selecting pairs of studies to explore with open-

reference OTU picking (see the “Methods” section), we
were able ask whether certain taxa appeared to be asso-
ciated with particular environments. The California dairy
and California neonatal intensive care unit (NICU) did
not show strong overlap in bacterial composition, and
specific taxa seemed to be indicative of each dataset:

Lactococcus and the salt-associated Pseudoalteromonas
were two taxa linked to dairy samples, while the NICU
was dominated more by human Enterobacteriacea and
outdoor-associated bacteria Acinetobacter. Interestingly,
an OTU of Caulobacteraceae was associated with the
California NICU, and this bacterial family was also
observed in a separate NICU study based in Pennsylvania
[4]. Homes in North Carolina and kitchen surfaces in
Colorado homes showed more overlap than the dairy
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(a)

(b)

(c)

Fig. 6 Closed and open-reference OTU picking yielded similar β-diversity results. Three pairs of studies were separately analyzed using the two OTU
picking methods and then compared using Procrustes analysis. Each point is the result of open-reference OTU picking, and each arrowhead is the
same sample from closed-reference OTU picking. A significant Procrustes statistic indicates that the results from β-diversity analysis are strongly
correlated. The same sample across the two methods are linked with an arrow. a California dairy and neonatal intensive care unit, both near Davis,
California; b North Carolina homes in and near Raleigh, North Carolina, and Boulder, Colorado residential kitchen surfaces; c Oregon classroom air
and surface samples from Eugene. Although the California Dairy study appears to be different between the two methods (a), the Dairy site was
statistically distinct from the paired NICU study regardless of OTU picking method
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and NICU. Streptophyta, Enhydrobacter, mitochondria,
Acinetobacter, and Pseudomonas were more closely asso-
ciated to kitchens while several human-associated groups
including Enterobacteriaceae, Streptococcus, Staphylococ-
cus, and Corynebacterium were found throughout homes.
Like in homes, air and surfaces in an Oregon university
classroom showed modest separation, with Corynebac-
terium and Streptophyta associated most strongly with
surfaces while the air was more diverse, and linked to
Pedobacter, Microbacteriaceae, Sphingomonas, Oxalobac-
teraceae, Hymenobacter, Comamonadaceae, and Alicy-
clobacillus.

Kit controls
While previously utilized in some HTS studies from the
built environment [1, 9, 12–16, 29], the use of kit controls
to check for the potential introduction of contaminant
taxa when carrying out standardmolecular protocols is an
increasingly recognized issue for environmental sequenc-
ing studies [40–42]. Recently, Salter et al. [41] showed
that laboratory reagents and commercial DNA extrac-
tion kits can harbor their own distinct microbial com-
munities, with the composition and diversity of the “kit
microbiome” varying across manufacturer. Contaminant
taxa can have a particularly large impact on low biomass
samples (which are common in built environment stud-
ies), with kit-derived microbes effectively introducing a
sampling artifact that drives the resulting β-diversity pat-
terns observed across samples. By using technical con-
trols during sample processing (concurrently sequencing
blank DNA extractions alongside all samples), studies can
identify and remove kit-associated taxa, thus reducing
technical artifacts and helping to elucidate the true bio-
logical differences among samples [41]. For the studies
included in this meta-analysis, we found that most did not
include technical controls to profile kit-associated taxa,
or at least did not make any such blank samples pub-
licly available. Only four studies made use of negative
controls [9, 12, 14, 43], out of the 23 data sets exam-
ined in total. All of these studies relied on the recovery
of material from swabs. As an example, we explored the
profile of the kit controls using these handful of stud-
ies that diligently provided such data, but we stress that
the presence of contaminant taxa are not unique to these
studies.
We observed that kit controls appeared to have

a distinct microbial profile compared to other sam-
ples, with some taxa, such as the bacterial phylum
Tenericutes, exhibiting significant enrichment in kit
controls versus environmental samples (Fig. 7). Fur-
ther inspection revealed that most OTUs assigned to
the Tenericutes fell within the bacterial class Molli-
cutes or the genus Mycoplasma. Both of these groups
contain well-characterized taxa representing ubiquitous,

resilient laboratory contaminants of cell culture lines in
particular [44, 45].
In contrast, the profile observed for other taxa such

as Cyanobacteria (also potentially plant chloroplast
sequences from pollen) showed an opposite trend, appear-
ing abundant in dust samples while very few sequences
from this taxon were found in the “kit microbiome”
(Additional file 3: Figure S3). In the present meta-analysis,
we used the results from technical controls to guide the
downstream filtering of rRNA datasets and remove poten-
tial contaminating taxa, following the approach taken
in [9]. While some entire taxonomic groups were eas-
ily removed due to their apparent contaminant status,
such as Tenericutes, other taxonomic groups, such as
Corynebacterium and Staphylococcus, were more diffi-
cult to remove since they are strongly human-associated
(and could appear in kit controls due to “mistagging”
of bar codes [46]), so removal could erroneously limit
real biological insights. Notably, OTU picking strategy
(open versus closed reference) generally did not increase
the number of reads assigned to kit control samples
(Additional file 4: Figure S4), suggesting contaminant taxa
tend to be well represented in existing public databases
and the kit microbiome can be sufficiently profiled even
using closed reference workflows.

Qualitative comparison of included studies
Given the limitations we encountered with compiling the
raw data across studies, we explored whether general
biological conclusions across studies were shared. This
approach was qualitative, as quantitative metrics, such
as individual bacterial diversity estimates, are incompa-
rable when experimental protocols vary. Indoor surfaces
are highly influenced by the nature of human contact
[1, 9, 11, 19] and predictable human behavior; for exam-
ple, bacteria on kitchen surfaces appear to be influenced
by the introduction of food [12], while surfaces most
often touched by hands contain high proportions of skin-
associated bacteria [1, 6, 12].In non-residential settings,
bacteria of outdoor origin may be a more influential
source for surfaces, although human-associated microbes
are still highly present [6, 19, 22]. Cleaning can reduce
the human fingerprint [3, 9], and surfaces in industrial
settings may show little influence of human contact [23].
The airborne bacteria found indoors also suggest a strong
influence of human-associated bacteria as a source, in
addition to outdoor-associated bacteria [14, 20, 26]. A
longer sampling period of the air (on the order of weeks)
demonstrates a shift towards human-associated bacte-
ria in high-occupancy buildings [5, 20, 26], while shorter
sampling periods (hours) with high outdoor ventilation
suggest little effect of human occupancy on aerial bacte-
rial composition indoors [32]. Features of building design,
such as ventilation and connectedness of indoor spaces,
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(a)

(b)

(c)

Fig. 7 Example of taxonomic bias observed in technical control samples compared to environmental samples. The composition of each of the
pooled a dust, b kit controls, and c surfaces samples is shown as a donut. The “kit microbiome” displayed higher abundances of the bacterial
phylum Tenericutes (green slice in the donut chart indicated by arrows). Per-sample abundance of Tenericutes is represented by green bars displayed
across all panels. Some samples in the North Carolina homes study showed similar levels of Tenericutes compared to the kit controls (c, far right); this
implies some level of contamination in non-control environmental samples from this study, which the authors identified and removed in the
original study [9]. Donut and bar charts were generated using the Phinch data visualization framework [63]

can also cause predictable changes in the aerial bacterial
communities found indoors [32, 47]. In the end, the broad
results of our meta-analysis are generally consistent with
this qualitative summary, but more resolved questions
remain to be answered.

Conclusions
High-throughput sequencing has vastly increased the
quantity of data resulting from surveys of microbes across
many different environments. The present study is a
combined snapshot of studies in one such microbial
habitat—our built environment—and reveals a scientific

field that is still in its early stages. Geographic coverage of
study locations tends to be focused around a few heavily
sampled locations, with sparse representation elsewhere.
Technological advances continue for high-throughput
approaches (e.g., lengthening reads, increasing sequenc-
ing depth, new sequencing technologies), with methods
and analysis protocols being continually updated even
for a given sequencing platform (e.g., publication of
new and updated bioinformatic workflows). Such rapid
developments in high-throughput sequencing complicate
the process of conducting meta-analyses, particularly for
built environment studies. Buildings are rich in variation,
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differing by building materials, maintenance, use, and
location. Moreover, sampling within the built environ-
ment relies on different collection matrices (surface, air,
dust) and materials (swabs, filters, wipes, etc.), as the par-
ticular research questions dictate the most appropriate
sampling techniques. For instance, the focus of a study
could be on time-resolved samples of microbes indoors,
in which case vacuum filtration onto filters would be
more appropriate strategies than collection of settled dust.
The varied nature of the building microbiome compli-
cates efforts to standardize methods. As a consequence
of this spectrum of variation, statistical power is effec-
tively reduced, making it much harder to detect overar-
ching biological differences. Taken together, these issues
increase the difficulty of conducting meta-analyses for
built environment studies, more so than other environ-
ments such as the human body and soils. Combining
data sets is an alluring prospect, whereby the power of
combined data may be greater than individual studies in
terms of inferring biological patterns. Unfortunately, the
present investigation demonstrates that meta-analysis of
combined data sets is not as straightforward as we would
like. Importantly, we emphasize that this exercise does not
question the findings of any one particular study, as tech-
nical variation typically does not exist to the same extent
within an individual study.
For future studies of the built environment, there are

a number of ways to move forward. Firstly, the inclusion
of appropriate negative (“kit”) controls is of paramount
importance for quality control of sequence data, so that
studies can filter and remove well-characterized con-
taminant taxa and prevent erroneous biological infer-
ences based on artifacts. While some study-level variation
that we observed is likely due to differences in exper-
imental protocols details above, it is also likely that
lab-specific contaminants also cause communities to
diverge, and including kit controls offer a way to identify
these spurious taxa. Secondly, there are many oppor-
tunities for individual indoor environment studies—
with a common sampling strategy—to expand in scope:
increasing the number of samples collected, includ-
ing sampling of potential source habitats for indoor
microbes, increasing the number and type of buildings
surveyed, expanding the geographic focus if appropriate
to address the study questions, and including experi-
mental manipulation of the built environment in order
to test specific hypotheses. Lastly, as this field matures,
standardized data collection and description methods of
operational building characteristics (e.g., [48, 49]) will
allow for more meaningful comparisons across disparate
studies.
As the health implications of the indoor microbiome

are continually tackled by the research community (e.g.,
[50, 51]), understanding the basic factors that govern the

potential pool of exposure is fundamental to modulating
that environment. For example, it would be informative
to be able to “rank” the mechanisms that structure micro-
bial communities across different sampling types indoors.
Specifically, how do biogeography, building function, ven-
tilation type, and occupants and their activities interact
to determine microbial composition, and how does that
vary between airborne, dust, or surface microbes? Data
presented here and elsewhere indicate that in the case
of bathroom and kitchen surfaces, biogeography is less
important than occupant activity, but source strengths are
likely different for airborne microbes in those two resi-
dential locations. Moreover, it is unclear if the multitude
of microbes identified in these different indoor environ-
ments are interacting (let alone alive), and how those
interactions may affect its persistence in the built envi-
ronment. Notable, fungi were excluded from full consid-
eration in this meta-analysis due to limited study number,
and it is unclear whether similar processes structure the
two kinds of microbes. We are hopeful that as more built
environment studies are conducted and made available,
we will deepen our understanding of the global factors
that structure and influence indoor microbial community
assemblages.

Methods
Study inclusion criteria
We included studies if they met the following criteria:
(1) published before May 15, 2014; (2) used high-
throughput (HTS) amplicon sequencing to target 16S
rRNA genes in bacteria/archaea or ITS rRNA in fungi; and
(3) focused on built environments. We excluded several
high-throughput studies due to low data quality compared
to other studies (e.g., [13, 27, 31]), sequencing protocols
that did not match the targeted single locus approach (e.g.,
[4]), and raw data that was not publicly deposited or oth-
erwise obtainable (e.g., [8]). Table 1 describes some of the
salient features of the 23 studies thatmet the above criteria
and were thus included in the present meta-analysis [1, 3,
5–7, 9, 11, 12, 14, 19, 20, 22, 23, 26, 32, 36, 43, 47, 52–56].
Clone-based studies were not included in this study.

In our search efforts for individual studies to include,
we noted a large number of early built environment
studies that relied on clone library construction fol-
lowed by Sanger sequencing (e.g., [21, 57, 58]). While we
acknowledge the potential contribution of such studies
to a meta-analysis (providing an expanded set of geo-
graphical locations and a broadened survey of microbial
diversity), preliminary exploration of these datasets indi-
cated that clone libraries are unfeasible for inclusion with
larger high-throughput datasets because of the orders-of-
magnitude differences in sequence count and the funda-
mentally different laboratory protocols underlying such
methods.
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Preprocessing
Sequence datasets and sample metadata were either
shared by the original authors, downloaded from public
databases such as the NCBI Sequence Read Archive (SRA)
or obtained from the QIIME online database, now super-
seded by the Qiita database (http://qiita.ucsd.edu).
Studies obtained from the QIIME database were down-

loaded as quality-filtered and demultiplexed datasets.
For all other studies obtained from NCBI or the study
authors, we implemented the same pre-processing qual-
ity filtering used for inclusion in the QIIME database,
by setting parameters for the split_libraries.py
(454 data) or split_libraries_fastq.py (Illumina
data) scripts within QIIME version 1.8.0 [59]. Specifi-
cally, raw sequences from 454 Titatium and FLX platforms
were excluded if not between 200 and 1000 nucleotides
in length, had greater than six ambiguous bases, had
homopolymer runs longer than 6 nucleotides, had mis-
matches in the primer, or could not be assigned to a
sample using the barcode. For Illumina data, reads were
truncated after more than three consecutive low-quality
base calls and reads with <0.75 of the original read length
remaining after truncation were subsequently discarded.
Any reads containing ambiguous bases after quality trim-
ming were also excluded. Because 454 Titanium chem-
istry yields longer read lengths, we trimmed all reads to
the length achieved with standard FLX chemistry [33].
Pre-processed sequences from the QIIME database were
then combined with sequences pre-processed in-house
for downstream analysis.

Closed-reference OTU picking
Closed-reference operational taxonomic unit (OTU) pick-
ing followed the methods outlined in Lozupone et al. [33],
using QIIME version 1.8. The closed-reference workflow
is a database-dependent approach, using a pre-defined
set of reference sequences with known taxonomy (the
manually curated Greengenes database [60]) to cluster
sequences into OTUs and assign taxonomy to environ-
mental sequences. This approach is advantageous for
comparing studies that target different 16S gene regions
(e.g., V4 versus V9), since the underlying database is com-
prised of full-length gene sequences (≈1500 bp). However,
in closed-reference OTU picking, taxonomic assignments
are inherently constrained by the coverage of species and
groups present in the reference database, and thus, results
are limited to this subset of known microbial diversity.
Closed-reference OTU picking was carried out using the
pick_closed_reference_otus.py script with defa
ult parameters and the -enable_rev _strand_match
flag. Identical sequences were first grouped using the
prefix-suffix method implemented in QIIME, followed by
clustering of representative sequences using UCLUST at
97 % sequence similarity against the reference sequences

in the Greengenes database (May 2013 release). Sequences
that did not have at least 97 % identity to any refer-
ence sequences were discarded. The average percent of
sequences assigned per study is described in Table 1.
Finally, taxonomy was assigned to each representative
OTU sequence using the corresponding Greengenes hit,
generating an OTU table containing the sample taxon-
omy, sequence counts per sample, and metadata from the
23 individual studies. Downstream data exploration and
β-diversity analyses were carried out using QIIME and R.
Few of the 23 studies that we evaluated included labo-

ratory control samples, such as sequencing blanks from
DNA extraction kits and reagents. This is increasingly
recognized as a necessary component for low-biomass,
high-throughput sequencing studies [41]. Putative con-
taminant taxa were removed from the OTU table when an
abundant taxonomic group was identified as originating
from laboratory contamination (that is, the taxa appeared
only in studies originating from a single laboratory), and
thus, their presence added to laboratory-centric technical
variation. Specifically, control samples from two studies
that provided control samples [1, 9] informed that OTUs
in the phylum Tenericutes and orders Oceanospirillales,
Alteromonadales, EW055, and Tremblayales were likely
contaminants. Overall, our determination of contaminant
taxa were constrained by the lack of laboratory control
samples from the majority of studies. More robust anal-
ysis would likely result in the removal of hundreds of
OTUs from this analysis and thus improve study-to-study
comparison. Data exploration revealed that overall con-
clusions do not change without removal of these putative
contaminant taxa.
To account for substantial variation in sequencing

depth among studies, the OTU table was rarefied to
1000 sequences per sample, which is often sufficient to
draw β-diversity conclusions in a variety of environ-
ments [61, 62]. For studies where metadata permitted, we
removed samples that were clearly source environments
(e.g., outdoor air), and used these in a SourceTracker
analysis [37] to identify sources of indoor microbes. In
addition to QIIME [59], the Phinch data visualization
framework [63] was used to explore processed and rar-
efied OTU tables in order to explore biological patterns
and compare microbial communities observed across
studies.

Open-reference OTU picking
Since closed-reference OTU picking inherently constrains
the number of individual OTUs recovered from envi-
ronmental studies, and thus potentially limits β-diversity
resolution, we ran additional analyses on a subset of stud-
ies in order to identify potential biases introduced through
OTU picking. A subset of six studies representing the
V4 region of the 16S rRNA gene (the most common

http://qiita.ucsd.edu
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region analyzed across studies in this meta-analysis) were
selected. We subdivided these studies into three pairs
of datasets that utilized the same primer sequences and
position on the 16S rRNA gene. The start and end
positions of sequence reads within each dataset were
confirmed by manually inspecting sequence alignments
against the Greengenes 16S reference set. The final
dataset pairs were (1) neonatal intensive care unit and
dairy facility, both in California [3, 23], (2) two studies
focused on the dust and air from an Oregon univer-
sity classroom [19, 32], and (3) two studies of residential
properties, one focused on North Carolina homes [9]
and another focused on kitchens in Colorado [12]. For
all dataset pairs, open-reference OTU picking was car-
ried out using the pick_open_reference_otus.py
script in QIIME, at 97 % sequence identity and 10 % sub-
sampling of sequence reads not matching the Greengenes
reference database. OTU picking was carried out using
the -enable_rev_strand_match flag and default
settings for all other parameters. Procrustes analysis was
used to assess the influence of OTU-picking strategy on
β-diversity inference.

Fungi
Fungal samples that relied on high-throughput sequenc-
ing in the built environment, at the time of analysis, were
numbered at 469 across six studies (compared to nearly
4,000 samples across 23 studies for bacteria). Due to the
limited number of samples and the limited overlap in
community composition that was observed, fungi were
not explored further (see Additional file 5: Text S1).

Availability of supporting data
Full documentation of all scripts, commands, and
parameters used for data analysis in this study are
available on GitHub (https://github.com/jfmeadow/
BEMAFinalAnalysis). Final taxa tables (in .biom format)
and mapping files are also available from the GitHub site.

Additional files

Additional file 1: Figure S1. Bray-Curtis ordination. Principal coordinate
analysis (PCoA) of bacteria in the 16 “sink” studies using the Bray-Curtis
taxonomic metric. Compare this to Fig. 3a in the main text. The top ten
indicator taxa are shown as triangles. (PDF 105 kb)

Additional file 2: Figure S2. Pairwise distance observations. Comparison
of the distributions of ecological distances among taxonomic and
phylogenetic metrics. Y-axes on the histograms (along the diagonal)
indicate distribution density, and all other axes are unitless and are bound
by 0 and 1. The distribution of UniFrac distances (bottom panel) is nearly
normal compared to the taxonomic distributions that are skewed toward
1. This suggests that this choice of unweighted UniFrac is best suited for
ordination and β-diversity analysis. The scatter plots (off the diagonal)
show the correlation of values between the pairs of metrics, indicating that

the different metrics are highly correlated with one another, and generally
yield similar information. (PDF 3174 kb)

Additional file 3: Figure S3. Cyanobacteria. Example of taxonomic bias
observed in technical control samples compared to environmental
samples for taxa likely to be present in environmental samples. The
composition of each of the pooled (a) dust and (b) kit controls is shown as
a donut. The dust composition displayed higher abundances of
Cyanobacteria (blue slice in donut chart indicated by arrows.) Per-sample
abundance of Cyanobacteria is represented by blue bars displayed across
all panels. Donut and bar charts were generated using the Phinch data
visualization framework [63]. (PDF 146 kb)

Additional file 4: Figure S4. OTU picking strategy and kit controls.
Comparison of OTU picking strategy on the sequences from the kit
controls. Two studies were compared for the total number of sequence
reads assigned in the kit controls, in closed-reference (a) versus
open-reference (b) OTU picking workflows. One study, the North Carolina
homes (24 control samples [9]), was remarkably similar in sequence reads
assigned regardless of OTU picking method, while the other, Colorado
kitchens (3 control samples [12]), was different. The relationship between
the total number of assigned reads is shown in (c). (d and e) The taxonomic
make-up of the samples is consistent at the phylum level between the two
OTU picking strategies for one study but is different for another. (PDF 11 kb)

Additional file 5: Text S1. Fungal analysis. Description of the analysis
steps for the fungal studies and basic findings, detailing why fungal studies
were excluded from further analysis. (PDF 84 kb)
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