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Abstract

Background: Shotgun metagenomics has become an important tool for investigating the ecology of microorganisms.
Underlying these investigations is the assumption that metagenome sequence data accurately estimates the census of
microbial populations. Multiple displacement amplification (MDA) of microbial community DNA is often used in cases
where it is difficult to obtain enough DNA for sequencing; however, MDA can result in amplification biases that may
impact subsequent estimates of population census from metagenome data. Some have posited that pooling replicate
MDA reactions negates these biases and restores the accuracy of population analyses. This assumption has not been
empirically tested.

Results: Using mock viral communities, we examined the influence of pooling on population-scale analyses. In pooled
and single reaction MDA treatments, sequence coverage of viral populations was highly variable and coverage patterns
across viral genomes were nearly identical, indicating that initial priming biases were reproducible and that pooling did
not alleviate biases. In contrast, control unamplified sequence libraries showed relatively even coverage across phage
genomes.

Conclusions: MDA should be avoided for metagenomic investigations that require quantitative estimates of microbial
taxa and gene functional groups. While MDA is an indispensable technique in applications such as single-cell genomics,
amplification biases cannot be overcome by combining replicate MDA reactions. Alternative library preparation techniques
should be utilized for quantitative microbial ecology studies utilizing metagenomic sequencing approaches.

Keywords: Metagenomics, Microbial ecology, Multiple displacement amplification, PacBio SMRT sequencing, DNA
library construction
Background
Metagenomics has revolutionized the field of microbial
ecology, providing a culture-independent means of study-
ing the structure and metabolic potential of a microbial
community. Obtaining sufficient quantities of high-quality
DNA for sequencing is a consistent technical challenge
for many metagenomics studies, and is especially the case
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reproduction in any medium, provided the or
for studies of viral communities. To circumvent low DNA
yields from environmental samples, several amplification
methods have emerged, with each method having specific
advantages and drawbacks. Linker amplified shotgun li-
brary (LASL) procedures require as little as 1 pg of DNA
and minimize %GC content amplification bias (≤1.5-fold),
but are low throughput [1]. Transposase-based protocols
(e.g., Nextera, Illumina Corp., San Diego, CA, USA) [2] and
linear amplification for deep sequencing (LADS) [3] proto-
cols require slightly greater quantities of DNA (1 to 40 ng),
with Nextera being better adapted for high-throughput li-
brary preparation, albeit with an acknowledged bias against
Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly credited.
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higher %GC DNA content as compared to linker amplified
metagenomes [4].
Multiple displacement amplification (MDA) has been

one of the most commonly used means of amplifying
environmental genomic DNA (gDNA), especially viral
gDNA, prior to the construction of DNA fragment se-
quencing libraries [5]. This technique utilizes the phi29
DNA polymerase, and is capable of producing long frag-
ments (12 kb average) under isothermal conditions [6].
While MDA provides an easy and effective means of
amplifying minute quantities of DNA, biases associated
with this technology, including chimera formation, pref-
erential amplification of circular single stranded DNA
(ssDNA) and non-uniform amplification of linear ge-
nomes, have been documented [7,8]. Furthermore, the
ability to accurately estimate the frequency of individual
populations from multiple displacement amplified envir-
onmental gDNA has been challenged in controlled ex-
periments [9]. MDA-induced errors in population
frequency estimates are believed to arise from preferen-
tial amplification of particular genomic regions during
initial MDA priming events [10,11]. Several investigators
have proposed that the impact of such preferential amp-
lification on metagenome sequencing can be avoided by
pooling several independent MDA reactions run on a
single sample of template environmental DNA [12-17].
However, to our knowledge, the assumption that pooling
MDA reactions minimizes representational bias in shot-
gun metagenome sequence libraries has not been thor-
oughly tested.
We constructed two mock viral communities to exam-

ine the representational bias of MDA treatments versus
an unamplified control sample using circular consensus
reads from Single Molecule Real-Time (SMRT) sequen-
cing (Pacific Biosciences (PacBio), Menlo Park, CA,
USA). SMRT sequencing was ideally suited to the ex-
periment as DNA amplification is not required in the
process of preparing DNA fragment libraries for sequen-
cing, whereas Illumina and 454 pyrosequencing tech-
nologies employ bridge amplification and emulsion PCR,
respectively.

Methods
Mock community construction
Two mock bacteriophage communities were constructed.
These communities were ideally suited to the experiment
as the small genome size of phages enabled us to obtain
deep sequence coverage with modest levels of sequencing
(one PacBio SMRT cell per community treatment). DNA
integrity was assessed by running ≥25 ng DNA on a 0.6%
agarose gel. Genomic samples with observed degradation
products (T4, VBP32 and VBpm10) were purified using
gel extraction to isolate large fragments (>48.5 kb) away
from smaller DNA fragments. Phage DNA was quantified
using the Qubit Quant-iT dsDNA high-sensitivity kit
(Invitrogen, Carlsbad, CA, USA) to calculate the amount
of DNA to add for each phage during mock community
preparation. The first community comprised of nine
mycobacteriophage genomes with a similar %GC content
of about 63% GC. Genome populations (phage gDNA) oc-
curred at different frequencies in a tiered structure so that
the most abundant and least abundant comprised 28.19%
and 0.04% of the community, respectively. The second
community included eight phage gDNA samples added at
equal-genome equivalents and having a range of %GC
content from 35.3 to 67.5%. (Additional file 1: Table S1).

Amplification treatments
Three library treatment preparations were performed for
each community: an unamplified control, a library con-
structed from a single MDA treatment (MDA1), and a
library constructed from a pool of five replicate MDA
reactions (MDA5). For the MDA treatments, six reac-
tions per mock community type (tiered and even) were
amplified using the Illustra Genomiphi V2 DNA Ampli-
fication kit (GE Healthcare, Pittsburgh, PA, USA). Ten
nanograms of gDNA per reaction were amplified accord-
ing to the manufacturer’s instructions. One MDA treat-
ment for each library was run for 2 hours at 30°C and
sequenced individually (MDA1 treatment) while five
replicate reactions were run for 1.5 hours at 30°C and
then pooled together before library preparation and se-
quencing (MDA5 treatment). No amplification prior to
fragment library construction was performed for the
control treatment.

Library preparation and sequencing
One microgram of each DNA treatment (MDA1, MDA5
and control) was prepared for PacBio circular consensus
sequencing (CCS) using the 2-kb Template Preparation
and Sequencing protocol from Pacific Biosciences. CCS
involves the creation of short fragment libraries (500 to
2000 bp) where individual reads are sequenced in mul-
tiple passes due to circularization of template molecules
using SMRTbell adapters. This allows for the generation
of consensus sequences that are higher quality (up to
>99% accuracy) than single pass sequences. DNA was
fragmented to a target length of 2 kb using Covaris S2
Adaptive Focused Acoustic Disruptor (Covaris, Inc.,
Woburn, MA, USA) and concentrated using 0.6× volume
of Agencourt AMPure XP magnetic beads (Beckman
Coulter, Pasadena, CA, USA). Fragmented DNA was end-
repaired and SMRTbell adapters were ligated to the blunt
ends. SMRTbell templates were purified using 0.6× vol-
ume AMPure beads before annealing of the sequencing
primer and DNA polymerase. SMRT sequencing was per-
formed at the University of Delaware Sequencing and
Genotyping Center using C2/C2 chemistry on a Pacific
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Biosciences RS sequencer. A total of six samples, consist-
ing of a control, pooled MDA and single MDA sample for
each library, were sequenced on separate SMRT cells with
2 × 45 minute movies.

Analysis of control and multiple displacement
amplification treatments
Sequence coverage across each phage genome was
assessed to examine the potential impact of MDA ampli-
fication on the representation of genomic regions of
phage within the mock communities. CCS reads greater
than 300 bp from each library were recruited to genome
reference sequences using CLC Genomics Workbench
version 5.5.1 (Cambridge, MA, USA) using the following
mapping parameters: mismatch cost 2, insertion cost 3,
deletion cost 3, length fraction 0.5, and similarity frac-
tion 0.8. Sequences used in this recruitment experiment
are available through NCBI BioProject PRJNA231204.
Mapping at lower stringency allowed chimeric reads in
the MDA treatment libraries to recruit to their respect-
ive reference genomes, with chimeric regions trimmed
out before coverage analyses. Unmapped reads were ei-
ther host genomic contamination (as determined by
BLAST analysis) or poorer quality reads. Since longer
reads tend to have higher error scores due to fewer se-
quencing passes, average read length tended to be higher
for the unmapped fraction compared to mapped reads.
Results of the CCS recruitment for each community are
summarized in Additional file 1: Table S2. Read recruit-
ment was also performed at a similarity fraction of 0.95
and length fractions of 0.6 and 0.9, as two of the ge-
nomes in Community 1 (Fruitloop and Wee), were simi-
lar, with 94.8% similarity over the first 33.1 kb of their
genomes. Nevertheless, the resulting genome coverage
pattern for phages Fruitloop and Wee remained the
same regardless of the similarity and length settings
(Additional file 1: Figure S1). Genome coverage at every
position in the reference genome for each treatment was
calculated using the mpileup function of SAMtools [18]
and graphed using R (version 2.14.0) [19]. Gene coverage
for each genome was computed using a custom perl
script (Calculation ORF Coverage, http://sourceforge.
net/projects/calculationorfcoverage/). Comparison of gene
coverage between treatments by performing pairwise
t-tests and Pearson’s correlation coefficient was computed
using JMP statistical software (version 9.0.0; SAS, Cary,
NC, USA).

Results
The PacBio sequencing technology is particularly sensi-
tive to DNA quality as input DNA is sequenced directly
with no prior PCR amplification or cloning steps [20].
The performance of MDA is also dependent on input
DNA quality. In a heterogenous mixture of DNA, degraded
gDNA will have fewer amplification branches during
MDA leading to unbalanced amplification of viral com-
munity members [21-23]. Since mock communities were
constructed from phage gDNA isolated by multiple la-
boratories using different DNA extraction techniques and
storage conditions, the DNA quality of each viral genome
in the mock community was variable. Six of the 15 phage
genomes were covered poorly. In the case of the tiered
community (Community 1), phages Catera, Angelica and
Solon had low coverage because they were designed to be
rare members within the mock community. Other phages
(T4, VBpm10 and Athena) were poorly covered due to ei-
ther unknown issues in the sequencing pipeline or pos-
sibly poor quality of input phage gDNA. In control mock
communities, phages T4, VBpm10 and Athena had lower
coverage than expected, likely due to poor DNA quality.
Removal of smaller degradation products was attempted
for T4 and VBpm10 using gel extraction, but this was
likely unsuccessful. Because these three genomes se-
quenced poorly, the resulting rank genome distribution of
phages within the metagenome library did not match the
predicted mock community structure. However, the ma-
jority of phage genomes in the experiments (five genomes
from each community) had sufficient sequencing cover-
age, and thus it was possible to examine the potential in-
fluence of MDA on representation of phage genomic
regions (Additional file 1: Table S1).
Coverage patterns across each genome in both the

pooled and single MDA treatments displayed a striking
similarity to one another, and differed from the control
treatments that tended to have relatively even coverage
across the genomes (Figure 1A). In most cases, the
coverage plots for the MDA1 and MDA5 treatments
were highly similar. In agreement with this observation,
genomes from the MDA treated libraries had a greater
standard deviation of coverage as compared with ge-
nomes in the control treatment (Table 1). This was par-
ticularly evident for phage Fruitloop. While average
coverage of the Fruitloop genome was similar across
treatments, the standard deviation was roughly three
times greater in MDA treatments compared to control.
Pairwise comparison of average sequence coverage per
gene in the treatments indicated a high correlation be-
tween MDA treatments (P < 0.0001) but not between the
MDA treatments and the control. The r2 values of the
linear regressions ranged from 0.67 to 0.97 (correlation
coefficient values of 0.79 to 0.99) in comparisons of aver-
age sequence coverage per gene in the MDA1 and
MDA5 treatments (Figure 1B, Table 2). Similar compari-
sons for the control versus MDA1 treatments or control
versus MDA5 treatments yielded r2 ranges of 0.01 to
0.17 and 0.001 to 0.31, respectively. Interestingly, myco-
bacteriophages Gumball and Porky, included in both
mock communities, had similar gene coverage patterns
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Figure 1 Sequence coverage of mock viral community genomes from control and multiple displacement amplification treatments.
(A) Depth of coverage across the length of the genome for community members from control and multiple displacement amplification (MDA)
treatments. The blue plot represents genome coverage for the control community, the green plot represents genome coverage for the single
MDA treatment (MDA1), and the red plot represents genome coverage for the pooled MDA treatment (MDA5). −1 and −2 indicates mock
community 1 and mock community 2, respectively. (B) Linear regression of pairwise comparison of gene coverage between control, MDA1 and
MDA5 treatments for Lambda-2 and Gumball-2. Each point represents a single gene.
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when compared across treatments (Figure 1A, Table 2)
and across communities (Table 3). This suggests that the
composition of the mock community did not influence
resulting genome coverage patterns, and that MDA
biases were likely sequence-dependent.
Coverage bias in the MDA treatments occurred to-

wards the middle of the genome for several phages
(Blue7, Porky, Wee, lambda, Fruitloop, T7, and Gumball)
relative to the ends of the genome (Figure 1A). The bias
towards the middle is understandable as MDA priming
events producing fragments of sufficient length for
sequencing would likely have proceeded towards the
middle of the linear genome thus leading to an over-
representation of DNA (and subsequently sequence
reads) in the middle of the phage genome. A few ge-
nomes also showed coverage peaks within 10 kb of one
or both ends (lambda, Blue7, VBP32, Wee, Gumball, and
Fruitloop). These peaks are difficult to explain, but may
have resulted from a bias in the priming efficiency of
subsets of the random hexamers used in priming the
MDA reaction [24,25]. Five to 1,140 bp were missing
from genome termini in both MDA treatments, with the
notable exception of Gumball and VBP32 which have ter-
minally redundant genomes. This phenomena of missing
bases at the ends of linear genomes has been reported be-
fore in the sequencing of chromosomal ends [22,26,27]
and is likely the result of DNA fragments becoming pro-
gressively shorter as priming events near the terminal end
of a genome. Subsequently these short fragments are lost
during library construction or filtered out in bioinformatic
processing and longer fragments containing the ends are
rare within the sequence library.

Discussion
An important aim of metagenomics is to assess the fre-
quency of taxa and gene functions within natural micro-
bial communities through DNA sequence data. The rigor
of these assessments rests on how well the frequency of a
sequence within a metagenome library reflects the fre-
quency of its originating microbial population within the
community. These data indicate that the frequency of se-
quence reads from a viral community gDNA sample



Table 1 Pacific Biosciences circular consensus recruiting to each genome and genome coverage

Control MDA5 MDA1

Genome* %GC Predicted read
abundance† (%)

CCS reads
recruited

Read
abundance (%)

Coverage
(±SD)

CCS reads
recruited

Read
abundance (%)

Coverage
(±SD)

CCS reads
recruited

Read
abundance (%)

Coverage
(±SD)

Blue7-1 61.4 15.5 4,631 25.9 98.8 (19.5) 2,380 13.2 43.8 (19.4) 1,522 13.4 33.9 (13.9)

Fuitloop-1 61.8 31.1 7,165 40.1 132.1 (25.5) 8,341 46.4 140.5 (82.4) 5,419 47.8 111.4 (65.7)

Gumball-1 59.6 20.7 1,230 6.9 15.4 (6.1) 3,460 19.2 52.5 (25.1) 2,007 17.7 37.2 (17.9)

Porky-1 63.5 25.9 3,271 18.3 46.3 (7.3) 1,401 7.8 18.1 (12.2) 889 7.8 13.6 (8.8)

Wee-1 61.8 5.2 1,127 6.3 20.3 (5.6) 2,216 12.3 35.8 (22.1) 1,391 12.3 27.3 (15.3)

Gumball-2 59.6 20.8 495 5.4 6.2 (3.0) 1,261 6.5 18.1 (9.4) 1,613 6.5 24.0 (12.6)

Lambda-2 49.9 15.6 3,737 40.7 84.7 (12.0) 10,995 56.3 208.7 (107.1) 14,284 57.5 274.6 (130.7)

Porky-2 63.5 24.5 1,121 12.2 16.1 (3.7) 664 3.4 8.2 (6.5) 815 3.3 10.1 (7.3)

T7-2 48.4 12.8 1,050 11.4 29.8 (5.6) 3,920 20.1 90.2 (30.7) 5,029 20.2 115.7 (37.7)

VBP32-2 42.5 24.9 2,616 28.5 37.5 (8.9) 2,373 12.1 27.6 (15.9) 2,821 11.4 33.5 (17.2)

*-1, -2 indicates data from community one and community two, respectively. †Predicted read abundances were recalculated to take into account the low recruitment of phage Athena, T4 and VBpm10. CCS, circular
consensus sequencing; MDA, multiple displacement amplification.
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Table 2 Correlation coefficient of pairwise comparison of
gene coverage in control and multiple displacement
amplification treatments

Pearson’s correlation coefficient

Treatments Control Single MDA

Blue7 Single MDA 0.21†

Pooled MDA 0.37† 0.86‡

Fruitloop Single MDA 0.07

Pooled MDA 0.04 0.98‡

Gumball-1 Single MDA −0.31†

Pooled MDA −0.33† 0.94‡

Gumball-2 Single MDA −0.31†

Pooled MDA −0.36† 0.82‡

Lambda Single MDA 0.16

Pooled MDA 0.10 0.99‡

Porky-1 Single MDA 0.18†

Pooled MDA 0.15 0.91‡

Porky-2 Single MDA −0.15

Pooled MDA −0.09 0.79‡

T7 Single MDA −0.42†

Pooled MDA −0.56† 0.95‡

VBP32 Single MDA −0.11

Pooled MDA −0.15 0.92‡

Wee Single MDA 0.24†

Pooled MDA 0.22† 0.93‡

Comparisons were of average coverage for each predicted gene in a genome.
†P < 0.05.
‡P < 0.0001. MDA, multiple displacement amplification.
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amplified using MDA does not accurately reflect the true
frequency of taxa or gene functions among viral popula-
tions within the original sample. MDA clearly caused cer-
tain regions of the phage genomes to be over-represented
in the resulting sequence library. Counter to current
thinking, pooling of several MDA reactions did not
Table 3 Correlation coefficient of pairwise comparison of
gene coverage across communities for mycobacteriophage
Gumball and Porky

Pearson’s correlation coefficient

Gumball-2

Treatments Single MDA Pooled MDA

Gumball-1 Single MDA 0.92‡ 0.88‡

Pooled MDA 0.90‡ 0.89‡

Porky-2

Treatments Single MDA Pooled MDA

Porky-1 Single MDA 0.86‡ 0.85‡

Pooled MDA 0.84‡ 0.88‡

Comparisons were of average coverage for each predicted gene in a genome.
‡P < 0.0001. MDA, multiple displacement amplification.
alleviate this bias as coverage patterns within genomes
were recurrent across experiments and reactions. The
most parsimonious explanation for this phenomenon is
that the random hexamers used for priming the MDA re-
action did not in fact prime randomly across all genomes.
The consequence of unequal priming efficiency of MDA
was that subsets of genes from a given viral genome were
artificially over- or under-represented within the resulting
metagenome sequence library.
Many viral genomes, especially phage genomes, have a

modular genetic organization with genes clustered ac-
cording to their functional roles such as head assembly,
tail assembly and genome replication [28]. Because the
middle portions of linear phage genomes tended to be
over-represented, genes within these regions would also
be over-represented within the library relative to their
true abundance within the genomes. Many phages have
similar functions located at similar locations in their ge-
nomes, such as the λ supergroup within the siphoviridae
family [29]. At the community scale, inaccuracies in the
frequency of gene functional groups caused by MDA
could be linked with the typical position of a given func-
tional gene group within a phage genome. It should also
be noted that non-uniform coverage could hamper
assembly-based community analyses that strive to as-
semble genome-length fragments from a complex mix-
ture of multiple genotypes [30,31].
Considerable effort has been focused on evaluating

and optimizing methods for metagenomic library con-
struction. LASL is a commonly utilized alternative to
MDA for preparing metagenomic libraries [1,4,32,33].
While starting DNA quantities as low as 1 pg have been
successfully prepared for Illumina sequencing using the
LASL, such low starting amounts of DNA require more
PCR cycles to generate sufficient DNA for sequencing.
As a consequence, sequences at the extremes of %GC
content can be under-represented. At greater initial
DNA quantities (10 to 100 ng), fewer PCR cycles are
needed leading to a smaller degree of %GC bias [1]. Ini-
tial analyses of a relatively new technique, known as
LADS, indicate that LADS libraries produced more uni-
form coverage than PCR-based library preparations
across low and high %GC genome regions [3]. However,
the LADS procedure has been found to generate a
greater number of duplicate and chimeric reads as com-
pared to standard Illumina library protocols [34]. More
research is needed to evaluate the performance of LADS
for metagenomic investigations. Transposase-based Nex-
tera™ kits have been increasingly utilized in the construc-
tion of metagenomic fragment libraries for Illumina
sequencing. While better suited to high-throughput
sample preparation, Nextera also suffers from %GC
biases linked to the PCR step and a slight bias in se-
quence targeting by the transposase during DNA
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fragmentation [2,4,35]. Despite the documented biases
of the LASL and Nextera protocols, the degree of bias in
these techniques is substantially lower than that of MDA
protocols [9,33,36].
In theory, any amount of amplification has the potential

to skew the ambient distribution of mixed community
DNA. Therefore, an optimal library preparation would re-
quire no amplification steps. PCR-free protocols are avail-
able, but the large amount of input DNA needed for such
procedures can be prohibitive for ecological studies [37].
The advent of new sequencing technologies coupled with
new protocols to prepare DNA for sequencing are paving
the way for future methodologies that may exclude any
type of amplification. Library preparation methods that re-
quire as little as 1 ng DNA have been demonstrated for
PacBio SMRT sequencing [38]. With continuing develop-
ment, such methodologies hold promise for removing
amplification bias from metagenomic investigations.

Conclusions
Our findings contribute to the growing evidence that
MDA should not be utilized in metagenomic studies
seeking quantitative information on the population
structure of a microbial community. MDA has been an
invaluable tool in several important areas of research, in-
cluding single cell genomics and forensics [7,32,33,39].
The efficient amplification of circular ssDNA templates
during MDA has been exploited to explore the diversity of
ssDNA viruses [40-43]. Within microbiome research,
MDA protocols are an easy means of obtaining sufficient
DNA for next generation sequencing; however, subse-
quent observations of microbial taxa and gene functions
within metagenome libraries are not quantitative. The
practice of pooling replicate MDA reactions from a single
sample does not alleviate biases in the representation of
sequences within a library. Researchers should carefully
evaluate their requirements for quantitative data on the
frequency of microbial taxa and gene functions before
utilizing MDA in a microbiome investigation.

Additional file

Additional file 1: Table S1. Bacteriophage genomes within two mock
viral communities. Table S2. Results of Pacific Biosciences circular
consensus sequencing read recruitment to reference genomes. Figure S1.
Coverage patterns of Fruitloop and Wee for control and multiple
displacement amplification treatments using A) 95% similarity and 60%
length fraction and B) 95% similarity and 90% length fraction for reference
mapping parameters.
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