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Abstract

Background: This study was undertaken to determine whether the vaginal microbiota of pregnant women who
subsequently had a spontaneous preterm delivery is different from that of women who had a term delivery.

Results: This was a nested case–control study of pregnant women who had a term delivery (controls) and those
who had a spontaneous preterm delivery before 34 weeks of gestation (cases). Samples of vaginal fluid were
collected longitudinally and stored at −70°C until assayed. A microbial survey using pyrosequencing of V1-V3
regions of 16S rRNA genes was performed. We tested the hypothesis of whether the relative abundance of individual
microbial species (phylotypes) was different between women who had a term versus preterm delivery. A suite of
bioinformatic and statistical tools, including linear mixed effects models and generalized estimating equations, was
used. We show that: 1) the composition of the vaginal microbiota during normal pregnancy changed as a function of
gestational age, with an increase in the relative abundance of four Lactobacillus spp., and decreased in anaerobe or
strict-anaerobe microbial species as pregnancy progressed; 2) no bacterial taxa differed in relative abundance
between women who had a spontaneous preterm delivery and those who delivered at term; and 3) no differences in the
frequency of the vaginal community state types (CST I, III, IV-B) between women who delivered at term and those who
delivered preterm were detected.

Conclusions: The bacterial taxa composition and abundance of vaginal microbial communities, characterized with 16S
rRNA gene sequence-based techniques, were not different in pregnant women who subsequently delivered a preterm
neonate versus those who delivered at term.
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Background
Preterm delivery is the leading cause of perinatal mor-
bidity and mortality worldwide [1-8]. There are approxi-
mately 15 million preterm births every year [1,3,8], and
few approaches have been proven successful to reduce
the rate of preterm birth and neonatal morbidity [9-11].
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The cost of preterm birth to society has been estimated
to be more than $26 billion per year in the United States
alone [12-14]; therefore, the prediction and prevention
of preterm birth is a major health care priority.
Of all preterm births, two-thirds occur after the spon-

taneous onset of preterm labor (with intact or ruptured
membranes) [15]. Multiple mechanisms of disease have
been implicated in the onset of spontaneous preterm
labor (that is, infection/inflammation, uterine overdis-
tension, decidual senescence, and so on). [16,17]. In nor-
mal pregnancy, the amniotic cavity is considered ‘sterile’;
yet, microbial invasion of the amniotic cavity (MIAC),
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often subclinical in nature, occurs in one of every four
preterm deliveries [18-20]. Microorganisms and their
products can induce a local inflammatory response in
gestational tissues (acute chorioamnionitis), leading to
preterm labor [18-37]. Most intra-amniotic infections
are thought to occur when microorganisms in the
lower genital tract (vagina and/or cervix) gain access
to the amniotic fluid [17]. Changes in the microbial
ecosystem of the vagina have been implicated in the genesis
of ascending intrauterine infection [17,20,31,38-45].
Trichomonas vaginalis infection [46-48] and bacterial

vaginosis [28,41,43,49-67] are risk factors for spontan-
eous preterm labor and delivery; yet, identification of
the patient with either of these conditions who will
subsequently have a preterm delivery has proven diffi-
cult [60]. Characterization of the microbial compos-
ition of ecological niches in the human body [68-77],
including the vagina, using culture-independent tech-
niques, is now possible [78-96]. We previously re-
ported a survey of the microbial communities of the
vagina using sequencing of the 16S ribosomal RNA
(rRNA) gene in normal pregnancy [97]. However, there
is no information as to whether changes in the micro-
bial composition of the vagina (using sequence-based
techniques) occur prior to the onset of spontaneous
preterm delivery.
The purpose of this study was to determine whether

the longitudinal vaginal microbiota composition and
structure of pregnant women who subsequently had a
spontaneous preterm delivery is different from that of
women who had a normal spontaneous term delivery.
The major findings reported herein are that the vaginal
microbiota changes with gestational age in women who
deliver at term, and no differences were detected in the
bacterial taxa, relative abundance and frequency of com-
munity state types between patients who deliver at term
and those who subsequently had a spontaneous preterm
delivery.

Methods
Study design
This was a nested case–control study conducted to com-
pare changes in the vaginal microbiota of patients who
had a spontaneous preterm labor and delivery with those
who had an uncomplicated pregnancy. Cases and con-
trols were selected in a 1:4 ratio from a prospective
longitudinal cohort study designed to examine the rela-
tionship between biological markers and pregnancy out-
come. The study included 18 cases and 72 controls.
Patients with indicated preterm birth (for example, pre-
eclampsia, intrauterine growth restriction, or congenital
anomalies) were excluded. Patients volunteered to par-
ticipate in the study and signed a written informed con-
sent. The use of samples from the longitudinal study of
pregnant women was approved by the Human Investiga-
tions Committee of Wayne State University and the
Institutional Review Board (IRB) of the Eunice Kennedy
Shriver National Institute of Child Health and Human
Development (NICHD).

Clinical definitions
A normal pregnant woman was defined as one without
obstetrical, medical or surgical complications, who deliv-
ered at term (38 to 42 weeks) without congenital anom-
alies or acute histologic chorioamnionitis. Preterm labor
was diagnosed by the presence of at least two uterine
contractions every 10 minutes associated with cervical
changes in patients with a gestational age between 20
and 34 weeks. Preterm premature rupture of membranes
(PPROM) was identified with a sterile speculum exam-
ination with documentation of vaginal pooling and
positive nitrazine and ferning tests. Spontaneous
preterm delivery was defined as having occurred prior
to the 34th week of gestation in patients with either
intact membranes or PPROM. Acute histologic chor-
ioamnionitis was diagnosed based on the presence
of inflammatory cells in the chorionic plate and/or
chorioamniotic membranes [98-100]. Sixty-one per-
cent (11/18) of the cases had evidence of acute histo-
logic chorioamnionitis.

Study procedures
Pregnant women who agreed to participate in the study
had a speculum examination at each visit; a sample of
vaginal fluid was collected under direct visualization
from the posterior vaginal fornix by an obstetrician or mid-
wife using a Dacron swab (medical packaging swab – PAK™
Carmarillo, CA, USA). The protocol called for sample col-
lection every 4 weeks until 24 weeks of gestation, and then
every 2 weeks until the last prenatal visit. Vaginal swabs
were placed in a tube without any buffer and immediately
stored at −70°C until assayed.

DNA extraction, amplification and pyrosequencing of
barcoded V1-V3 hypervariable regions of 16S rRNA genes
Procedures for the extraction of genomic DNA from fro-
zen vaginal swabs have been developed and validated
previously [101,95,102]. Briefly, frozen vaginal swabs
were immersed in 1 ml of sterile PBS and vortexed for
10 minutes. A total of 500 μl of the cell suspension was
mixed with 500 μl of pre-warmed (55°C) cell lysis buffer
composed of 0.05 M potassium phosphate buffer con-
taining 50 μl lyzosyme (10 mg/ml), 6 μl of mutanolysin
(25,000 U/ml; Sigma-Aldrich, St. Louis, MO, USA) and
3 μl of lysostaphin (4,000 U/ml in sodium acetate;
Sigma-Aldrich) and the mixture was incubated for one
hour at 37°C. Then 10 μl proteinase K (20 mg/ml),
100 μl 10% SDS, and 20 μl RNase A (20 mg/ml) were
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added and the mixture was incubated for one hour at
55 °C. The samples were transferred to a FastPrep Lysing
Matrix B tube (MP Biomedical, Santa Ana, CA, USA)
and microbial cells were lysed by mechanical disruption
using a bead beater (FastPrep instrument, Qbiogene,
Carlsbad, CA, USA) set at 6.0 m/second for 30 seconds.
The lysate was processed using the CellFree500 kit on a
QIAsymphony robotic platform. The DNA was eluted
into 100 μl of TE (10 mM Tris–HCl, 1 mM EDTA) buf-
fer, pH 8.0. This procedure provided between 2.5 and
5 μg of high quality whole genomic DNA from vaginal
swabs.
The bacterial species composition and abundance in

vaginal communities were determined using culture-
independent methods. The V1-V3 hypervariable regions
of the 16S rRNA gene were amplified using an opti-
mized primer set comprising 27 F [103] and 534R. Be-
cause primer 534R contains a unique sample identifying
barcode, up to 192 samples were sequenced per run and
generated 4,000 to 6,000 sequence reads per sample.
The primers were as follows:
27 F - 5′-GCCTTGCCAGCCCGCTCAGTCAGAGTT

TGATCCTGGCTCAG-3′
534R - 5′-GCCTCCCTCGCGCCATCAGNNNNNNN

NCATTACCGCGGCTGCTGGCA-3′
The italicized sequences are the 454 Life Sciences®

primers B and A in 27 F and 534R, respectively, and the
bold font denotes the universal 16S rRNA primers 27 F
and 534R. The barcode within 534R is denoted by eight
Ns (but varies from six to eight Ns) and were identical
to those used by the Human Microbiome Project [104].
A mixture of bacterial 27 F primers was used to maximize
sequence type discovery and eliminate the PCR amplifica-
tion bias described by Frank et al. [103]. The 27 F formula-
tion remains relatively simple: having only seven distinct
primer sequences there is minimal loss of overall amplifi-
cation efficiency and specificity. The 27 F primer mixture
was: four parts of four-fold-degenerate primer 27f-YM
(5′-AGAGTTTGATYMTGGCTCAG, where Y is C or T)
plus one part each of primers specific for the amplification
of Bifidobacteriaceae (27f-Bif, 5′-AGGGTTCGATTCTG
GCTCAG), Borrelia (27f-Bor, 5′-AGAGTTTGATCC TG
GCTTAG), and Chlamydiales (27f-Chl, 5′-AGAATTTGA
TCTTGGTTCAG) sequences. This primer formulation
was previously shown to better maintain the original rRNA
gene ratio of Lactobacillus spp. to Gardnerella spp. in
quantitative PCR assays, particularly under stringent amp-
lification conditions [103].
For every set of 192 vaginal genomic DNA samples,

PCR amplification of 16S rRNA genes was performed in
96-well microtiter plates as follows: 1× PCR buffer,
0.3 μM primer 27 F and 534R, 0.25 μl HotStar HiFidelity
DNA polymerase (5 U/μl; Qiagen, Germantown, MD),
and 25 ng of template DNA in a total reaction volume
of 25 μl. Reactions were set up on a QIAgility robotic
platform in a semi-sterile environment. Reactions were
run in a DNA engine Tetrad2 instrument (Bio-Rad,
Hercules, CA) using the following cycling parameters:
5 minutes denaturing at 95°C followed by 29 cycles of
30 seconds at 94°C (denaturing), 30 seconds at 52°C
(annealing) and 60 seconds at 72°C (elongation), with a
final extension at 72°C for 10 minutes. Separate plates
containing negative controls without a template for each
of the 96 barcoded primers were included for each set of
plates processed: in our workflow, if one of these sam-
ples is positive, the samples and negative controls plates
are rerun with new primers; however, no amplicons were
observed in any of the no template controls. The presence
of amplicons was confirmed by gel electrophoresis on a 2%
agarose gel stained with SYBRGreen (Life Technologies,
Carlsbad, CA, USA). PCR products were quantified using
the Quant-iT Picogreen® quantification system (Life Tech-
nologies) and equimolar amounts (100 ng) of the PCR
amplicons were mixed in a single tube using the QIAgility
robotic platform. Amplification primers and reaction
buffer were removed by processing the amplicon mixture
with the Agencourt AMPure Kit (Beckman-Coulter,
Pasadena, CA, USA). All PCR amplification reactions
that failed were repeated twice using different amounts
of template DNA, and if these failed, the samples were
excluded from the analysis.
The purified amplicon mixtures were sequenced by

454 pyrosequencing using 454 Life Sciences® (Roche/454
Life Sciences, Branford, CT) primer A by the Genomics
Resource Center at the Institute for Genome Sciences,
University of Maryland School of Medicine, using Roche/
454 Titanium chemistries and protocols recommended by
the manufacturer and amended by the Center.
All sequences were trimmed before the first ambigu-

ous base pair. The QIIME software package [105] was
used for quality control of the sequence reads using the
split-library.pl script and the following criteria: 1) mini-
mum and maximum length of 250 bp and 450 bp; 2) an
average of q25 over a sliding window of 25 bp. If the
read quality dropped below q25, it was trimmed at the
first base pair of the window then reassessed for length
criteria; 3) a perfect match to a barcode sequence; and 4)
presence of the 534R 16S primer sequence used for amplifi-
cation. Sequences were binned based on sample-specific
barcode sequences and trimmed by removal of the barcode
and primer sequences (forward, if present, and reverse).
High-quality sequence reads were first de-replicated (99%
similarity) using the UCLUST software package [106]. De-
tection of potential chimeric sequences was performed
using the UCHIME component of UCLUST [107] with the
de novo algorithm. Chimeric sequences were removed prior
to taxonomic assignments. Taxonomic assignments were
performed on each individual quality checked 16S rRNA
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sequence read using a combination of pplacer [108] and
speciateIT (speciateIT.sourceforge.net). Taxonomic assign-
ments (sequence read counts and relative abundances) are
shown in Additional file 1: Table S1. All sequence data and
metadata were deposited in the Sequence Read Archive
(SRA; http://www.ncbi.nlm.nih.gov/Traces/sra/) under
BioProject PRJNA242473 (SRA accession SRA150182,
SRP040750).

Statistical analysis
The abundance of bacteria is generally expressed on a
logarithmic scale (base 10), given the wide range of bacter-
ial abundance and the exponential nature of bacterial
growth under certain circumstances (for example in vitro).
The standard is to compare microbial abundance over time
using the difference of logs, log10 (a) - log10 (b), which is
the same as the log fold change log10 (a/b), where a and b
are relative abundances of a given microorganism in two
samples (for example, two sampling time points).
Changes in the abundance of a complex microbial eco-

system within the same patient at different time points
were estimated for specific phylotypes. We assessed the
dissimilarity between community states (in other words,
how divergent community states are) using the Jensen-
Shannon metric [109]. In microbial ecology, the term
‘community state’ refers to the relative abundance of all
phylotypes at a particular time point in a subject; in our
case, a sample of vaginal fluid.
The Jensen-Shannon divergence between two commu-

nity states, p and q, is the average of the Kullback–Lei-
bler divergences DKL (p, a) and DKL (q, a):

DJS p; qð Þ ¼ DKL p; að Þ þ DKL q; að Þ
2

where a is the mean of p and q and DKL(p,q) is the Kull-
back–Leibler divergence defined as:

DKL p; qð Þ ¼
Xn
i¼1

Pi log
Pi

qi

� �

where p = (p1, …, pn) and q = (q1, …, qn).
The Kullback–Leibler divergence DKL(p, q) calcu-

lates the mean log fold changes log (pi/qi). While the
Kullback–Leibler measure is widely used, it has one
drawback: its value becomes infinite if one of the com-
ponents of q is zero. In contrast, the Jensen-Shannon
divergence always yields a value between 0 and 1. A
Jensen-Shannon divergence score of 0 means that
two community states are the same. In contrast, a
Jensen-Shannon divergence score of 1 means that the
two community states are completely different. The
square root of the Jensen-Shannon divergence is called
‘Jensen-Shannon distance.’
The term ‘community state type’ is used in microbial
ecology to describe a group of community states with
similar microbial phylotype composition and abundance
[95,110]. Such grouping is desirable in order to reduce
dimensionality. Utilizing Jensen-Shannon divergence as a
measure of dissimilarity among community states and
hierarchical clustering with Ward linkage, six vaginal
community state types in pregnant and non-pregnant
women have been previously identified [95,97]. Four of
the community state types (I, II, III and V) are domi-
nated by Lactobacillus spp. (Lactobacillus crispatus, L.
gasseri, L. iners, and L. jensenii, respectively) and the
remaining two community state types (IV-A, IV-B) con-
sist of microbial ecosystems with a diverse array of an-
aerobes and strict anaerobes, and substantially lower
numbers of Lactobacillus spp. than the other community
state types.

Statistical procedures to evaluate the differential
abundance of phylotypes between women who deliver at
term and those who had a spontaneous preterm delivery
In order to assess a change in phylotype relative abun-
dance between the two groups, we modeled the relative
abundance of one phylotype at a time as a function of
study group (that is, normal pregnancy versus spontan-
eous preterm delivery). Only phylotypes present (one
read count) in 25% or more of the samples were consid-
ered in the analysis.
Read count data obtained from a longitudinal experi-

ment design are typically modeled using generalized esti-
mation equations (GEE) or linear mixed-effects (LME)
models by assuming a Poisson or negative binomial dis-
tribution of the response. The choice of a Poisson distri-
bution is justified when the count variance equals the
count mean, while the negative binomial distribution is
preferred when the mean-variance equality cannot be
safely assumed.
Several phylotypes were not detected in a large propor-

tion of samples; hence, the frequency of 0 count values in
the dataset was larger than expected under a Poisson or
negative binomial distribution. Therefore, models that allow
for zero inflation are more appropriate; indeed, this ap-
proach has been used for decades [111].
To ensure a proper fit of the count data of each phy-

lotype, we utilized zero-inflated negative binomial
mixed-effects models (ZINBLME) in addition to nega-
tive binomial linear mixed effects (NBLME) and Poisson
linear mixed effects (PLME) models. These three types
of models were fitted to each phylotype, and the model
with the lowest Akaike Information Criterion (AIC)
value was retained. The P-value for the association
between the microbial relative abundance and the
group variable was computed only for the best model
(smallest AIC).

http://www.ncbi.nlm.nih.gov/Traces/sra/
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The mixed effects modeling of the read counts data
(dependent variable) on pregnancy status (independent
variable) was performed using the NLMIXED procedure
in SAS (version 9.3) as discussed elsewhere [97,112,113].
All three types of models (PLME, NBLME and ZINBLME)
included an offset term (the log of the total number of
reads in a given sample) to allow for a comparison of the
relative abundance (and not absolute counts) between
groups. The random effect in the ZINBLME models was
allowed only on the non-zero inflation component (nega-
tive binomial mean).
For each of the three types of models, the reported co-

efficient represents the difference in mean log relative
abundance between patients who subsequently had a
spontaneous preterm delivery and those who delivered
at term, which was further converted into a fold change.
The P-value of the model with the best fit (smallest
AIC) was retained and false discovery rate adjustment
was applied across the phylotypes. A q-value <0.1 and
fold change >1.5 were considered significant.

Analytical approach to examine changes in abundance of
phylotypes with gestational age
The approach used to identify phylotypes associated
with spontaneous preterm delivery, described above, was
also used to characterize changes in the phylotypes’
abundance as a function of gestational age. The gesta-
tional age range over which samples were obtained in
this longitudinal study of pregnant women who deliver
at term was divided into three intervals: 6.9 to 22.1, 22.2
to 29.8 and 29.9 to 41 weeks. The two cut-off points at
22.1 and 29.8 weeks were selected so that the resulting
three intervals had comparable gestational age windows
and a comparable number of vaginal samples. The 5th
and 95th percentiles of the gestational age over which
samples were collected, were calculated. Then, the inter-
val between the 5th and 95th percentile was divided into
three gestational age windows (14.5 to 22.1 weeks, 22.2
to 29.8 weeks and 29.9 to 37.5 weeks).
This analysis provides a simple description of the ges-

tational age-related trends in microbial abundance (for
example, an increase in abundance of approximately two
fold from the first to second interval). However, such an
approach may not capture potentially more complex
trends in the microbial abundance as a function of gesta-
tional age. Therefore, a secondary analysis was performed
by treating gestational age as a continuous variable. Orthog-
onal polynomial terms based on gestational age were used
as explanatory variables in a NBLME model. The response
variable in this model was the observed number of reads
for each phylotype in each sample. The degree of the poly-
nomial function was selected so that the resulting model
minimized the AIC criterion. The degree of the polynomial
function varied from 1 to 7. The P-values for the ‘between
intervals’ comparisons as well as the P-value for each
polynomial term were adjusted across phylotypes. A false
discovery rate of 10% was used.

Results
Characteristics of the study population
The clinical and demographic characteristics of pregnant
women who had a term delivery or a spontaneous pre-
term delivery are displayed in Table 1. The median
number (interquartile range, IQR) of samples for term
and preterm deliveries was 4 (2 to 6) and 3 (2 to 4), re-
spectively, for a total of 349 samples. There were no sig-
nificant differences in the age, race, pre-pregnancy body
mass index and nulliparity between the groups (all
P >0.05). As expected, preterm neonates had lower birth-
weights and Apgar scores than term neonates (Table 1).

Characterization of the microbial taxa as a function of
depth of coverage
We characterized the vaginal microbiota using pyrose-
quencing of barcoded 16S RNA genes. The data set
consisted of 2,639,039 high quality sequences, with a
median length of 433 bp (IQR: 391 to 475). The median
number of sequences per sample was 7,548 (IQR: 5,388
to 9,489). Taxonomic assignment of the individual se-
quence reads identified a total of 99 taxa in the vaginal
microbiota of the women studied; all 99 taxa were ob-
served both in pregnant women who delivered preterm
and in those who delivered at term. The taxonomic as-
signment of vaginal bacterial community members is
shown in Additional file 1: Table S1.

The vaginal microbiota of women who deliver preterm
versus those who deliver at term
Our attempt to identify phylotypes with relative abun-
dances that were significantly different between women
who delivered at term and those with spontaneous pre-
term delivery was based on statistical models appropri-
ate for the type of data generated and that: 1) were
designed for count data modeling (assuming Poisson
and negative binomial distributions); and 2) allowed for
correlated observations from the same individual (for
example, linear mixed effect models); while 3) allowing
for extra zeroes in the data since some phylotypes
were frequently undetected. Only phylotypes that were
present in at least 25% of all samples were included in
the analysis, restricting the number of phylotypes to 21
(Additional file 2: Figure S1).
Table 2 shows the AIC statistics for all three types of

models for each phylotype, as well as the estimate, confi-
dence interval and P-value for the best (smallest AIC)
model. These analyses did not reveal any differences in
the relative abundance of bacterial phylotypes between
women who delivered preterm and those who delivered at



Table 1 Clinical and demographic characteristics of the study population

Term delivery (n = 72) Spontaneous preterm delivery (n = 18) P value

Age (years) 24 (21.8-28) 21 (20–26) 0.1

Race:

African American 62 (86.1%) 17 (94.4%) 0.7

White 4 (5.6%) 1 (5.6%)

Others 6 (8.3%) 0

Pre-pregnancy BMI (kg/m2) 28.7 (25.7-35.3)* 25.7 (21.6-33.6)** 0.2

Nulliparity 18 (25%) 7 (38.9%) 0.3

Gestational age at delivery (weeks) 39.6 (38.8-40.7) 30.5 (28–33.1) 0.001

Birthweight (grams) 3295 (3124.3-3538.8) 1402.5 (997.5-1998.8) 0.001

Apgar score at 1 min 9 (8–9) 6 (3–8) 0.001

Apgar score at 5 min 9 (9–9) 8 (6–8) 0.001

Duration of hospital stay (neonates); in days 3 (3–3)** 26 (13–53)*** 0.001

Data presented as median (interquartile range) or n (%).
BMI: body mass index.
Missing data: *n = 4, **n = 6, ***n = 1.

Table 2 Phylotypes differential relative abundance between pregnant women who delivered preterm and at term

Phylotypes PLME
AICa,d

NBLME
AICb,d

ZINBLME
AICc,d

Best
AICd

Estimate Lower 95% CI Upper 95% CI Fold change p-value q-valuee

Non-significantly different
phylotypes

Prevotella genogroup 3 6017.7 NA 1160.3 ZINBLME 2.524 0.341 4.706 12.5 0.0239 0.3850

Dialister sp. type 2 3934.3 4142.6 1346.3 ZINBLME 1.630 −0.002 3.261 5.1 0.0502 0.3850

Sneathia sanguinegens 2875.4 NA 1121.2 ZINBLME 1.510 −0.033 3.053 4.5 0.0550 0.3850

Parvimonas micra 4338.8 NA 1242.3 ZINBLME 1.339 −0.458 3.136 3.8 0.1422 0.5972

Gemella 4753.1 NA 1296.3 ZINBLME 1.327 −0.225 2.879 3.8 0.0927 0.4867

BVAB2 12246 NA 1686.4 ZINBLME 1.129 −0.784 3.041 3.1 0.2440 0.7046

Lactobacillus jensenii 54150 NA 2859 ZINBLME 1.040 −0.518 2.597 2.8 0.1880 0.6580

BVAB1 116789 NA 2467.9 ZINBLME 0.915 −0.976 2.807 2.5 0.3389 0.7046

Megasphaera sp. type 1 38178 NA 2860.1 ZINBLME 0.717 −0.864 2.298 2.0 0.3700 0.7046

Dialister propionicifaciens 3433.2 4330.8 1529.3 ZINBLME 0.625 −0.738 1.987 1.9 0.3648 0.7046

Lactobacillus
coleohominis

2309.1 NA 1405.6 ZINBLME 0.550 −0.800 1.899 1.7 0.4206 0.7046

Gardnerella vaginalis 193277 166894 4311.4 ZINBLME 0.520 −0.961 2.000 1.7 0.4874 0.7046

Aerococcus christensenii 18185 17841 2505.6 ZINBLME 0.383 −1.107 1.872 1.5 0.6108 0.7987

Atopobium vaginae NA NA 2625.8 ZINBLME 0.376 −1.249 2.001 1.5 0.6466 0.7987

Lactobacillus crispatus 159892 125388 3788 ZINBLME 0.157 −1.784 2.098 1.2 0.8724 0.9068

Lactobacillus iners 263630 194492 6324.8 ZINBLME 0.045 −0.721 0.811 1.0 0.9068 0.9068

Eggerthella 2926.9 NA 1405.3 ZINBLME −0.189 −1.724 1.345 −1.2 0.8069 0.8918

Lactobacillus vaginalis 2682.8 NA 1149.1 ZINBLME −0.293 −1.940 1.354 −1.3 0.7248 0.8456

Ureaplasma parvum 1866.8 NA 1184.9 ZINBLME −0.374 −1.480 0.732 −1.5 0.5033 0.7046

Atopobium rimae 1386.9 NA 883.8 ZINBLME −0.522 −1.910 0.865 −1.7 0.4567 0.7046

Lactobacillus gasseri 34741 NA 1592.4 ZINBLME −0.864 −2.847 1.118 −2.4 0.3887 0.7046
aPLME: Poisson Linear Mixed Effects Model.
bNBLME: Negative Binomial Linear Mixed Effects.
cZINBLME: Zero-Inflated Negative Binomial Mixed-Effects Model.
dAIC: Akaike Information Criterion.
eq-value is p-value after adjustment for false-discovery rate (0.1).
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term. In addition, among women who had a spontaneous
preterm delivery, we did not find differences in the relative
abundance of bacterial phylotypes between women with
and without acute histologic chorioamnionitis.

Dynamic changes in vaginal microbiota as a function of
gestational age
To examine whether the vaginal microbiota changes with
gestational age, we focused on women with a normal preg-
nancy who delivered at term (n = 72). We tested this hy-
pothesis by categorizing gestational age into three intervals
and also by treating gestational age as a continuous variable
in linear mixed-effects models. Based on the analysis in
which the gestational age was categorized in three intervals,
we found that the relative abundance of four Lactobacillus
spp. (L. crispatus, L. jensenii, L. gasseri and L. vaginalis) in-
creased as a function of gestational age. Indeed, the mean
relative abundance in the third interval (29.9 to 41 weeks)
was higher than in the first interval (6.9 to 22.1 weeks) of
gestation (q-value <0.1) (Additional file 3: Figure S2 and
Additional file 4: Table S2). The relative abundance of
eleven other bacterial taxa was found to decrease with
advancing gestational age. These included: Eggerthella,
Parvimonas micra, Dialister spp. type 2, Gemella, bacterial
vaginosis associated bacteria 1 (BVAB1), BVAB2, Atopo-
bium vaginae, Gardnerella vaginalis, Atopobium rimae,
Sneathia sanguinegens and Ureaplasma parvum. A separ-
ate analysis in which gestational age was treated as a con-
tinuous variable confirmed all positive findings from the
three-interval based approach (Additional file 5: Table S3).

Vaginal microbial community structures in women who
delivered at term and those who had a spontaneous
preterm delivery
In order to visualize the structure of the microbial com-
munity of the vaginal ecosystem in pregnant women
who delivered at term versus those who delivered pre-
term, we hierarchically clustered the vectors of relative
abundances of bacterial phylotypes (one per sample)
using the Jensen-Shannon metric and Ward linkage
[110]. In this study, a ‘community state’ refers to a vector
of relative abundances of bacterial phylotypes for a
given sample. Community states clustered into three
groups with similar bacterial composition and abun-
dance (Figure 1), referred to as community state types
(CST), according to the nomenclature established by
Gajer et al. [110].
Two of these CSTs were most often dominated by L.

crispatus (CST I) and L. iners (CST III). Communities
that clustered in CST IV-B lacked a substantial number
of Lactobacillus spp. and had higher relative abundance
of G. vaginalis, BVAB1, A. vaginae and Megasphaera
spp. type 1. These taxa have been previously shown
to be associated with bacterial vaginosis [80,83,114].
Overall, frequencies of CST I, CST III and CST IV-B in
the entire sample set were 18.6%, 58.5% and 22.9%, re-
spectively. There were no differences in the frequency of
the different CSTs (CST I, III, IV-B) between women
who delivered at term and those who delivered preterm
(CST I: 18.4% versus 19.6%; CST III: 59.4% versus 53.6%;
CST IV-B: 22.2% versus 26.8%). Longitudinal profiles of
CSTs as a function of gestational age and per subject are
shown in Figure 2.
A comparison of microbial diversity (Shannon Diver-

sity Index; SDI) between women who had a spontaneous
preterm delivery and those who had a term delivery was
performed using a LME model. The SDI values were
log-transformed to improve normality of the data. No
differences in the microbial diversity were found (term
delivery: SDI median 0.38; IQR 0.12 to 1.03; preterm de-
livery: SDI median 0.39; IQR 0.08 to 1.04).

Discussion
Principal findings of the study
The study’s principal findings are as follows: 1) the com-
position of the vaginal microbiota during normal preg-
nancy changes as a function of gestational age, with an
increase in the relative abundance of four Lactobacillus
spp., and a decrease in anaerobe or strict-anaerobe mi-
crobial species as pregnancy progresses; 2) there were
no differences in the relative abundance of microbial
phylotypes between women who had a spontaneous pre-
term delivery and those who delivered at term; and 3)
no differences were observed in the frequency of the
vaginal CSTs (CST I, III, IV-B) between women who
delivered at term or preterm.

The vaginal microbiota of normal pregnant women
A companion study [97] examined the vaginal micro-
biota in 22 pregnant women, and compared phylotype
abundance and the stability of the microbiota with that
of 32 non-pregnant women. The larger sample size of
the current study allowed us to demonstrate that there
are changes in the vaginal microbiota as a function of
gestational age. The abundance of 16 taxa was found to
change with the duration of pregnancy; of those, four in-
creased (L. crispatus, L. jensenii, L. gasseri and L. vagina-
lis) and eleven decreased (Eggerthella, P. micra, Dialister
spp. type 2, Gemella, BVAB1, BVAB2, A. vaginae, G.
vaginalis, A. rimae, S. sanguinegens and U. parvum). An
interesting finding is that all of the phylotypes that in-
creased in abundance belonged to the genus Lactobacil-
lus, while those that decreased were anaerobes. Of note,
L. iners, the most prevalent Lactobacillus spp. in the
vaginal microbiota [95], was among six phylotypes
(Prevotella genogroup 3, D. propionicifaciens, Megasphaera
spp. type 1, A. christensenii and L. coleohominis) for which
the relative abundance did not change significantly between
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the two groups of pregnant women (Additional file 3:
Figure S2).
These observations are relevant to understanding the

changes in the vaginal ecosystem with normal preg-
nancy. Moreover, it is possible that these temporal
changes may be meaningful in assessing health and
predisposition to disease states. Comparison of the
current results with culture-based studies in pregnancy
is difficult because sequence-based techniques allow
the comprehensive detection of bacteria and assess-
ment of their abundance, which may not be possible
with standard cultivation methods.

The vaginal microbiota of women at risk for preterm
delivery
A compelling body of evidence supports a causal asso-
ciation between intra-amniotic infection and spontan-
eous preterm delivery [18-24,26,29,33,34,36,115,116].
The organisms found in the amniotic cavity are often
similar taxonomically to those found in the lower
genital tract of pregnant women as demonstrated
by using both cultivation and molecular techniques
[19,23,25,40,42,48,54,117-120]. Therefore, an ascend-
ing pathway has been proposed to be the most frequent
cause of intra-amniotic infection [19,20,38,39,44,45].
During the last three decades, accumulating evidence has

suggested that changes in the microbial ecosystem of the
lower genital tract, often referred to as bacterial vaginosis,
atypical or aerobic vaginitis [63,65,121,122], are risk factors
for spontaneous abortion [123-128], spontaneous preterm
delivery [41,49,51-54,56,58-63,65,94,128-131], intra-amniotic
infection [28,31,32,35,40,132-135], puerperal endometritis
[58,129,136-139] and adverse perinatal outcomes [40,49,
128,131,140-142]. Even though bacterial vaginosis confers
risk for spontaneous preterm delivery, the risk is modest,
and most women with this condition will deliver at term.
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Most of the evidence suggests that treatment of bacter-
ial vaginosis with antimicrobial agents (metronidazole
or clindamycin) during pregnancy does not reduce the
rate of preterm delivery [143-148], and this has been
attributed to an inadequate characterization of the
changes in the microbial ecosystem of the lower genital
tract in patients who subsequently delivered preterm
or to gene-environment interactions in susceptible in-
dividuals [60,61,149-151].
Vaginal microbiota of pregnant women who have a
spontaneous preterm delivery
The present study was undertaken to address the question
of whether the vaginal microbial composition of women
destined to deliver preterm is different from that of women
who deliver at term, using sequence-based techniques
(16S rRNA gene surveys) and samples collected throughout
pregnancy in both groups. Using a thorough statistical ap-
proach that was appropriate for longitudinally-collected
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samples, we did not find any bacterial taxa for which the
relative abundance was different in patients who delivered
preterm than those who delivered at term.
This study did not identify specific bacteria with an in-

creased or decreased relative abundance that were associ-
ated with spontaneous preterm delivery. It is important to
note that 61% of patients who had a spontaneous preterm
delivery had acute histologic evidence of chorioamnionitis,
which is considered an indicator of the ‘amniotic fluid in-
fection syndrome’ [152]. Therefore, by design, this study
maximized the likelihood of finding changes in the vaginal
microbiome in patients who had a spontaneous preterm
delivery.
Although one of every four cases of spontaneous pre-

term labor is associated with microbiologically-proven
intra-amniotic infection, it is unclear whether such pa-
tients can be identified by the change in the composition
and stability of the vaginal microbiota. Changes may be
demonstrable in other biological fluids, such as cervical
fluid [153]. Assessment of risk for preterm labor/delivery
may also require evaluation of the microbial-host inter-
actions (that is, microbial composition, genotype of the
host, and the nature of the cellular or soluble immune
response). It is possible that the perturbation of the
vaginal microbiome leading to intra-amniotic infection
is transient and, therefore, difficult to detect using
the sample frequency employed in the current study.
Characterization of the vaginal microbiota using 16S
rRNA gene sequence analysis, while very informative in
identifying differences in composition, does not provide
information on the functions of individual bacteria or
the community in the vagina. Comparative metagenomic
analysis (sequencing and comparing the genes and ge-
nomes of microbial communities) might identify vaginal
bacteria of the same species but with a different genomic
makeup (carry different metabolic or biochemical path-
ways) that 16S rRNA gene sequence analysis cannot distin-
guish [154]. In addition, comparative metatranscriptomics
(sequencing and comparing the suites of genes expressed
by members of microbial communities) might detect func-
tions differentially expressed in women who delivered pre-
term or at term.

Strengths and limitations
The major strengths of this study are: 1) its longitudinal na-
ture, which allows characterization of the vaginal micro-
biota over time, prior to spontaneous preterm birth; 2) the
quality of the sequence-based techniques (16S rRNA gene)
which reduced bias over other methods, including cultiva-
tion techniques; 3) the use of analytical and statistical
methods specifically designed for the analysis of longitu-
dinal studies; and 4) the definition of preterm delivery
was <34 weeks of gestation, minimizing the potential con-
founding with patients who delivered near term (<37 weeks).
Potential limitations of the study include the sample size.
There were 18 patients who had a spontaneous preterm de-
livery. Yet, this is one of the first studies to address the
research question using 16S rRNA gene sequence-based
techniques. Our report focuses on relative abundance of dif-
ferent community members because it is difficult to inter-
pret bacterial load quantification data from 16S rRNA gene
quantitative PCR analysis. Recently, Nelson et al. [155] re-
ported that among women reporting a prior preterm deliv-
ery, those with higher levels (absolute abundance) of
Leptotrichia/Sneathia species, BVAB1 and Mobiluncus spp.
as determined using targeted quantitative PCR, prior to
16 weeks gestation, were significantly more likely to experi-
ence a spontaneous preterm delivery. These findings were
different from those of Wen et al. [156], who found that
the presence of Mycoplasma in the second semester of
pregnancy was associated with increased risks of preterm
delivery, while the presence of BVAB3 drastically de-
creases the risk of preterm delivery (however, this was
only the case in African American and Hispanic women,
but not in Caucasians). We did not find the relative abun-
dance of these taxa to be associated with the vaginal
microbiota of women who delivered preterm. Additional
studies on the changes in the vaginal microbiome and
spontaneous preterm birth are needed. It would be im-
portant to characterize the composition of the vaginal
microbiota using indices of relative abundance, as well
as the overall bacterial absolute abundance.
Although a 16S rRNA gene-based survey of microbial

communities is a powerful tool to characterize the com-
position of a microbial community, this approach pro-
vides limited information about the function and role of
the vaginal microbial community in health and disease.
The use of a metagenomic and meta-transcriptomics ap-
proach would add considerable information to the one
presented in this study, as would studying the nature of
the host immune, endocrine and metabolic responses as-
sociated with changes in microbial composition.
Conclusions
We report that the composition of the vaginal microbiota
during normal pregnancy changed as a function of gesta-
tional age, with an increase in the relative abundance of
four Lactobacillus spp., and decreased in anaerobe or strict-
anaerobe microbial species as pregnancy progressed. Differ-
ences in the human vaginal microbiota between women
who subsequently had a spontaneous preterm delivery and
those who delivered at term were not detected.
Additional files

Additional file 1: Table S1. Taxonomic assignments, relative
abundance of 16S rRNA gene sequences per taxa, and metadata.

http://www.biomedcentral.com/content/supplementary/2049-2618-2-18-S1.xlsx
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Additional file 2: Figure S1. Relative abundance of all phylotypes
present in 25% of all longitudinal samples collected from women who
delivered at term (blue) and women who delivered preterm without
chorioamnionitis (orange) and with chorioamnionitis (red). The Y-axis
represents the percent relative abundance of each taxa in a sample,
and the X-axis represents each women.

Additional file 3: Figure S2. Changes in phylotype relative abundance
as a function of gestational age in women who had a term delivery and
evaluated with a three-interval-based analysis. The Y-axis represents the
log relative abundance of a given taxa while the x-axis is the gestational
age at sampling. Each point represents a sample. The two grey vertical
dashed lines define three-intervals of gestation. The solid black line
represents the mean relative abundance estimated from the Negative
Binomial Linear Mixed Effects model, while the dashed curves represent
the 95% confidence interval around the prediction. The arrows at the top
of each panel indicate which of the three ‘between-interval’ comparisons
was significant. The direction of change, which is marked above each
arrow, with the words ‘up’ or ‘down’, indicates the increase/decrease in
relative abundance with advancing gestational age from the interval at
the left end of the arrow to the interval at the right end of the arrow. A
red frame represents phylotypes whose relative abundance significantly
increased with gestational age, while a blue frame represents phylotypes
whose relative abundance significantly decreased with gestational age.
A teal frame represents phylotypes whose relative abundance did not
change significantly with gestational age.

Additional file 4: Table S2. Phylotypes whose relative abundance
changes as a function of increasing gestational age. Results from the
three intervals-based analysis.

Additional file 5: Table S3. Statistical significance of phylotypes whose
relative abundance increased or decreased as a function of gestational
age (GA) and evaluated with a three intervals-based analysis of GA or a
polynomial-based analysis where GA is treated as a continuous variable.
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